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Abstract: Conductance quantization (QC) phenomena occurring in metal oxide based memristors
demonstrate great potential for high-density data storage through multilevel switching, and analog
synaptic weight update for effective training of the artificial neural networks. Continuous, linear and
symmetrical modulation of the device conductance is a critical issue in QC behavior of memristors.
In this contribution, we employ the scanning probe microscope (SPM) assisted electrode engineering
strategy to control the ion migration process to construct single conductive filaments in Pt/HfOx/Pt
devices. Upon deliberate tuning and evolution of the filament, 32 half integer quantized conductance
states in the 16 G0 to 0.5 G0 range with enhanced distribution uniformity was achieved. Simulation
results revealed that the numbers of the available QC states and fluctuation of the conductance at
each state play an important role in determining the overall performance of the neural networks.
The 32-state QC behavior of the hafnium oxide device shows improved recognition accuracy
approaching 90% for handwritten digits, based on analog type operation of the multilayer perception
(MLP) neural network.
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1. Introduction

Resembling the operating principle of human brains that transmit and process information
through huge amounts of interconnected neurons and synapses [1–4], neuromorphic computing
paradigm based on new solid-state electronic devices have demonstrated advantages of high efficiency,
low power consumption, and parallel processing ability when handling big-data analysis tasks [5–7].
Plenty of research efforts have been devoted to emulating the electrical functions of biological synapses
and neurons with ferroelectric, magnetic, phase-change, and resistive switching devices [8–10],
wherein the resistive switching memristors distinguish themselves as promising post-Moore era
candidates with their simple device structure, crossbar array, and 3D stacking capability for very large
scale integration [11–17]. In particular, the ion migration and filamentary conduction mechanism
make the memristor devices extremely scalable, enabling them to easily approach the lithographic
limitations [18–21]. It was demonstrated that the computing and energy efficiency of memristor-based
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in-memory computation was comparable to that of the complementary metal-oxide-semiconductor
(CMOS) platforms [22,23].

Shrinking the dimension of the conductive filaments (CFs) into the atomic scale of quantum point
contact allows memristor ballistic electron transport without scattering and quantized conductance
(QC) characteristics in analog domains [24–26]. It not only significantly increases the data storage
capacity of the devices, but also allows stronger information processing ability in neuromorphic
systems. Generally, multiple conductance states of the memristor devices should be achieved in
ways that are as simple as possible for practical usage [27–30]. Nonetheless, most of the studies
until now were implemented with complex programming schemes to achieve multi-conductance
characteristics, in which the involvement of varying current compliance and voltages leads to a
heavy burden on the system circuit design [31–34]. Advancements are highly desired to simplify
the operating philosophy and realize reliable and analog type conductance quantization behavior in
resistive switching memristors.

In this contribution, we report an effective approach to regulate the multilevel quantized
conductance characteristics through pre- and customized formation of the conductive filament
in a controllable manner in metal oxide based memristor devices. By inducing the directional migration
of oxygen anions under the stress of a concentrated electric field through a conductive scanning
probe microscopic (SPM) tip, indentation and consequently protrusion of the metal electrode into the
switching matrix can cause the construction of a single conductive filament at a fixed position with better
controllability. Thirty-two continuous quantized conductance states can be obtained by deliberately
manipulating the as-formed CF, which gives rise to≈20% enhancement in the uniformity of conductance
value distribution in each QC state. More importantly, enhanced recognition accuracy approaching
90% can be achieved by multi-layer perception, employing HfOx memristor with homogenized, analog
type conductance quantization for both handwritten digit patterns.

2. Materials and Methods

The Pt/HfOx/Pt sandwich structured memristor devices were fabricated on commercial Pt/Ti/SiO2

wafers (HF-Keijing, heifei, China) by depositing 10 nm HfOx thin film through RF magnetron sputtering
technique in a pure argon environment, with an environmental pressure of 1 Pa and using high purity
HfO2 ceramic (99.995%) as the target. For samples with a flat Pt/HfOx interface, the top platinum
electrodes, with a thickness of 50 nm, were directly deposited onto the HfOx nanofilm by electron
beam evaporation at a pressure of ≈10−6 Pa and a deposition rate of ≈0.5 Å/s at room temperature.
For samples with inward conical Pt electrode protrusion, a layer of photoresist (AZ-5214E, QiYao
Opto-Electronics, ShenZhen, China) was first spin-coated onto the HfOx nanofilm, followed by
photolithography patterning using a positive photomask and lift-off process to define an exposed
HfOx area with a radii of 100 µm. Then a Pt-coated scanning probe microscope tip was placed onto
the surface of the circular HfOx exposed area in contact mode, where local voltage sweeps with
different amplitudes and loading cycles were applied onto the sample to drive the migration of oxygen
anions/vacancies to form indentations (Figure 1). During operation, the bottom Pt electrode was
always grounded, and all the operations were conducted in ambient environment. Afterward, Pt top
electrodes were deposited into the circular pattern through E-beam evaporation.
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3. Results and Discussion

