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Abstract: The concept of merging pre-processed textile materials with tailored mechanical properties
into soft matrices is so far rarely used in the field of soft robotics. The herein presented work takes
the advantages of textile materials in elastomer matrices to another level by integrating a material
with highly anisotropic bending properties. A pre-fabricated textile material consisting of oriented
carbon fibers is used as a stiff component to precisely control the mechanical behavior of the robotic
setup. The presented robotic concept uses a multi-layer stack for the robot’s body and dielectric
elastomer actuators (DEAs) on both outer sides of it. The bending motion of the whole structure
results from the combination of its mechanically adjusted properties and the force generation of the
DEAs. We present an antagonistic switching setup for the DEAs that leads to deflections to both sides
of the robot, following a biomimetic principle. To investigate the bending behavior of the robot, we
show a simulation model utilizing electromechanical coupling to estimate the quasi-static deflection
of the structure. Based on this model, a statement about the bending behavior of the structure in
general is made, leading to an expected maximum deflection of 10 mm at the end of the fin for a static
activation. Furthermore, we present an electromechanical network model to evaluate the frequency
dependent behavior of the robot’s movement, predicting a resonance frequency of 6.385 Hz for the
dynamic switching case. Both models in combination lead to a prediction about the acting behavior
of the robot. These theoretical predictions are underpinned by dynamic performance measurements
in air for different switching frequencies of the DEAs, leading to a maximum deflection of 9.3 mm
located at the end of the actuators. The herein presented work places special focus on the mechanical
resonance frequency of the robotic setup with regard to maximum deflections.

Keywords: biomimetics; dielectric elastomer actuators; textile reinforcement; soft robotics; fish fin
robot; textile-elastomer compounds; bending structures

1. Introduction

Electroactive polymers (EAPs) are some of the most promising materials when it comes to new
propulsion mechanisms in the field of soft robotics. In comparison to the well-established rigid
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robotic concepts, soft robots inherit the ability to implement core-functions like sensing, actuation, or
computing on the level of material properties [1]. The class of dielectric elastomers (DEs) and, thus,
DEAs offer great potential to fulfill several main functions of such soft robots. Especially, the dielectric
elastomer actuators (DEAs) show highly promising possibilities with regard to applications in the field
of soft actuation [2]. They consist of a thin elastomer membrane sandwiched between two compliant
electrodes [3]. At an applied voltage on the electrodes, the charge separation leads to an electric field
between the electrodes. Due to the quasi incompressibility, the dielectric elastomer material is forced
by the electrostatic pressure to expand in all free spatial directions. The resulting expansions can reach
strain levels of more than 300% [4].

The rather simple concept of a plate capacitor can also be used for sensing applications where
a deformation leads to measureable changes of capacitance [5], voltage [6], or resistance [7]. Such
sensor concepts are essential for soft robotics since they allow integrated sensing to merge actuator
and sensor functionalities [8]. Together with DE-based generators for energy harvesting [9], dielectric
switches [10], and logic gates based on these switches [11], prospective self-sustainable robots can be
built [12].

In 2016, the first fully functional soft robot, the octobot, was presented [13]. The octobot is an
example of some general trends in soft robotics. Its versatility allows using it in different surroundings
with different actuation modes. Together with its simplicity in design and material choice, the entire
robot fits perfectly into biomimetic applications as considered in this work.

According to Vincent et al. [14], biomimetics is a research field that embraces “the practical use of
mechanisms and functions of biological science in engineering, design, chemistry [and] electronics”.
Biomimetics take their inspiration from nature and mimic naturally acting mechanisms and concepts.
In the field of soft robotics, there are different approaches to the idea of biomimetics. One major issue
is biocompatibility, which can be achieved due to material choice wherever possible. Many soft robotic
concepts use silicones as the base material [15], which shows at least mechanical biocompatibility
and, in the case of modified silicones, even full biocompatibility [16]. Besides the material properties,
the actuation itself is in the focus of biomimetic soft robots. The common ground lies in adapting
natural forms of movement. There are various concepts based on nature inspired movements such as
worm-like robots [17], walking structures [18], grippers [19], or fins [20].

