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Abstract: Droplet microfluidics involving non-Newtonian fluids is of great importance in both
fundamental mechanisms and practical applications. In the present study, breakup dynamics in
droplet generation of semi-dilute polymer solutions in a microfluidic flow-focusing device were
experimentally investigated. We found that the filament thinning experiences a transition from a
flow-driven to a capillary-driven regime, analogous to that of purely elastic fluids, while the highly
elevated viscosity and complex network structures in the semi-dilute polymer solutions induce the
breakup stages with a smaller power-law exponent and extensional relaxation time. It is elucidated
that the elevated viscosity of the semi-dilute solution decelerates filament thinning in the flow-driven
regime and the incomplete stretch of polymer molecules results in the smaller extensional relaxation
time in the capillary-driven regime. These results extend the understanding of breakup dynamics
in droplet generation of non-Newtonian fluids and provide guidance for microfluidic synthesis
applications involving dense polymeric fluids.

Keywords: droplet microfluidics; breakup dynamics; filament thinning; non-Newtonian fluids;
flow-focusing device; extensional flow; semi-dilute polymer solutions

1. Introduction

Droplet microfluidics has been one of the fastest growing areas of microfluidics in the past
two decades, with far-reaching applications [1–6]. Microdroplets provide isolated micro-scale
compartments for versatile functions in chemical, biological, medical, and material sciences [1–4,7–12].
Precise control of droplet size is a prerequisite to establish a uniform microenvironment, to ensure
homogeneous composition, and to deliver accurate dosing of a drug or chemical reactants in these
scenarios [9,10,13]. As non-Newtonian fluids are ubiquitous in nature and industry, non-Newtonian
droplets are frequently encountered in practical processes including pharmaceutical synthesis, cell
encapsulation, drug screening and delivery [14–16]. Understanding of non-Newtonian droplet
generation is imperative in both fundamental mechanisms and practical applications.

Polymer solutions often exhibit non-Newtonian properties, i.e., elasticity, shear-thinning, or both.
They have been frequently used as the model media in the laboratory due to their facile accessibility
and easy-to-adjust rheology. Previous studies have demonstrated that a small amount of polymer
added to a Newtonian fluid markedly affects the fluid rheology and, successively, the dynamics of
breakup of the fluid threads in macroscopic experiments [17–19]. This kind of breakup can be observed
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in the experiments of capillary breakup extensional rheometry (CaBER), which has been developed as a
novel method for rheology measurements of complex fluids [20–22]. Differing from the quiescent outer
phase of free surface flows, the continuous phase fluid in droplet-based microfluidic devices deforms
the interface of the two immiscible liquids and promotes interfacial instabilities [23–25]. Microfluidic
devices with flow-focusing configuration are commonly used to generate microdroplets [23,26].
Typically, two immiscible liquids flow coaxially into separate channels with the continuous fluid
flowing on both sides of the dispersed fluid, after which the resulting elongation-dominated flow field
in the continuous liquid drives the dispersed liquid into a thin filament that breaks into separated
droplets. The generation process becomes complicated when the dispersed phase is a non-Newtonian
fluid, in which the delicate balance of capillary, inertial and viscous forces is influenced by extra factors
such as the elastic stress [27–29].

The breakup dynamics of viscoelastic droplet generation in flow-focusing microchannels has
been experimentally investigated by several groups. Blended with a small quantity of linear polymers,
e.g., polyethylene oxide (PEO), pure water can become a viscoelastic fluid without shear-thinning.
On the whole, the breakup dynamics of the elastic filament can be divided into a flow-driven
regime and a capillary-driven regime based on transition time [30,31]. Initially, the thread head
advances and restricts the flow of continuous fluid, resulting in an increase of the hydrostatic
pressure upstream [32]. The increased pressure mainly triggers a fast necking of filament, forming the
flow-driven regime in which the minimum thread width scales with the remaining time as a power-law
relation [30,33,34]. The distribution of the accumulated pressure upstream then changes as the filament
extends. The necking force decreases while the stretching force increases. Polymers in the dispersed
thread are highly stretched while the elastic force starts to dominate and the necking enters into the
later capillary-driven regime [31,35]. At the later stage, the thread thinning shows an exponential
decay over time [30,31,33–36]. The exponential decay allows measurements of both the extensional
relaxation time and the steady extensional viscosity [31,33,35]. In addition, the molecular weights of
polymer and the dimensions of the microchannel have been reported to impose effects on the dynamics
of filament breakup [31–33,35,37].