Variation of the switching parameters, including the programming voltages and device resistances
in different QC states, is the main cause of performance deterioration in terms of operating reliability
and recognition accuracy of the memristor based neural networks. It can be ascribed to the random
ion migration in the polycrystalline metal oxide switching matrix, and consequently the stochastic
nature of the branch-shaped multiple conductive filament formation, disruption, and regeneration
during cyclic operations [35,36]. In order to achieve a more stable and adjustable conductance state
for memristor devices, we performed pre-treatment of the HfOx switching layer using the scanning
probe microscope based electrochemical lithography technique [37,38]. By stressing voltages onto the
hafnium oxide layer through a conductive SPM tip, the highly localized electric field formed under
the tip pinpoint region can induce directional migration of the mobile oxygen vacancies towards
the tip position, resulting in loss of the local mass, and therefore formation of a concave structured
indentation. As demonstrated in our previous study [38], capping the top Pt electrode formed a
downward pointing metal protrusion into the switching layer, which acted as a microelectrode that
concentrated the internal electric field distribution and led to the formation of a single conductive
filament in the memristor device. The evolution of the as-formed CF is more controllable, so the
reliability of the device can be greatly improved. As shown in Figure 2a, scanning the pre-treated
Pt/HfOx/Pt device between −1.5 V and +2 V with a current compliance preset of 10 mA can produce
resistive switching characteristics, showing promising cycling uniformity. For over hundreds of
switching cycles, both the ON and OFF state resistances were distributed in a narrow range (Figure 2b).
A high ON/OFF ratio exceeding 103 can be maintained reliably, allowing a wide regulation window for
the achievement of conductance quantization, with sufficient resolution for differentiating the adjacent
QC states for multilevel operations. Theoretically, the ON and OFF device resistances of 35,000 Ω and
300 Ω corresponds to the conductance modulation range of 0.5 G0–50 G0, which is even broader than
that used in synaptic weight updating of the reported memristive neural networks [39,40]. Herein,
G0 is the integer unit of quantized conductance, 77.5 µS. Similar pre-treatment can be performed with
the nano-imprint lithography (NIL) technique during large scale fabrications.
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Figure 2. (a) Current–voltage characteristics of Pt/HfOx/Pt memristor device showing resistive switching
with an ON/OFF ratio exceeding 103. Inset shows the structure of the device, with electrode protrusion
extending into the hafnium oxide switching layer. (b) Histogram of the device resistances in the ON
and OFF state. (c) Continuous regulation of the device current in the negatively biased reset processes.
(d) Evolution of the device conductance as a function of the voltage pulse stressing numbers.
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Conductance quantization can be realized by either controlling the current compliance in the
set processes or changing the cut-off voltages of the reset processed [41,42]. Since the positive
feedback of the set procedure usually led to uncontrolled overgrowth of the conductive filament with
overshooting device conductance, or even the absence of the QC states [37], we employed a relatively
more moderate reset process to modulate the evolution of the conductive filament. As depicted
in Figure 2c, resetting the Pt/HfOx/Pt device with increasing stopping voltages of −0.6 V to −1.6 V
during direct current (DC) scanning can consecutively decrease the device currents. Replotting in
the conductance vs. number of scanning curve, or the conductance vs. number of pulse stressing
curve, reveals a continuous modulation of device conductance from 16 G0 to 0.5 G0 in a half-integer
QC step (Figure 2d). The pulse-mode measurement was conducted by applying voltage pulses with
the width of 10 ms and increasing amplitudes from −0.6 V to −1.6 V. For both the DC scanning and
pulse stressing operations, the ramping steps of the voltages are −0.02 V in the −0.6 V to −0.84 V range,
with an increase to −0.04 V in the −0.84 V to −1.6 V range. This, nevertheless, is consistent with the
negative feedback characteristics of the reset process, wherein the shrinking of the conductive filament
dimension with smaller device currents will slow the Joule heating related modulating process. In total,
32 quantized conductance states were obtained in a stepwise manner in the DC scanning or pulse
stressing mode. When the conductance goes beyond this range, the conductive filament becomes so
thick that significant Joule heating with large device currents can annihilate the CF easily, resulting in a
mutant reset process with partial absence of the QC states with larger conductance values. On the other
hand, as the device conductance decreases to less than 1 G0, the atomic point contact gets completely
disconnected to the metal electrodes, and the quantum conductance effect does not exist any longer.
Nevertheless, it is noteworthy that the one directional update of the synaptic weight in the reset process
may lead to additional complexity in the operating methodology or circuit design during practical
applications. For instance, potentiation of the synaptic weight can be only achieved by a combination
operation of binary switching of the device to a high conductance state, and subsequent depression to
the desired level in the negatively biased reset process [38,39]. Therefore, symmetrical conductance
modulation and fast blind weight updating are more desired in warranting the computing efficiency of
the neural network.