Here, we present a fish fin-like biomimetic soft robot. While textile materials in soft robotics are
so far mostly used to modify the surfaces of robots [21], the presented approach uses a pre-fabricated
textile material to enhance the mechanical properties of a soft structure. The textile material’s purpose
is to both stabilize the structure and to manipulate its mechanical bending properties. Together with
the silicone matrix cast around it, it gives the typical fish fin shape to the robot. DEAs on both outer
sides of the robot initiate the bending movement, which can lead to a propulsion. Similar to other
approaches for fish-like robots [22–24], the herein presented robot uses body propulsion, generating an
undulating wave towards the end of the fin as the propulsion method. This means that the actuators
are located on the body part of the robot, and the fin part at the end of the robot is passively excited by
the generated bending movement at the front parts. The design of the robot follows the approach of
generating a maximum deflection at the end of the fin.

The main contribution of this work lies in the use of pre-fabricated textile materials as the
reinforcement structure. While other work presented similar fish fin-like concepts, none of them have
used a pre-fabricated and tunable textile material so far. The textile material allows the tuning of the
mechanical properties for the whole robot while ensuring lightweight properties. The mechanical
properties are pre-defined due to the processing of the textile fabric, which lowers the induced
deviations at the processing and thus improves reproducibility.

Different from other DEA-driven fish robots [24], the presented work uses equi-biaxial
pre-stretched membranes for the DEAs, allowing thinner resulting dielectric membranes, which
makes the robot more efficient with regard to the generated forces and operating voltages. Due to
their balanced pre-stretch ratio, the DEAs hold the robot in a straight aligned position in its initial
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state. The presented work also uses a method for minimal wiring for the underwater actuation
by utilizing the water as the common ground electrode. In this work, we present the theoretical
background for the bending motion induced by the DEAs, together with a finite element simulation of
the electromechanical coupled deformation. We describe the manufacturing and the characterization
of the mechanical performance of the robot to find a maximum deflection depending on the switching
frequency of the DEAs. In addition, a first impression of the possible versatility of the robot with regard
to its use in water and in air is given. Possible applications under water with minimum electrical
wiring are proven with regard to possible autonomous actuation in future stages of development.

2. Materials and Methods

2.1. Robotic Concept

The robot was designed in a way to mimic the typical waving motion of a fish fin. According
to [25], the robotic concept used body propulsion by bending the fish’s body into a backward-moving
wave that traveled towards the end of the fin. The geometry itself was inspired by emarginate fin
shapes, providing a good tradeoff between low drag due to the low surface area of the fin and good
acceleration force. The implemented setup consisted of multiple layers of different materials. In the
neutral plane in the middle of the setup, a highly anisotropic textile material was placed. It was
pre-fabricated in a separate step and consisted of a carbon fiber unidirectional (CF-UD) tape that
was made from Sigrafil C T50-4.4/255-E100 fibers (SGL Carbon SE, Wiesbaden, Germany) with a
grammage of 200 g

m2 [26]. To ensure good adhesion of the matrix material to the fibers and maximum
infiltration, they were coated with a low-viscosity styrene butadiene rubber (SBR) system using a
Basecoater BC 32 (Coatema GmbH, Dormagen, Germany) roll-to-roll machine. The coating material
was crosslinked at 160 ◦C, as recommended. To get the fabricated textile material in the desired shape
of the fish fin, the CF-UD-tape was cut using a solid-state laser with a power of 5 kW and a wavelength
of 1.064 µm. The textile material conditioned in this way was then placed in a cast mold to infiltrate it
with a silicone mixture, Sylgard 184 (Dow Silicones, Dormagen, Germany). The cast mold used was
3D-printed using an acrylonitrile butadiene styrene (ABS) copolymer filament that was smoothed after
printing (Figure 1).

Figure 1. Cast mold for the robot’s body. The two halves form the cavity for the textile-elastomer
compound inside. The silicone mixture is pressed through the cast mold, injected on the inlet, and
overfilled towards the outlet.

The geometry of the cast mold defined the design of the robot’s body. The core part of the robot
was designed with void spaces in its structure that reached down to the neutral plane of the robot.
These parts formed spacers in the cast mold that held the uninfiltrated textile material in its position
inside the mold. The central gaps on the robot’s body were later covered by the DEAs. To produce the
composite material for the fish’s body, the prepared textile material was placed in the mold and fixed in
position by locking the mold halves. The prepared cast mold was filled with the silicone mixture and
afterwards put into an oven at 60 ◦C to cure the silicone mixture within 24 h. After releasing the cured
textile-elastomer compound, it could be assembled with the DEAs. Figure 2 shows the dimensions of
the robot’s body after curing.
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Figure 2. Dimensions of the fish fin structure as the core part of the robot’s body in mm. Rectangle
parts represent void spaces down to the neutral plane, holding the textile material.