It is noted that most of the existing studies consider dilute polymer solutions, while more
concentrated polymer solutions are frequently encounter in practical applications [5,14–16], which often
exhibit non-Newtonian properties more than elasticity. Although several studies have also examined the
effect of shear-thinning on filament breakup [38,39], the breakup behavior of dense polymer solutions
exhibiting both elasticity and shear-thinning has rarely been addressed in microfluidic devices. In the
present study, the breakup dynamics of semi-dilute polymer solutions in a flow-focusing microchannel
are highlighted. The breakup morphology of semi-dilute PEO solutions is first characterized by
comparing with those of the dilute and Newtonian counterparts. Filament thinning is then quantified
by tracking the evolution of the minimum thread width, by which the flow-driven and capillary-driven
regimes are identified. The characteristics in the breakup of the semi-dilute solutions are finally
clarified by analyzing the two regimes in detail.

2. Materials and Methods

2.1. Fluids

The continuous and dispersed phase fluids were the olive oil and the aqueous solution of PEO
(Sigma-Aldrich, Shanghai, China), respectively. The molecular weight of PEO was Mw = 2 M·Da.
PEO solutions were prepared by adding PEO powders in deionized water (Milli-Q, 18 MΩ·cm)
and blending it sufficiently using a shaker with a rate of 60/min for 1–2 days. Unlike previous
studies focusing on dilute regimes, i.e., c/c* < 1, semi-dilute solutions were focused on in this study,
i.e., c/c* = 2.5–10. The dilute cases, i.e., c/c* = 0.1–1, were also considered for comparison. Here, c* is
the overlap concentration calculated as c* = 3Mw/4πRg

3NA = 1000 ppm (parts per million), where
NA is the Avogadro constant and Rg = 0.02Mw

0.58 = 90 nm is the gyration radius of a single polymer
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molecule [40]. The density (ρc) and viscosity (ηc) of olive oil were 0.92 g/cm3 and 78 mPa·s, respectively.
The interfacial tension (σ) of the continuous and droplet phase was measured as 20.3 ± 0.08 mN/m
using the pendant droplet method (Theta, Attension Inc., Goteborg, Switzerland).

2.2. Rheological Characterization

The rheological properties of PEO solutions were measured using a rotational rheometer with
cone-plate (50 mm, 0.3 rad) (Physica MCR302, Anton Paar GmbH, Glaz, Austria). The viscosities ηwere
measured at shear rates of 0.1–3000 s−1 (Figure 1a), and the complex moduli (G*) as a function of angular
frequency (ω) was measured in dynamic oscillatory experiments with a constant strain of 4% (Figure 1b).
All the measurements were conducted at 25 ◦C maintained by a Peltier stage. The shear-rate-dependent
viscosities and the complex moduli indicate the coexistence of shear-thinning and elasticity. Meanwhile,
both the shear-thinning and the elasticity enhance with the PEO concentration c.
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To quantify the rheological properties of the semi-dilute solutions, a modified Carreau model [41,42]
was used to fit the measured data:

η(
.
γ) = η0[1 + (λC ·

.
γ)

a
]
(−d)/a

(1)

where η0 is the zero shear viscosity, λC is the characteristic time for the fluid, d is the negative of
the power-law slope, and a is the fitting parameter introduced by Yasuda et al. [41] Note that the
η0 is viscosity at

.
γ ~ O(10−1) in the actual measurement. Here, d = 0 signifies no shear-thinning.

The d-value increases as PEO concentration increases, indicating the increased shear-thinning effect.
The characteristic time λC corresponds to the critical shear rate (

.
γ) at which the η begins to decrease [41],

which can be deemed as the relaxation time of the polymeric fluid in our measurements. All the fitting
parameters are listed in Table 1.

Table 1. The fitting parameters of the Carreau model and three kinds of relaxation time for comparison.

c/c* η0 (mPa s) d a λC (ms) λR (ms) λ1 (ms) λ2 (ms)

2.5 5.2 0.16 1.3 4.2 5.2 - 9
5 24 0.25 1.1 12 15 19.4 12

10 193 0.43 0.96 35 42 86 26
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For comparison, values for Zimm relaxation time (λZ) and reptation time (λR) are provided.
The Zimm relaxation time is calculated based on the Zimm model [33,43,44], which can describe the
relaxation of dilute solutions well. The λZ values were estimated by

λZ = 0.463
[η]Mwηs

NAkBT
(2)

where [η] = 0.072Mw
0.65 is the intrinsic viscosity of PEO solution, ηs is the solvent viscosity, NA is the