Although the present electrode engineering strategy does not guarantee that each step of the
modulation will strictly undergo a 0.5 G0 change during the cyclic operations, linear evolution of the
device conductance benefiting the synaptic weight update for training the neural network can still
be received, as shown in Figure 3a. The device conductance was modulated from 16 G0 to 0.5 G0

continuously in pulse-mode operation and set by the positively biased voltage scanning from 0 V to
1 V with a current compliance of 5 mA to reprogram the Pt/HfOx/Pt memristor to ON state. Afterward,
the negative voltage pulse modulation was reconducted for a total of 12 times to give the data plotted in
Figure 3a. All of the 32 QC states can be obtained repeatedly, however, the nominal conductance values
varied in a small range (e.g., 33.26% for 16 G0) during cyclic modulation. For control sample B, without
pre-treatment of the HfOx layer or top electrode protrusion, a linear but more discrete distribution
of the device conductance was observed at each stage of the pulse-mode modulations (Figure 3b).
The variation of sample B’s nominal conductance approached 55.95% for 16 G0. Therefore, it was more
likely to reach the desired quantized conductance within the pre-treated devices, wherein the formation
of protruding microelectrodes can effectively regulate the evolution of a single conductive filament
(rather than multiple CFs) in a more homogenized manner. Increasing the sampling number of both
kind of devices can reveal this feature more obviously. For instance, at the fifth pulse modulation
state, the FWHM (full wave at half maximum) of the Gaussian curve fitting of device A’s conductance
distribution around the nominal value, 14 G0, was 4.4 (Figure 3c); whereas the respective number
increased to 5.5 for sample B (Figure 3d), suggesting that a 25% enhancement in the uniformity of
the conductance value can be made possible by the present SPM pre-treatment method. Similarly,
the statistics collected at the 29th pulse modulation state (for conductance of 2 G0) shows FWHMs of
1.2 for sample A, and a much larger value of 2.3 for sample B.
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the pre-treated Pt/HfOx/Pt memristor device sample A with microelectrode protrusion and (b) the
untreated control device sample B with flat Pt/HfOx interface. Histogram and Gaussian curve fitting of
the device conductance distributions at the 5th and 29th pulse modulation stages for sample A (c,e)
and sample B (d,f), respectively.

Further analysis of the collected data for both samples A and B with the normal distribution
function (NDF) allows us to receive an equation,

G = (1− kn) × f
(
µ, σ2

)
, (1)

to mathematically predict the device conductance at certain pulse modulation stages, where G is the
varying device conductance, n represents the number of the pulses applied, k, σ, and µ reflect the
variation range, variability, and standard value of the device conductance at each modulation state,
and f (µ, σ2) is a general number generator that obeys the NDF’s law. Upon setting k = 0.03, σ = 1, and µ
= 16.5 − 0.5n for sample A, and k = 0.03, σ = 4, and µ = 16.5 − 0.5n for sample B, faithful reproduction
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of the device conductance for 12 continuous pulse modulation cycles can be obtained through the
mathematical simulation shown in Figure 4. All the simulated datasets fall in the experimental
range depicted in Figure 3a,b, suggesting that modeling with the above equation and parameters can
well resemble evolution processes of the Pt/HfOx/Pt memristor devices, with either microelectrode
protrusion or flattening of electrode/oxide interfaces. As such, considering the deviation of the atomic
point contact’s composition and geometry from pure metallic hafnium-based cones, which is probably
the case during device operation by atomic exchange with the surrounding HfOx matrix under the
concentration gradient, fractional conductance quantization can also be modelled accordingly. This may
offer additional guidance for deliberate tuning of the device electrical performance to receive more
(e.g., 64) levels of linearly and symmetrically modulated conductance, which can lead to analog type
operation and enhanced accuracy for pattern recognition with the memristive neural networks.
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protrusion and (b) the untreated control device sample B with flat Pt/HfOx interface, respectively.