The actuators were prepared in another separate step. For that, a 100 µm Elastosil 2030 (Wacker,
Munich, Germany) silicone foil was equi-biaxially pre-stretched to 140% and covered with electrodes.
The pre-stretching of the silicone foil offered multiple advantages for use in dielectric actuator
applications [27,28]:

• It increased the electrical breakdown-strength of the material.
• The pull-in instability was suppressed.
• The silicone membrane was kept flat and defined in area, leading to a defined actuation.
• The operating point for the actuation was set in a beneficial region of the hyperelastic stress-strain

curve of the dielectric material.

The electrodes for the actuators were applied on the pre-stretched dielectric membrane, using
an air-brush method, spraying a mixture of room temperature curing silicone Ecoflex 00-10 (KauPo,
Spaichingen, Germany), heptane, and carbon black. The electrode areas were defined using masks in
the shape of the desired geometry to cover the corresponding regions of the silicone foil. The electrode
mixture was then sprayed on the masks and afterwards cured at 60 ◦C for another 8 h to form a stable
bond to the Elastosil foil. The prepared DEAs were glued on both outer sides of the robot’s body
(Figure 3).

Figure 3. Layered setup of the robot with DEAs on both outer sides and the textile layer in the neutral
plane sandwiched between silicone layers.

As mentioned before, the DEAs were made of 100 µm thin silicone films. The textile layer had
a thickness of 0.4 mm between two layers of 1.3 mm silicone material. The electrical contacting was
realized with copper wires that were glued to the corresponding positions on the robot. Figure 4 shows
a photograph of the complete robotic setup.
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Figure 4. Assembled robotic setup. (a) General view with DEAs and electrical wiring and (b) top-view
to illustrate the straight alignment due to the balanced pre-stretch ratios of the two DEAs.

2.2. Bending Movement and Force Generation

The bending movement resulted from the force generated by the DEAs on both outer sides of the
robot. The robot itself was designed in such a way that it allowed bending only in the longitudinal
direction since the textile material limited an expansion in the transversal direction. The generated
force of the DEAs drove the bending movement. The DEAs could be assumed as a plate capacitor with
the reference potential at the ground electrode on the lower plate (Figure 5).

Figure 5. Actuator geometry based on a plate capacitor. (a) Initial undeformed state, clamped at the
front, and (b) deformed state with the generated forces leading to an elongation of the actuator. The
boundary conditions limit the deformation in the y-direction.

The force considered here described the force of the upper electrode acting towards the lower
electrode. To derive the Maxwell pressure generated between the electrodes, we used the Maxwell
stress tensor approach based on electromechanical coupling of the DEA. According to [29,30], the
Maxwell stress tensor can be written as:

~T = ~E⊗~E +~B⊗~B− 1
2
· ε0(E2 + B2), (1)

which is equivalent to:

~T = ε(~E · ~ET − 1
2
· I · |E|2) + 1

µ
(~B · ~BT − 1

2
· I · |B|2), (2)

with the electrical field strength ~E, the dielectric permittivity ε, the magnetic field strength ~B, the
magnetic permeability µ, and the unit matrix I. Due to the quasi electrostatic case, we could assume
the magnetic field strength as zero, which simplifies Equation (2) to:

~T = ε(~E · ~ET − 1
2
· I · |E|2). (3)

The first step towards an expression for the Maxwell stress is to describe the electric field E, caused
by the charge distribution σA on the upper electrode, which contains the charge Q over the area A of
the electrode:

~E =
Q
εA

=
σA

ε
·~ex,y,z. (4)
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The derived equation for the electric field can be inserted into Equation (3):

~T = ε[

 Ex

Ey

Ez

 · (Ex; Ey; Ez)−
1
2

 1 0 0
0 1 0
0 0 1

 · E2]

=
ε

2

 E2 0 0
0 −E2 0
0 0 −E2

 .