Avogadro’s number, kB is the Boltzmann’s constant, and T is the absolute temperature. The prefactor
0.463 accounts for the solvent quality and the excluded volume parameter. Accordingly, λZ = 0.35 ms
is obtained, independent of the polymer concentrations. In contrast, the reptation model takes the
hydrodynamic interactions into account and can better depict the polymer dynamics in semi-dilute
solutions [45–47]. The λR value shows a concentration dependence, i.e.,

λR = τ0N3/Ne(1)c3(1−v)/(3v−1) (3)

where τ0 ≈ 0.2 ns is the monomer relaxation time at room temperature, N = Mw/M0 is the number of
Kuhn monomers per chain (M0 = 140 for PEO), Ne(1) ≈ 14 is the number of Kuhn monomers in an
entanglement strand in melts, and v = 0.588 is the solvent quality exponent. The estimated λR values
agree well with the values of λC for the semi-dilute solutions, as shown in Table 1. The estimated
values of λC were also compared with those measured by other approaches, i.e., CaBER (λ1) [21] and
Dripping-onto-Substrate rheometry (DoSR) (λ2) [44]. The comparison suggests that our estimated
relaxation time values accord with those reported in these works (Table 1).

2.3. Experimental Setup

The flow-focusing configuration was employed in the present study, as shown in Figure 2.
The main channel was 50 µm in both width and height (Wc). All the openings of the cross-slot structure
were 50 µm. The intermediate inlet was set to introduce dispersed phase fluid. The two identical side
openings are for continuous phases, which are then merged into one main inlet for easy control in
actual operation. The chip was fabricated in polydimethylsiloxane (PDMS), based on the standard
soft-lithography technique as described previously [48,49]. Before the experiments, the chips were kept
in an oven at 80 ◦C overnight to restore the material to its native hydrophobic condition. The square
geometry and the hydrophobic properties were designed to minimize the three-dimensional effect as
far as possible, allowing us to rationally analyze the droplet generation process just from the in-plane
images [35].Micromachines 2020, 11, x FOR PEER REVIEW 5 of 14 
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Figure 2. Channel configuration and assembled microchip. All the openings of the cross-slot channel
are 50 µm. Qc and Qd represent the flow rates of the continuous phase and dispersed phase, respectively.
Red ink was infused to visualize the channel structure in the assembled chip.

The experiments were performed under an inverted microscope (Nikon Eclipse Ti, Nikon
Instruments Inc., Tokyo, Japan). The fluids were introduced into the assembled chip by two syringe
pumps (Pump 11 Elite, Harvard apparatus Inc., Holliston, Massachusetts, United States) with two
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1 mL plastic syringes (BD, Becton Dickinson Inc., Franklin lakes, New Jersey, United States). The flow
rates of continuous and dispersed fluid were Qc = 20–160 µL/h and Qd = 1.25–160 µL/h, respectively,
and the flow rate ratios were q = Qc/Qd = 1–16. For this range of control parameters, the Reynolds
number of continuous phase Rec = ρcWcUm/ηc is 0.001–0.01 and the capillary number Cac = ηcUm/σ is
0.009–0.07, where Um = Qc/Wc

2 is the average velocity of continuous phase fluid. The low Rec and
Cac indicate that in the quasi-static state the inertial forces are much smaller than the viscous forces
and the viscous forces are much smaller than the surface forces. Moreover, to evaluate the importance
of elasticity in the dispersed phase, the Weissenberg number, defined as the ratio between the fluid
relaxation time and the flow characteristic time, was also considered. In the focused semi-dilute cases,
Wi = 2λZQd/Wc

3 = 0.02–24.9, suggesting that the elastic effect can dominate under most conditions.
The images of the droplet breakup process were recorded using a high-speed CCD camera

(Phantom v7.3, Vision Research Inc., Birmingham, Alabama, United States) and the Phantom Camera
Control software (PCC 2.14, Vision Research Inc., Birmingham, Alabama„ United States). Experimental
videos were taken at 103–104 fps (frames per second). All of the experiments were conducted at the
room temperature. The captured images were then processed and analyzed using the ImageJ software
package (National Institute of Health, Bethesda, Maryland, USA). The maximum length error of image
processing was estimated to be 4 µm, and the time error was less than the interval between two
successive images, i.e., 100 µs.