For demonstration, simulation of supervised learning consisted of the offline training of the
multilayer perception (MLP) neural network, synaptic weight updating in the memristor array,
and tests of the handwritten digit pattern recognition, and was carried out using the experimental
quantized conductance characteristics with back propagation (BP) algorithm (Figure 5a). Seven
hundred and eighty four 28 × 28 pixel images of handwritten digits are obtained from the Keras
database and utilized for training and recognition tests [43]. Accordingly, the as-constructed MLP
network contained 784 input neurons, two-layer arrangement of 16 × 16 (256) hidden neurons, and 10
output neurons, with respect to the digits of 0 to 9 (Figure 5b). During the training courses, quantized
conductance characteristics with 4, 16, 32, and 64 states were employed to renew the synaptic weights.
Actual conductance values were considered and transferred to the synapse array upon normalization.
Figure 5c displays the variation of recognition accuracy, along with the increased training epochs and
numbers, of the available QC states. As shown, the less effective weight updating of the MLP network
with four levels of QC characteristics can only lead to ≈10% recognition of the handwritten digits,
while increasing the numbers of the available QC states to 16 may improve the accuracy to 71.2%.
Nevertheless, it was observed that as the training courses continue, the recognition rate suddenly
drops to ≈10% after six epochs. This can be ascribed to the fact that small numbers of the available
QC states may result in lesser amounts of conductance levels available for weight updating and thus
larger learning gradients and undesired convergence of the training loss function at the local minimum,
which in turn makes the neural network unable to perform the multiplication-and-accumulation
(MAC) operations any longer. As a consequence, the training process fails. When the numbers of the
QC states reach 32 and 64, the analog manner of the MLP network operation shows promising pattern
recognition accuracy of 86.8% and 93.5% after 10 training epochs, respectively, again suggesting the
numbers of conductance states will directly affect the final recognition accuracy of the neural network.
Only when the conductance levels are higher than 32, the accuracy of the QC based MLP network can
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be steadily improved with the number of trainings. It was also noteworthy that in the present study the
employment of 1-bit operation technically limits the overall computing accuracy of the network. In the
case that multi-bit inputs can be projected onto multiple memristor cells, greatly enhanced accuracy
can be possible [44–46].Micromachines 2020, 11, 427 7 of 10 
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the recognition accuracy as a function of the increasing training epochs (c) with the available QC states
numbers of 4, 16, 32 and 64 in sample A and (d) with 32 QC states in sample A, B, and ideal devices
without conductance fluctuation.

To further confirm the influence of electrode engineering on the recognition accuracy of the
MLP network, we use the 32-state QC characteristics of samples A and B for the supervised learning
simulation. The normal distribution formula was adopted to simulate the conductance value fluctuation
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during the synaptic weight updating procedure. As shown in Figure 5d, the black curve plotted
with idealized conductance values at each QC state (σ = 0) displays a recognition accuracy of ≈86.1%
for handwritten digits. Minor deviation from the ideality does not affect the performance of the
network significantly, and the red curve simulated with the memristive characteristics of sample A
gives a comparable recognition rate of ≈86.0%. For the case of sample B without electrode engineering,
although the accuracy rises rapidly as the training course continues (blue curve), there was still an
obvious performance gap of ≈2% after 10 epochs, when in comparison with the network constructed
from the ideal or sample A memristor devices. Therefore, the fluctuation occurring during device
conductance modulation, beyond the promising linearity in synaptic weight updating, plays an
important role in improving the overall performance of the memristive neural networks. Reduced
fluctuation of the switching parameters can project the trained network onto the memristor array with
higher learning accuracy, which in turn guarantees the fidelity of MAC operation and BP algorithm
more reliably.

4. Conclusion

In this work, we demonstrate a reliable hafnium oxide based memristor device that displays
homogenized conductance quantization characteristics with 32 half-integer QC states. Through
deliberate design of the electrode/switching matrix interface with the assistance of a SPM tip, a single
conductive filament can be generated inside the memristive layer, which suppresses the evolution
randomness of the multiple CFs and enhances the uniformity of the device conductance effectively.
Simulation results indicate that with the linearly and symmetrically modulated QC behavior with
conductance states of 32 levels, improved pattern recognition accuracy approaching 90% can be
achieved through analog type operation of the multilayer perception neural network with the present
memristor devices.