(5)

Here, Ex, Ey, and Ez are the components of the electric field in the x-, y-, and z-direction, and E is the
amount of the electrical field in all spatial directions. The force impact on the planar electrode can be
expressed by:

~F =
∫∫

A
~T · d~A. (6)

The differential area element d~A is given as:

d~A = dxdy ·~ez (7)

in Cartesian coordinates, where~ez is the unit vector in the z-direction. The force component Fz in the
z-direction thus results in:

~Fz =
∫∫

A
~T ·~ez =

∫∫
A
−E2 = −

ε · σ2
A

2ε2

∫ b

0

∫ a

0
dxdy. (8)

Solving the integral, the final expression for the force impact on the planar electrode is:

Fz = −
σ2

A
2ε
· A. (9)

In order to derive an equation consisting of practically useable quantities, the expression of the force
can be reformulated by using the applied voltage V instead of the charge distribution σA. For that, the
electric potential Φo of the upper electrode can be expressed as:

Φo = Φi −
∫ d

0
E(z)dz, (10)

where Φi is the potential on the lower electrode. Inserting Equation (4) into Equation (10) and solving
the integral leads to:

Φo = Φi −
σA

ε
· d. (11)

Introducing the applied voltage V as the difference of the both electric potentials yields:

V = Φo −Φi = −
σA

ε
· d. (12)

Using this formulation, the charge distribution σA can be described as:

σA = −V · ε
d

. (13)

The resulting force can be derived by inserting Equation (13) into Equation (9):

Fz = −
ε2V2 A
2d2ε

. (14)
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This leads directly to the stress component σmaxwell in thickness direction z due to the electric voltage
between the electrodes:

σmaxwell =
Fz

A
= − εV2

2d2 . (15)

Due to the almost incompressible silicone material, it can be assumed that this stress also acts on the
cross-sectional area Across of the electrodes to generate a longitudinal expansion of the DEAs. The
initiated force FG can be described as:

FG = σmaxwell · Across =
εV2

2d2 · d
′a. (16)

The membrane thickness d′ of = 51 µm in the pre-stretched state and the width of the electrodes
a of 25 mm give the cross-sectional area Across of the DEAs of 1.275 mm2. Assuming a dielectric
permittivity ε of 2.8 ∗ 0.8854 ∗ 10−11 A·s

V·m , the generated force for an applied voltage of 3000 V equals
0.055 N and 0.097 N for a voltage of 4000 V. This expanding force leads to the bending movement of
the robot. By switching the voltage at the DEAs, a change of the bending direction is initiated. The
consecutively switching then generates the waving motion of the robot.

2.3. Simulation of the Bending Structure

In order to verify that the desired mechanical behavior of the bending structure can be achieved,
a tailored simulation model was developed and utilized. The model is capable of describing the
electromechanical coupling of the DEA material. To simplify the relatively complex structural setup,
the following assumptions were made:

• The structure was composed of a fiber-reinforced passive material with internal cavities and
active DEAs.

• It had a nonlinear geometry, and its bending deformation was based on a coupled
electromechanical response.

• Therefore, a nonlinear material model suitable for the simulation of large deformations was used
along with an electromechanical finite element.

In the first step, finite element analyses were used to simulate tensile stresses within both the
passive and the DEA materials in order to identify the mechanical material parameters. Afterwards,
the electromechanical response and the bending deformation of the whole fish fin structure were
modeled and demonstrated. The used material model was based on a free energy density function
with an additive form as:

Ψtot = Ψiso + Ψani + Ψcoup, (17)

where Ψiso is an isotropic mechanical contribution, Ψani expresses the anisotropic response due to fiber
reinforcement, and Ψcoup describes the coupled electromechanical behavior. The simulation of the
isotropic hyperelastic response was based on the extended tube model [31,32], which was capable of
realistically predicting the response of hyperelastic rubber-like materials. The anisotropy due to fiber
reinforcement was modeled as was proposed in [33]. Furthermore, the coupled electromechanical
energy contribution is defined as:

Ψcoup = −1
2

ε~EL ·C−1 ·~EL, (18)

with the electric permittivity ε of the material, the electric field vector in the undeformed configuration
~EL, and the right Cauchy–Green tensor C. The coupled energy function defined by Equation (17)
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renders a Maxwell stress tensor σ′maxwell for the three-dimensional case, which in the case of planar
geometries, can be reduced to the simplified Maxwell stress σmaxwell as follows:

σmaxwell = ε

(
V
d

)2
= ε E2, (19)

with the deformed thickness d of the planar dielectric, the voltage difference V between the electrodes,
and the one-dimensional electric field E. However, due to the fact that the fish fin structure deformed
three-dimensionally, we adopted the three-dimensional formulation as given in Equation (18), where
the electric field is the vector ~EL and the Maxwell stress is the tensor ~T. For more details about
the continuum theory of electro-elasticity, we refer the reader to [34]. Regarding the numerical
implementation, a mixed electromechanical finite element was implemented. Mixed finite elements are
needed to overcome the problem of locking in quasi incompressible materials and bending-dominated
structures. For more details about quasi incompressible finite element formulations and the numerical
modeling of electro-elasticity, see for example [35,36], respectively. The used material model and the
coupled finite elements were implemented in an in-house finite element program.

The characterization of the used materials was performed by carrying out quasi-static tensile tests
for both Sylgard 184 silicone, which was used as the passive matrix of the fish fin, and Elastosil 2030,
which was used for the DEAs. These experiments were performed to identify the mechanical material
parameters, in order to use them in the electromechanical simulation. The finite element discretization
and simulation of a DIN EN ISO 527-2 1A specimen for Sylgard 184 silicone are demonstrated in
Figure 6. As symmetric boundary conditions and deformation states could be assumed, the response of
only one eighth of the real specimen was simulated as is depicted in Figure 6b. Moreover, a simulation
of a simple rectangular specimen for the Elastosil 2030 material was performed, but for the sake of
brevity is not shown in this manuscript.

fixed

driven

Figure 6. Finite element model for Sylgard 184 silicone elastomer: (a) discretization and boundary
conditions for a DIN EN ISO 527-2 1A specimen and (b) simulation of the tensile test. The contour
shows the longitudinal displacement.

Both of the investigated materials showed a hyperelastic force-strain behavior with a higher
force response for the Sylgard 184 material compared to the Elastosil 2030 material. The results of the
numerical simulations showed good agreement with the experimental data for both specimens as is
depicted in Figure 7.
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Figure 7. Fitted simulation and experimental results for specimens from (a) Sylgard 184 material with
DIN EN ISO 527-2 and (b) Elastosil 2030 material with a size of 104 mm × 20 mm × 0.1 mm.

The nonlinear geometries of the fish fin matrix and the attached DEAs were taken into account
by discretizing them using hexahedral finite elements. Moreover, it was attempted to mimic the real
mechanical boundary conditions by applying displacement constraints within the front region as is
shown in Figure 8.

fixed region
Figure 8. Finite element discretization and mechanical boundary conditions of the fish fin structure.
The given values describe the region where mechanical constraints are applied.

Regarding the simulation of the coupled electromechanical response, a relative dielectric
permittivity εr = 2.8 was used as a material parameter. For the mechanical response, the material
parameters of the extended tube model were chosen such that the material was considered as a
neo-Hookean solid, which was suitable for the realistic modeling of strain values of up to 20%. In this
way, some computational costs were saved. This approach was reasonable due to the fact that the
fish fin showed large deformations, but did not exhibit large strains. As the boundary conditions
were symmetric, only one half of the structure was analyzed. The simulation of the coupled behavior
was performed by applying a voltage difference Φ between the two surfaces of the attached DEAs.
However, only the rectangular region covered by the electrodes of the DEA was activated. That
emulated the real boundary conditions, where rectangular electrodes of limited size covered the
surface of the structure. The quasi-static simulation was performed in which a potential difference
was increased from 0 V to 5000 V stepwise, and the mechanical response was studied in terms of the
displacement w. Figure 9 depicts the response of the bending structure upon the activation of the lower
and the upper DEA for the final simulation step, where a potential difference of 5000 V was applied.
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Figure 9. Quasi-static finite element simulation of the fish fin structure from Figure 8 with 3D views
(a,c: voltage scale) and side views (b,d: deflection scale); the response of the structure due to the
stimulation of (a,b) the bottom DEA and (c,d) the top DEA.

The results of the quasi-static simulation (Figure 9) showed that a displacement of up to 10 mm at
the end of the structure could be expected when the robot was activated with a voltage of 5000 V.