3. Results and Discussion

3.1. Qualitative Observations

The image sequences listed in Figure 3 demonstrate the thinning processes of the dispersed thread
for different polymer solutions under the identical flow condition, i.e., q = 4 and Qc = 40 µL/h. The case
of pure water, i.e., c = 0, exhibits typical filament thinning and droplet generation of Newtonian fluid.
Initially, the dispersed thread starts to elongate and neck after it is driven into the junction. The thread
then thins quickly and forms a primary droplet connected to a thin filament. The thin filament finally
breaks into a satellite droplet. To simplify the analysis, the breakup time tb is defined as the instant
when the filament is uniform and the satellite droplets have not yet formed, as shown in Figure 3e.
These observations are consistent with previous experiments [31,37,50].

Micromachines 2020, 11, x FOR PEER REVIEW 5 of 14 

 

 
Figure 2. Channel configuration and assembled microchip. All the openings of the cross-slot channel 
are 50 μm. Qc and Qd represent the flow rates of the continuous phase and dispersed phase, 
respectively. Red ink was infused to visualize the channel structure in the assembled chip. 

The images of the droplet breakup process were recorded using a high-speed CCD camera 
(Phantom v7.3, Vision Research Inc., Birmingham, Alabama, United States) and the Phantom 
Camera Control software (PCC 2.14, Vision Research Inc., Birmingham, Alabama,, United States). 
Experimental videos were taken at 103–104 fps (frames per second). All of the experiments were 
conducted at the room temperature. The captured images were then processed and analyzed using 
the ImageJ software package (National Institute of Health, Bethesda, Maryland, USA). The 
maximum length error of image processing was estimated to be 4 μm, and the time error was less 
than the interval between two successive images, i.e., 100 μs. 

3. Results and Discussion 

3.1. Qualitative Observations 

The image sequences listed in Figure 3 demonstrate the thinning processes of the dispersed 
thread for different polymer solutions under the identical flow condition, i.e., q = 4 and Qc = 40 μL/h. 
The case of pure water, i.e., c = 0, exhibits typical filament thinning and droplet generation of 
Newtonian fluid. Initially, the dispersed thread starts to elongate and neck after it is driven into the 
junction. The thread then thins quickly and forms a primary droplet connected to a thin filament. 
The thin filament finally breaks into a satellite droplet. To simplify the analysis, the breakup time tb 
is defined as the instant when the filament is uniform and the satellite droplets have not yet formed, 
as shown in Figure 3e. These observations are consistent with previous experiments [31,37,50]. 

 
Figure 3. Sequences of images showing the thinning process of droplet generation for different 
solutions:(a) Initial regime; (b) t/tb = 0.2; (c) t/tb = 0.4; (d) t/tb = 0.8; (e) t/tb = 1; and (f) after breakup. 
Values of tb for the four cases are 14.8, 16.8, 18.4 and 60 ms, respectively. W0 represents the initial 

Figure 3. Sequences of images showing the thinning process of droplet generation for different solutions:
(a) Initial regime; (b) t/tb = 0.2; (c) t/tb = 0.4; (d) t/tb = 0.8; (e) t/tb = 1; and (f) after breakup. Values of tb

for the four cases are 14.8, 16.8, 18.4 and 60 ms, respectively. W0 represents the initial thread width and
Wm represents the minimum thread width at a certain instant. For all cases, q = 4 and Qc = 40 µL/h.
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The polymeric cases exhibit different behavior at different polymer concentrations. The dilute
solutions, i.e., c = 0.1c* and c*, display behavior similar to the Newtonian counterpart. The dispersed
fluid also develops into a thread that necks first and then breaks into a primary droplet and some tiny
satellite droplets. The filament length and the breakup time in these polymeric cases are longer than
those of the Newtonian counterpart, as previously reported [31,33]. Due to the low flow rate ratio q,
the discrepancies here are not so large. Meanwhile, for the semi-dilute solution, i.e., c = 10c*, the thread
thinning exhibits a very different behavior. During the early phase, the morphology is similar to that
of the Newtonian counterpart. As time elapses, the filament further elongates but thins at a much
lower rate. The filament elongation and breakup time tb are much longer. After breakup, the filament
destabilizes and its width becomes non-uniform, leading to the well-known bead-on-a-string that forms
multiple satellite droplets successively [31,51]. This process occurs between two primary droplets
downstream and is not shown in the image. Although the satellite droplets formed during filament
breakup, the primary droplets on which we focused in the current study are highly uniform for all
cases. Notably, the satellite droplets become larger as the PEO concentration increases or the flow
rate of continuous phase increases, inevitably reducing the uniformity of the generated droplets.
How to improve the uniformity of polymeric droplets is another issue that deserves to be addressed in
the future.