Author Contributions: Conceptualization, M.T., X.Z., and G.L.; Data curation, Q.C.; Funding acquisition, Q.C.,
M.T., Z.Z., X.Z., and G.L.; Investigation, Q.C.; Methodology, M.T. and Z.Z.; Software, T.H.; Writing—original
draft, Q.C. and T.H.; Writing—review & editing, Q.C. and G.L. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (61722407, 11832016,
61674153, 61974090, U19A2053, 51775471, 61674049, 11835008), the National Key R&D Program of China
(2017YFB0405600, 2017YFF0105000), the Natural Science Foundation of Shanghai (19ZR1474500), and the Hunan
Provincial Innovation Foundation for Postgraduate (No. CX2018B373).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Wang, C.; He, W.; Tong, Y.; Zhao, R. Investigation and manipulation of different analog behaviors of memristor
as electronic synapse for neuromorphic applications. Sci. Rep. 2016, 6, 22970. [CrossRef] [PubMed]

2. Banerjee, W.; Liu, Q.; Lv, H.; Long, S.; Liu, M. Electronic imitation of behavioral and psychological synaptic
activities using TiOx/Al2O3-based memristor devices. Nanoscale 2017, 9, 14442–14450. [CrossRef] [PubMed]

3. Park, S.; Kim, H.; Choo, M.; Noh, J.; Sheri, A.; Jung, S.; Shin, J. RRAM-based synapse for neuromorphic
system with pattern recognition function. In Proceedings of the IEEE International Electron Devices Meeting,
San Francisco, CA, USA, 10–12 December 2012; pp. 10–12.

4. Mandal, S.; El-Amin, A.; Alexander, K.; Rajendran, B.; Jha, R. Novel synaptic memory device for neuromorphic
computing. Sci. Rep. 2014, 4, 5333. [CrossRef] [PubMed]

5. Wang, Z.; Joshi, S.; Savelev, S.; Jiang, H.; Midya, R.; Lin, P.; Hu, M.; Ge, N.; Strachan, J.P.; Li, Z.Y. Memristors
with diffusive dynamics as synaptic emulators for neuromorphic computing. Nat. Mater. 2017, 16, 101–108.
[CrossRef] [PubMed]

6. Torrejon, J.; Riou, M.; Araujo, F.A.; Tsunegi, S.; Khalsa, G.; Querlioz, D.; Bortolotti, P.; Cros, V.; Yakushiji, K.;
Fukushima, A. Neuromorphic computing with nanoscale spintronic oscillators. Nature 2017, 547, 428–431.
[CrossRef]

http://dx.doi.org/10.1038/srep22970
http://www.ncbi.nlm.nih.gov/pubmed/26971394
http://dx.doi.org/10.1039/C7NR04741J
http://www.ncbi.nlm.nih.gov/pubmed/28926076
http://dx.doi.org/10.1038/srep05333
http://www.ncbi.nlm.nih.gov/pubmed/24939247
http://dx.doi.org/10.1038/nmat4756
http://www.ncbi.nlm.nih.gov/pubmed/27669052
http://dx.doi.org/10.1038/nature23011


Micromachines 2020, 11, 427 9 of 10

7. Chicca, E.; Stefanini, F.; Bartolozzi, C.; Indiveri, G. Neuromorphic electronic circuits for building autonomous
cognitive systems. Proc. IEEE 2014, 102, 1367–1388. [CrossRef]

8. Kaneko, Y.; Nishitani, Y.; Ueda, M. Ferroelectric artificial synapses for recognition of a multishaded image.
IEEE. Trans. Electron. Dev. 2014, 61, 2827–2833. [CrossRef]

9. Jo, S.H.; Chang, T.; Ebong, I.; Bhadviya, B.B.; Mazumder, P.; Lu, W. Nanoscale memristor device as synapse
in neuromorphic systems. Nano Lett. 2010, 10, 1297–1301. [CrossRef]

10. Vincent, A.F.; Larroque, J.; Locatelli, N.; Romdhane, N.B.; Bichler, O.; Gamrat, C.; Zhao, W.S.; Klein, J.;
Galdinretailleau, S.; Querlioz, D. Spin-transfer torque magnetic memory as a stochastic memristive synapse
for neuromorphic systems. IEEE. Trans. Biomed. Circ. Symp. 2015, 9, 166–174. [CrossRef]

11. Yang, J.J.; Pickett, M.D.; Li, X.; Ohlberg, D.A.; Stewart, D.R.; Williams, R.S. Memristive switching mechanism
for metal/oxide/metal nanodevices. Nat. Nanotechnol. 2008, 3, 429–433. [CrossRef]