2.4. Electromechanical Network Model

To estimate the behavior of the complex electromechanical structure of the fish fin, equivalent
electromechanical network models were used. Here, the mechanical structure was also modeled as an
electrical network while relying on the analogies between the mechanical and the electrical domain.
In particular, resonance frequencies could be determined easily. In the case of the fish fin structure,
we used the Firestone analogy [37] equating between force and current as the flow quantities and
between velocity and voltage as the cross quantities. The procedure allowed coupling the electrical and
mechanical domains through transducers, in this case the DEAs, which transduced the applied voltage
to a force. This force subsequently moved the fish’s body, which was simplified as a bending beam. The
fish fin was discretized into seven sections following the approach for an active bending beam in [38].
Because the description was based on Euler–Bernoulli beam theory, which disregards shear effects and
is suited for small deformations, the overall stiffness and consequently the resonance frequency of the
beam were overestimated. To implement the described model for the fish fin structure, the simulation
tool LTSpice [39] was used. The system parameters were identified by using the CAD data of the robot,
textile physical measurements of the reinforcement textile material, and the elastomer’s properties
provided by the manufacturer. In the electromechanical network model, the DEA acted on the first
four segments of the discretized fish fin and was considered as clamped on the left side, which related
to a shorted circuit and a free end on the right side. Figure 10 illustrates the coupling of the electrical
(red), rotational (green), and translational (blue) domains in the equivalent network model with the
rotational speed Ω and the resulting deflection w.

Figure 10. Electromechanical network model of the bending structure, red: electrical domain, green:
rotational domain, blue: translational domain.
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The behavior of the bending structure was simulated by changing the frequency input of the
network model. The voltage was simulated with a sine-waveform with a frequency in the range
between 0 Hz and 10 Hz. Figure 11 shows the frequency response with respect to the amplitude and
phase of the deflection w of the modeled structure.

Figure 11. Frequency response of the amplitude and phase of the deflection w at the end of the fish fin
from Figures 8 and 10, respectively. The resonance frequency of 6.385 Hz is marked.

The predicted resonance frequency was located at 6.385 Hz. Since the used model was expected
to overestimate the resonance frequency, the experimentally determined one was expected to be lower.

2.5. Image Correlated Measurement

To evaluate the oscillating motion of the fish fin, a digital image correlation (DIC) measurement
system ARAMIS 5M (GOM, Germany) was used to perform camera-based displacement measurements.
The used camera had a resolution of 2448 × 2050 pixels and a focal length of 50 mm. A lowering of the
resolution to 1224 × 1025 pixels allowed a recording frame rate of 29 Hz. After the calibration with a
ceramic calibration target, the system was able to detect length differences of a few micrometers. The
subset size was set to 19 pixels and the distance to 15 pixels. To measure the displacements along the
bending robot, four printed speckle patches were adhered at different positions on the backbone of the
robot. The freeware SpeckleGen (Correlated Solutions, USA) provides a pdf file with customizable
speckle patterns. These patterns were printed and then glued onto the fish fin. The positions of the
speckle patches were located equi-distant along the first 70 mm, which meant the active part with the
DEAs. A schematic of the setup can be seen in Figure 12.

Figure 12. Top-view of the measurement setup with speckle patterns P1–P4 on four positions along the
top-side of the robot. The angular displacement ϕ leads to a deflection of the speckle patterns in the
x-direction that are captured by the camera.
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The DEAs were activated with a voltage of 4000 V with a square-waveform at different switching
frequencies between 1 Hz and 7 Hz. The camera recorded the robot’s movement and the positions of
the speckle patterns in each video frame. For the measurement, the robot was clamped at the front
side and held in a hanging position as depicted in Figure 12. The different displacement values were
extracted after the recording by analyzing the collected data with the ARAMIS software. For that,
the upper speckle pattern was used as the reference pattern since it was clamped and not moving
with the bending motion. The deflections in the x-direction were then calculated by forming the three
displacement differences dxi in relation to the x position of speckle P1,

dx2 = xP2 − xP1, (20)

dx3 = xP3 − xP1, (21)

dx4 = xP4 − xP1. (22)

3. Results and Discussion

3.1. Displacement Measurement and Mechanical Resonance

Displacement measurements were performed for different switching frequencies of the DEAs
between 1 Hz and 7 Hz with a smaller step width of 0.1 Hz in the range between 4.5 Hz and 5.5 Hz.
Figure 13 shows the switching regime of the two DEAs on both outer sides of the robot together with
the measured deflection differences dx2...dx4 between the four speckle patterns from Figure 12 for a
switching frequency of 5 Hz.