3.2. Quantitative Characterization

The observations above give us an intuitive impression. To capture more details, the process of
filament thinning was quantitatively characterized by tracking the evolution of minimum width of
filament Wm. The distinct interface of dispersed thread offers the chance to track the evolution of
filament width. As denoted in Figure 3, the width at the instant when the thread starts to form is defined
as the initial width W0, and this instant is defined as the initial time t = 0. As time elapses, the thread
deforms to form a necked filament. The distance between the two points with zero curvature in the
neck is defined as the minimum width of filament Wm. As the thinning progresses, the measurement
location of Wm shifts slightly but always maintains a location near the cross-slot. The time evolution of
Wm is then extracted from the sequential images of individual thinning period. To ensure reliability,
more than three measurements were carried out for each case.

Figure 4 shows the typical results of time-varied Wm under different conditions. The measured
data are truncated at the breakup time tb when the width thread is uniform, and the satellite droplets
have not formed yet. The result of pure water (c = 0) is provided as the Newtonian counterpart.
As shown by the black solid curve in Figure 4, the power-law fit Wm ~ (14.8 − t)0.32 is consistent with
previous microscopic experiments with Newtonian fluids [37,50]. In contrast, the polymeric cases
display a different behavior. The decay is similar to that of the Newtonian counterpart in the early
stages but deviates upwards later. The deviation enhances with the increasing concentration c, and the
breakup time tb increases. Moreover, the retardation of decay in the early stage can be noticed when
the polymer concentration c increases to the semi-dilute regime (c > c*). This retardation also shows a
positive dependence on the polymer concentration c. This will be further explained in combination
with the fitting law in the next section.



Micromachines 2020, 11, 406 7 of 14

Micromachines 2020, 11, x FOR PEER REVIEW 7 of 14 

 

 
Figure 4. Time evolution of the minimum filament width Wm at different PEO concentrations. The 
black solid curve Wm ~ (14.8 − t)0.32 is the fit for the Newtonian case, i.e., c = 0. The flow conditions are 
identical. 

The instant when the deviation starts can be defined as the transition time tp. For the viscoelastic 
filament, the thinning process is divided into a flow-driven stage and an elasto-capillary stage based 
on the transition time tp [30,31], which can be captured by comparing the time-varied profiles of Wm 
between the polymeric fluid and the Newtonian counterpart [30,43]. As shown in Figure 4, it is valid 
for dilute solutions (c ≤ c*) but cannot be directly applied for semi-dilute solutions (c > c*) in the 
current study. Here, we propose a method to extract the values of tp based on the temporal variation 
of the extensional strain rates in the filament thinning. The extensional strain rates can be calculated 
by [30,31,43,52] 

m

m

d2=
d
W

W t
ε −  (4) 

It is found that the values of ε increase initially and decrease afterwards as time elapses, and 
the two-staged characteristics are generic for all the examined solutions (Figure 5a). The moment 
when the maximum ε occurs can be reasonably regarded as the transition time tp, before which the 
elastic stress is negligible. The elastic stress becomes dominant only when the polymer molecules are 
stretched to a certain extent at the maximum ε [31,43]. 

 
Figure 5. (a) Extensional strain rate  as functions of the elapsed time at different Qc. The moment 
when the maximum ε occurs is regarded as the transition time tp. The PEO concentration c = c*. 
Inset: The time-varied  at different Qd. (b) Values of transition time tp as functions of capillary 
number Cac. The straight line tp ~ Cac-0.86 is the best fit, and the error bars represent standard 
deviations. Inset: The time-varied  at different c. 

Figure 4. Time evolution of the minimum filament width Wm at different PEO concentrations.
The black solid curve Wm ~ (14.8 − t)0.32 is the fit for the Newtonian case, i.e., c = 0. The flow conditions
are identical.

The instant when the deviation starts can be defined as the transition time tp. For the viscoelastic
filament, the thinning process is divided into a flow-driven stage and an elasto-capillary stage based
on the transition time tp [30,31], which can be captured by comparing the time-varied profiles of Wm

between the polymeric fluid and the Newtonian counterpart [30,43]. As shown in Figure 4, it is valid
for dilute solutions (c ≤ c*) but cannot be directly applied for semi-dilute solutions (c > c*) in the
current study. Here, we propose a method to extract the values of tp based on the temporal variation
of the extensional strain rates in the filament thinning. The extensional strain rates can be calculated
by [30,31,43,52]

.
ε =

−2
Wm

dWm

dt
(4)

It is found that the values of
.
ε increase initially and decrease afterwards as time elapses, and the

two-staged characteristics are generic for all the examined solutions (Figure 5a). The moment when the
maximum