12. Lee, M.J.; Lee, C.B.; Lee, D.; Lee, S.R.; Chang, M.; Hur, J.H.; Chung, U.I. A fast, high-endurance and scalable
non-volatile memory device made from asymmetric Ta2O5-x/TaO2-x bilayer structures. Nat. Mater. 2011, 10,
625–630. [CrossRef] [PubMed]

13. Zhang, Z.H.; Wang, Z.W.; Shi, T.; Bi, C.; Rao, F.; Cai, Y.M.; Liu, Q.; Wu, H.Q.; Zhou, P. Memory materials and
devices: From concept to application. InfoMat 2020, 2, 261–290. [CrossRef]

14. Chang, Y.; Fowler, B.; Chen, Y.; Zhou, F.; Pan, C.; Chang, T.; Lee, J.C. Demonstration of Synaptic Behaviors
and Resistive Switching Characterizations by Proton Exchange Reactions in Silicon Oxide. Sci. Rep. 2016, 6,
21268. [CrossRef] [PubMed]

15. Kim, S.; Kim, H.; Hwang, S.; Kim, M.H.; Chang, Y.F.; Park, B.G. Analog synaptic behavior of a silicon nitride
memristor. ACS Appl. Mater. Interfaces 2017, 9, 40420–40427. [CrossRef]

16. Chandrasekaran, S.; Simanjuntak, F.M.; Panda, D.; Tseng, T.-Y. Enhanced Synaptic Linearity in ZnO-Based
Invisible Memristive Synapse by Introducing Double Pulsing Scheme. IEEE Trans. Electron. Dev. 2019, 66,
4722–4726. [CrossRef]

17. Liu, S.; Li, K.; Sun, Y.; Zhu, X.; Li, Z.; Song, B.; Liu, H.J.; Li, Q. A TaOx-Based Electronic Synapse with High
Precision for Neuromorphic Computing. IEEE Access 2019, 7, 184700–184706. [CrossRef]

18. Govoreanu, B.; Kar, G.S.; Chen, Y.Y.; Paraschiv, V.; Kubicek, S.; Fantini, A.; Jossart, N. 10 × 10 nm2 Hf/HfOx

crossbar resistive RAM with excellent performance, reliability and low-energy operation. In Proceedings of
the IEEE International Electron Devices Meeting, Washington, DC, USA, 5–7 December 2011; pp. 31–36.

19. Liu, Q.; Long, S.; Lv, H.; Wang, W.; Niu, J.; Huo, Z.; Chen, J.; Liu, M. Controllable growth of nanoscale
conductive filaments in solid-electrolyte-based ReRAM by using a metal nanocrystal covered bottom
electrode. ACS Nano 2010, 4, 6162–6168. [CrossRef]

20. Bersuker, G.; Gilmer, D.C.; Veksler, D.; Kirsch, P.D.; Vandelli, L.; Padovani, A.; Larcher, L.; Mckenna, K.P.;
Shluger, A.L.; Iglesias, V. Metal oxide resistive memory switching mechanism based on conductive filament
properties. J. Appl. Phys. 2011, 110, 124518. [CrossRef]

21. Yang, J.J.; Strukov, D.B.; Stewart, D.R. Memristive devices for computing. Nat. Nanotechnol. 2013, 8, 13–24.
[CrossRef]

22. Gokmen, T.; Vlasov, Y. Acceleration of deep neural network training with resistive cross-point devices:
Design considerations. Front. Neurosci. Switz. 2016, 10, 333. [CrossRef]

23. Merced-Grafals, E.J.; Dávila, N.; Ge, N.; Williams, R.S.; Strachan, J.P. Repeatable, accurate, and high speed
multi-level programming of memristor 1T1R arrays for power efficient analog computing applications.
Nanotechnology 2016, 27, 365202. [CrossRef] [PubMed]

24. Hu, M.; Strachan, J.P.; Li, Z.; Grafals, E.M.; Davila, N.; Graves, C.; Sity, L.; Ge, N.; Yang, J.J.; Williams, R.S.
Dot-product engine for neuromorphic computing: Programming 1T1M crossbar to accelerate matrix-vector
multiplication. In Proceedings of the 2016 53nd ACM/EDAC/IEEE Design Automation Conference (DAC),
Austin, TX, USA, 2–10 June 2016; pp. 1–6.