.
ε occurs can be reasonably regarded as the transition time tp, before which the elastic stress

is negligible. The elastic stress becomes dominant only when the polymer molecules are stretched to a
certain extent at the maximum

.
ε [31,43].
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Figure 5a shows the extensional strain rate
.
ε as a function of the elapsed time at different flow

rates of continuous phase Qc, and the variation of
.
ε at various flow rates of dispersed phase Qd

(inset). It is clear that the transition time tp inversely depends on Qc but is almost independent of Qd.
Conceivably, the increasing Qc can accelerate the rate of droplet generation, in which the required
time for individual filament thinning deceases. The transition time tp decreases as a consequence.
In contrast, the increasing Qd always enhances the droplet size but hardly affects the generation rate,
thus imposing a negligible effect on tp. In addition, although the time evolution curves of Wm at
different PEO concentrations are different (Figure 4), the transition time tp varies slightly as the PEO
concentration increases (inset in Figure 5b). By analyzing all the experimentally captured values of tp,
the relation of Qc and tp can be established, as shown in Figure 5b. The dimensionless parameter Cac

(proportional to Qc) is introduced to fit the relation tp ~ Cac
−0.86.

It is obvious that the filament thinning can be divided into two regimes based on the transition
time tp for all the examined PEO solutions (Figure 4). This two-stage feature is the same to the previous
experiments for purely elastic fluids, in which a power-law function along with an exponential
function are often used to fit the thinning process [30,33,43,44,53]. It is widely acknowledged that the
power-law function characterizes the flow-driven regime, while the exponential function characterizes
the capillary-driven regime in the viscoelastic cases. Here, a combination of the two functions is also
tried to fit our measured data for the semi-dilute solutions. Figure 6 shows the typical fitting of the
time-varied profile of Wm at c = 2.5c*, in which Wm ~ (tp − t)0.24 and Wm ~ exp[−0.39(t − tp)] are
separately denoted by the solid and dotted curves. For a denser solution (c = 10c*), the similar fit can
be obtained (see inset in Figure 6). These results demonstrate that the combination of flow-driven
regime and capillary-driven regime is applicable for all the examined PEO solutions. To unveil the
potential effects of the other properties in semi-dilute polymer solutions, the two regimes are separately
analyzed in detail.
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= 40 µL/h. tp and tb are 18 ms and 60 ms, respectively. The fitting parameters are α = 0.21 and β = 0.048.

3.3. Flow-Driven Regime

To describe the relation of the minimum filament width Wm to the remaining time (tp − t) in the
flow-driven regime, a power-law function was applied as follows:

Wm/Wc = A [( tp − t
)

/τT]
α

(5)
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where Wc is the channel width and τT = ηdWc/σ is the characteristic viscous time, and they are used to
build the dimensionless quantity. Figure 7 shows the experimental data and the corresponding fits.
Parameter A also shows a positive dependence on the flow rate of continuous phase and the viscosity
of dispersed phase at c ≥ c*, i.e., A = 0.36Cac

0.13 and A = 1.36Cad
0.33, where Cad = Cac(ηc/ηd), consistent

with those in the Newtonian and dilute cases [30,50]. At a fixed concentration of c = 2.5c*, a power-law
exponent α = 0.25 ± 0.02 is obtained, independent of the flow rate ratio q and the flow rate of continuous
phase Qc (Figure 7a). The constant exponent indicates a self-similar breakup process in the flow-driven
regime in current configuration. The exponentα is approximately 1/4 and is smaller to the 2/3 or 1/2
for free liquid threads [43,44,54], reflecting the effects of the channel confinement and external flow.
Moreover, the exponent α shows a dependence on the PEO concentration c, as illustrated in Figure 7b.
For the dilute solutions with c ≤ c*, the constant exponent α = 0.30 ± 0.02, which is in consistent with α
= 0.36, was obtained for the purely elastic fluids in the similar flow-focusing microchannel [30]. At the
highest concentration of c = 10c*, the exponent α = 0.20 ± 0.02. Meanwhile, the exponent α decreases
with the increasing c in the semi-dilute cases (c > c*).
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The decreased exponent α indicates the deceleration of filament thinning in the flow-driven
regime, which is caused by the elevated viscosity of the dispersed thread. The rheological measurement
shows that the viscosity of polymer solution increases with increasing c (Figure 1a). In dilute cases,
the increment is very limited, i.e., the viscosity at c = c* is only two times that of pure water. As c
further increases, a dramatic increase occurs, e.g., the viscosity at c = 10c* is greater than that of pure
water by two orders of magnitude (Table 1). The highly elevated viscosity of the dispersed thread in
semi-dilute cases consequentially inhibits filament thinning. Besides, the bulk rheology also shows
that the shear-thinning effect (reflected by d-value) enhances with increasing c (Table 1). In contrast
to the effect of elevated viscosity, shear-thinning should exert an effect to accelerate the breakup
(by improving the exponent α). However, our results report the decreased exponent α, suggesting the
screened effect of shear-thinning in the current experiments, which agrees with the observations of
previous experiments for purely shear-thinning fluids [38,39].
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3.4. Capillary-Driven Regime

In the capillary-driven regime with t > tp, the relationship between dimensionless minimum
filament width Wm/Wc to dimensionless remaining time (t − tp)/τT can be depicted by an exponential
function:

Wm/Wc ∝ exp[κ(t− tp)/τT] (6)

Figure 8a shows the experimental data at various PEO concentrations, which suggests that the
exponential decay is genetic in both dilute and semi-dilute cases. The results are also in line with those
for purely elastic fluids in previous experiments [30,33,35,43]. Moreover, the values of parameter κ
barely depend on the flow conditions, as demonstrated in Figure 8b. Recalling the previous theory,
the exponential regime for high viscosity elastic fluids based on the balance between elastic and
capillary forces follows the function [19,43,54]

Wm/Wc ∝ exp[−(t− tp)/3λE] (7)

where λE is the extensional relaxation time. The relation λE = −τT/(3κ) can be derived and the values
of λE for all the examined solutions can be calculated. The latent distinction between dilute and
semi-dilute cases could be acquired by the analysis of λE.
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Figure 9a shows the estimated values of extensional relaxation time λE for all the examined
solutions. For the dilute solutions, i.e., c ≤ c*, the λE values are several times greater than the Zimm
relaxation time λZ (dotted line in Figure 9a), which agrees with the findings of previous similar
experiments [33]. Due to the microchannel confinements and the continuous phase flow, these
estimated λE values are generally smaller than those captured in the pinch-off experiments of free
surface fluid [33,43,44]. For the semi-dilute solutions, i.e., c > c*, the estimated λE shows similar
c-dependence (λE ~ c1.6) with the reptation time λR (λR ~ c1.5), while the λE values are obviously
smaller than λR. These smaller λE values indicate the incomplete stretch of polymer molecules in the
capillary-driven regime. This coincides with the result that the coil-stretch transition becomes milder
for more concentrated polymer solutions in both macroscopic and microscopic extensional flows [44,55].
Moreover, the accumulated strain or Hencky strain ε can be calculated as ε = 2ln(W0/Wt), [35,52]
where Wt denotes the time-varied Wm. It is thus found that the maximum strain εmax = [4.5–6] at c
= 0.1c*, while εmax = [1–2] at c = 10c*. This contrast supports the claim of incomplete stretch in the
semi-dilute solutions.



Micromachines 2020, 11, 406 11 of 14
Micromachines 2020, 11, x FOR PEER REVIEW 11 of 14 

 

 
Figure 9. Results of extensional relaxation time λE and extensional viscosity ηE. (a) Variation of 
extensional relaxation time values λE with PEO concentrations. The grey line represents the 
predicted values for reptation time λR, and the grey dashed line represents the predicted values for 
the Zimm relaxation time λZ. (b) Evolution of extensional viscosity ηE with Hencky strain ε at c = 5c*. 

It is speculated that the incomplete stretch is due to the dense network structures in the 
semi-dilute solutions. According to the blob theory [45,47], each PEO molecule forms a blob when c 
is below c* and all the blobs do not contact with each other. As c increases above c*, blobs overlap 
with each other to form the networks and the network structures become denser with increasing 
polymer concentrations. For dilute polymer solutions, individual polymer blobs can be highly 
stretched in the filament. For semi-dilute polymer solutions, the networks are stretched as a whole 
and the individual polymer chains are just partially stretched, resulting in the lower strain ε, as 
stated above. 