25. Chakrabarti, B.; Lastrasmontano, M.A.; Adam, G.C.; Prezioso, M.; Hoskins, B.D.; Payvand, M.; Madhavan, A.;
Ghofrani, A.; Theogarajan, L.; Cheng, K. A multiply-add engine with monolithically integrated 3D memristor
crossbar/CMOS hybrid circuit. Sci. Rep. 2017, 7, 42429. [CrossRef] [PubMed]

26. Ambrogio, S.; Balatti, S.; Milo, V.; Carboni, R.; Wang, Z.; Calderoni, A.; Ramaswamy, N.; Ielmini, D.
Neuromorphic Learning and Recognition with One-Transistor-One-Resistor Synapses and Bistable Metal
Oxide RRAM. IEEE. Trans. Electron. Dev. 2016, 63, 1508–1515. [CrossRef]

http://dx.doi.org/10.1109/JPROC.2014.2313954
http://dx.doi.org/10.1109/TED.2014.2331707
http://dx.doi.org/10.1021/nl904092h
http://dx.doi.org/10.1109/TBCAS.2015.2414423
http://dx.doi.org/10.1038/nnano.2008.160
http://dx.doi.org/10.1038/nmat3070
http://www.ncbi.nlm.nih.gov/pubmed/21743450
http://dx.doi.org/10.1002/inf2.12077
http://dx.doi.org/10.1038/srep21268
http://www.ncbi.nlm.nih.gov/pubmed/26880381
http://dx.doi.org/10.1021/acsami.7b11191
http://dx.doi.org/10.1109/TED.2019.2941764
http://dx.doi.org/10.1109/ACCESS.2019.2961166
http://dx.doi.org/10.1021/nn1017582
http://dx.doi.org/10.1063/1.3671565
http://dx.doi.org/10.1038/nnano.2012.240
http://dx.doi.org/10.3389/fnins.2016.00333
http://dx.doi.org/10.1088/0957-4484/27/36/365202
http://www.ncbi.nlm.nih.gov/pubmed/27479054
http://dx.doi.org/10.1038/srep42429
http://www.ncbi.nlm.nih.gov/pubmed/28195239
http://dx.doi.org/10.1109/TED.2016.2526647


Micromachines 2020, 11, 427 10 of 10

27. Prezioso, M.; Bayat, F.M.; Hoskins, B.; Likharev, K.; Strukov, D. Self-adaptive spike-time-dependent plasticity
of metal-oxide memristors. Sci. Rep. 2016, 6, 21331. [CrossRef]

28. Klidbary, S.H.; Shouraki, S.B. A novel adaptive learning algorithm for low-dimensional feature space using
memristor-crossbar implementation and on-chip training. Appl. Intell. 2018, 48, 4174–4191. [CrossRef]

29. Shin, S.; Kim, K.; Kang, S.M. Memristor-based fine resolution programmable resistance and its applications.
In Proceedings of the 2009 International Conference on Communications, Circuits and Systems, Milpitas,
CA, USA, 23–25 July 2009; pp. 948–951.

30. Yu, S.; Wu, Y.; Jeyasingh, R.; Kuzum, D.; Wong, H.S.P. An electronic synapse device based on metal oxide
resistive switching memory for neuromorphic computation. IEEE. Trans. Electron. Dev. 2011, 58, 2729–2737.
[CrossRef]

31. Dietrich, S.W.; Goelman, D.; Borror, C.M.; Crook, S.M. An animated introduction to relational databases for
many majors. IEEE. Trans. Electron. Dev. 2014, 58, 81–89. [CrossRef]

32. Kuzum, D.; Jeyasingh, R.G.; Lee, B.; Wong, H.S.P. Nanoelectronic programmable synapses based on phase
change materials for brain-inspired computing. Nano Lett. 2012, 12, 2179–2186. [CrossRef]

33. Yu, S.; Gao, B.; Fang, Z.; Yu, H.; Kang, J.; Wong, H.S.P. A low energy oxide-based electronic synaptic device for
neuromorphic visual systems with tolerance to device variation. Adv. Mater. 2013, 25, 1774–1779. [CrossRef]

34. Waser, R.; Aono, M. Nanoionics-based resistive switching memories. Nat. Mater. 2007, 6, 833–840. [CrossRef]
35. Wong, H.S.P.; Lee, H.Y.; Yu, S.; Chen, Y.S.; Wu, Y.; Chen, P.S.; Tsai, M.J. Metal-oxide RRAM. Proc. IEEE 2012,

100, 1951–1970. [CrossRef]
36. Arruda, T.M.; Kumar, A.; Kalinin, S.V.; Jesse, S. Mapping Irreversible Electrochemical Processes on the