Furthermore, the extensional viscosity is introduced due to the polymer stretch. The extensional 
viscosity ηE is finally examined, which is calculated using the formula [30,44] 

E
t m

 =
2d / dW W t

σ ση
ε

=
−  (8) 

Figure 9b illustrates the variation of extensional viscosity ηE with an increasing Hencky strain ε 
at c = 5c*. The extensional viscosity ηE increases with the strain ε, indicating the obvious strain 
hardening that has been reported in both macroscopic [53,54] and other microscopic experiments 
[30,31,33]. The absolute values of ηE are two to three orders of magnitude greater than their 
zero-shear viscosity η0, and this enhancement contributes to the delayed breakup. In the final stage, 
the filament further elongates and thins nearly linearly with time (Figures 4 and 6). The last regime 
allows the measurement of terminal steady extensional viscosity, which would be reached before all 
the chains are completely stretched out [44,56]. It is predicted that the final regime is maintained by 
the competitive effect between the continued stretch of the polymer chains and the drainage of the 
dispersed filament. This mechanism needs to be further validated by studying the polymer 
dynamics in the filament in the future work. 

4. Conclusions 

In summary, we experimentally investigate the filament breakup in droplet generation of 
semi-dilute PEO solutions in a flow-focusing microchannel. The breakup morphology of semi-dilute 
PEO solutions is analogous to that in dilute cases, which falls into a universal temporal profile in 
combination with a flow-driven regime and a capillary-driven regime. The transition time tp 
dividing the two regimes is extracted based on the temporal variation of the extensional strain rates. 
The power-law exponent α characterizing the flow-driven regime in semi-dilute cases is smaller than 
that in dilute cases and decreases with increasing PEO concentration. It is ascertained that the highly 
elevated viscosity of the semi-dilute solution decelerates the filament thinning in the flow-driven 

Figure 9. Results of extensional relaxation time λE and extensional viscosity ηE. (a) Variation of
extensional relaxation time values λE with PEO concentrations. The grey line represents the predicted
values for reptation time λR, and the grey dashed line represents the predicted values for the Zimm
relaxation time λZ. (b) Evolution of extensional viscosity ηE with Hencky strain ε at c = 5c*.

It is speculated that the incomplete stretch is due to the dense network structures in the semi-dilute
solutions. According to the blob theory [45,47], each PEO molecule forms a blob when c is below
c* and all the blobs do not contact with each other. As c increases above c*, blobs overlap with
each other to form the networks and the network structures become denser with increasing polymer
concentrations. For dilute polymer solutions, individual polymer blobs can be highly stretched in the
filament. For semi-dilute polymer solutions, the networks are stretched as a whole and the individual
polymer chains are just partially stretched, resulting in the lower strain ε, as stated above.

Furthermore, the extensional viscosity is introduced due to the polymer stretch. The extensional
viscosity ηE is finally examined, which is calculated using the formula [30,44]

ηE =
σ

.
εWt

=
σ

−2dWm/dt
(8)

Figure 9b illustrates the variation of extensional viscosity ηE with an increasing Hencky strain ε at
c = 5c*. The extensional viscosity ηE increases with the strain ε, indicating the obvious strain hardening
that has been reported in both macroscopic [53,54] and other microscopic experiments [30,31,33].
The absolute values of ηE are two to three orders of magnitude greater than their zero-shear viscosity
η0, and this enhancement contributes to the delayed breakup. In the final stage, the filament further
elongates and thins nearly linearly with time (Figures 4 and 6). The last regime allows the measurement
of terminal steady extensional viscosity, which would be reached before all the chains are completely
stretched out [44,56]. It is predicted that the final regime is maintained by the competitive effect
between the continued stretch of the polymer chains and the drainage of the dispersed filament.
This mechanism needs to be further validated by studying the polymer dynamics in the filament in the
future work.

4. Conclusions

In summary, we experimentally investigate the filament breakup in droplet generation of
semi-dilute PEO solutions in a flow-focusing microchannel. The breakup morphology of semi-dilute
PEO solutions is analogous to that in dilute cases, which falls into a universal temporal profile
in combination with a flow-driven regime and a capillary-driven regime. The transition time tp

dividing the two regimes is extracted based on the temporal variation of the extensional strain rates.
The power-law exponent α characterizing the flow-driven regime in semi-dilute cases is smaller than
that in dilute cases and decreases with increasing PEO concentration. It is ascertained that the highly
elevated viscosity of the semi-dilute solution decelerates the filament thinning in the flow-driven
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regime while the accelerating effect of shear-thinning is screened. The capillary-driven regime is
analyzed based on the extensional relaxation time λE and the extensional viscosity ηE. The extensional
relaxation time λE being less than the reptation time λR indicates the incomplete stretch of polymer
molecules in the capillary-driven regime. The extensional viscosity ηE shows obvious strain hardening,
and the significant enhancement of ηE contributes to the delayed breakup. These results extend the
understanding of breakup dynamics in droplet generation of non-Newtonian fluids and could provide
guidance for microfluidic synthesis applications involving semi-dilute polymer solutions.
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