Nanoscale: Ionic Phenomena in Li Ion Conductive Glass Ceramics. Nano Lett. 2011, 11, 4161. [CrossRef]
[PubMed]

37. Chen, Q.L.; Liu, G.; Xue, W.H.; Shang, J.; Gao, S.; Yi, X.H.; Lu, Y.; Tang, M.H.; Zheng, X.J.; Li, R.W. Controlled
Construction of Atomic Point Contact with 16 Quantized Conductance States in Oxide Resistive Switching
Memory. ACS Appl. Electron. Mater. 2019, 1, 789–798. [CrossRef]

38. Hu, M.; Graves, C.E.; Li, C.; Li, Y.; Ge, N.; Montgomery, E.; Xia, Q. Memristor-based analog computation and
neural network classification with a dot product engine. Adv. Mater. 2018, 30, 1705914. [CrossRef]

39. Li, C.; Belkin, D.; Li, Y.; Yan, P.; Hu, M.; Ge, N.; Jiang, H.; Montgomery, E.; Lin, P.; Wang, Z.R. Efficient
and self-adaptive in-situ learning in multilayer memristor neural networks. Nat. Commun. 2018, 9, 2385.
[CrossRef]

40. Zhu, X.; Su, W.; Liu, Y.; Hu, B.; Pan, L.; Lu, W.; Zhang, J.D.; Li, R.W. Observation of conductance quantization
in oxide-based resistive switching memory. Adv. Mater. 2012, 24, 3941–3946. [CrossRef]

41. Xue, W.; Gao, S.; Shang, J.; Shang, J.; Yi, X.H.; Liu, G.; Li, R.W. Recent advances of quantum conductance in
memristors. Adv. Electron. Mater. 2019, 5, 1800854. [CrossRef]

42. Xue, W.H.; Li, Y.; Liu, G.; Wang, Z.R.; Xiao, W.; Jiang, K.; Zhong, Z.; Gao, S.; Ding, J.; Miao, X. Controllable and
Stable Quantized Conductance States in a Pt/HfOx/ITO Memristor. Adv. Electron. Mater. 2019, 5, 1901055.

43. Chollet, F. Keras. 2015. Available online: keras.io (accessed on 4 January 2020).
44. Yu, S.; Li, Z.; Chen, P.Y.; Wu, H.; Gao, B.; Wang, D.; Wu, W.; Qian, H. Binary Neural Network with 16 Mb

RRAM Macro Chip for Classification and Online Training. In Proceedings of the 2016 IEEE International
Electron Devices Meeting, San Francisco, CA, USA, 3–7 December 2016; pp. 416–419.

45. Wang, J.; Wang, X.; Eckert, C.; Subramaniyan, A.; Das, R.; Blaauw, D.; Sylvester, D. A Compute SRAM
with Bit-Serial Integer/Floating-Point Operations for Programmable In-Memory Vector Acceleration.
In Proceedings of the ISSCC 2019: International Solid-State Circuits Conference, San Francisco, CA,
USA, 17–21 February 2019; pp. 224–226.

46. Khwa, W.S.; Chen, J.J.; Li, J.F.; Si, X.; Yang, E.Y.; Sun, X.; Liu, R.; Chen, P.Y.; Li, Q.; Yu, S.; et al. A 65nm 4Kb
Algorithm-Dependent Computing-in-Memory SRAM Unit-Macro with 2.3ns and 55.8TOPS/W Fully Parallel
Product-Sum Operation for Binary DNN Edge Processors. In Proceedings of the 2018 IEEE International
Solid-State Circuits Conference-(ISSCC), San Francisco, CA, USA, 4–8 February 2018; pp. 496–497.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1038/srep21331
http://dx.doi.org/10.1007/s10489-018-1202-6
http://dx.doi.org/10.1109/TED.2011.2147791
http://dx.doi.org/10.1109/TE.2014.2326834
http://dx.doi.org/10.1021/nl201040y
http://dx.doi.org/10.1002/adma.201203680
http://dx.doi.org/10.1038/nmat2023
http://dx.doi.org/10.1109/JPROC.2012.2190369
http://dx.doi.org/10.1021/nl202039v
http://www.ncbi.nlm.nih.gov/pubmed/21863801
http://dx.doi.org/10.1021/acsaelm.9b00191
http://dx.doi.org/10.1002/adma.201705914
http://dx.doi.org/10.1038/s41467-018-04484-2
http://dx.doi.org/10.1002/adma.201201506
http://dx.doi.org/10.1002/aelm.201800854
keras.io
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Results and Discussion 
	Conclusion 
	References