Figure 13. Exemplary deflection results for a switching frequency of 5 Hz. Overview of the electrical
switching regime and the caused deflections dx2, dx3, and dx4.

The mechanical resonance frequency was determined by performing multiple DIC measurements
for different switching frequencies of the DEAs. A maximum deflection was observed at a switching
frequency of 5.0 Hz. Figure 14 shows the frequency dependence of the fish fin deflection in the
frequency range between 1 Hz and 7 Hz.
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Figure 14. Results for the measured deflections dx4 to the left and to the right side over the investigated
frequency range at a driving voltage of 4000 V.

The detected mechanical resonance frequency was expectedly lower than the predicted resonance
frequency calculated from the electromechanical network model. The predicted value lied 1.385 Hz
above the measured resonance frequency of 5.0 Hz. Figure 15 shows the detailed time courses for the
single deflections dx2, dx3, and dx4 at a resonance frequency of 5.0 Hz.

Figure 15. Measured time course for the deflections dx2 (left), dx3 (middle) and dx4 (right) at a 5.0 Hz
switching frequency at a voltage of 4000 V.

A maximum deflection of 9.3 mm was measured at speckle point P4 at resonance frequency.
In this case, a higher deflection to the left (negative) side was observed. This could be caused by
several reasons. First of all, the alignment of the textile material might possibly be not absolutely
straight along the length of the robot, leading to an unbalanced mechanical behavior. Furthermore,
it could be assumed that the electrodes of the two DEAs were not absolutely identical. The manual
application inherited some process tolerances that could also lead to a deviating electromechanical
behavior of the DEAs. Another influence might be caused by not perfectly timed electrical signals
of the DEAs. The used high voltage source did not provide a perfect phase control of the different
switched channels between each other, which could lead to an overlap between the switching signals
of the two DEAs. All of these possible influences on the accuracy could be reduced by automating the
production process, including industrial production methods.

3.2. Movement in Water

The results of the investigations described so far considered the operation of the fish fin in air.
Besides the operation mode in air, it was also of interest that the fish fin could be operated in water. For
this, the outer electrodes on the left and right side of the robot could be contacted using the electrical
admittance of the water itself. The electrical concept was therefore modified in such a way that the
outer electrodes served as the common ground electrode, and the inner electrodes on both sides were
contacted to the high voltage conducts. This concept allowed eliminating at least one wired connection
to the robot. The robotic setup only needed two wired connections for the high voltage electrodes
to perform its movement in water. In our preliminary test setups, we were able to prove the basic
functionality. Therefore, the robot was clamped at its front side and held in a defined position under
water. The waving motion of the fish fin was initiated by switching the high voltage electrodes for
both DEAs consecutively. In this setup, the desired motion under water was proven (see Video S1
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in the Supplementary Materials). A full characterization of the robot’s movement in water will be
performed in our future work. The first results showed that the resonance frequency was significantly
lower in water than in air. Furthermore, the steering of the robot and the exact control of its movement
are challenges that will be solved in our future developments.

4. Conclusions

We successfully demonstrated a biomimetic fish fin-like robotic concept of a bending structure
consisting of textile-elastomer compounds that was driven with DEAs on both sides. The robot was
characterized in air by evaluating its deflection properties in a hanging setup. For this, DEAs on both
outer sides of the fish fin were switched consecutively with a square-wave voltage signal of 4000 V. The
simulation of the frequency-dependent behavior of the fish fin structure was done in two ways. The
mechanical behavior of the 3D structure was calculated by using a finite element model that simulated
the electromechanical coupling between the DEAs and the structure itself. This allowed us to consider
that the structure would show the exact desired bending behavior with reasonable deflections. Figure 9
shows the outcome of the simulation for a static case without any dynamic frequency behavior. The
results of the simulation showed that in a static case with an applied voltage of 5000 V, deflections
of up to 10 mm at the end of the fin could be reached. The dynamic behavior of the fish fin under
cyclic activation was modeled with an electromechanical network model, using analogies between
mechanical characteristics and electrical network components. The dynamic case of consecutively
switching the DEAs on both outer sides of the fish fin was considered in the electromechanical network
model. The result of this investigation was that for dynamic switching, a maximum deflection could
be expected at the calculated mechanical resonance frequency of 6.385 Hz (Figure 11). As mentioned
before, the used network model overestimated the resonance frequency. The performed measurements
underpinned this assumption. The measured resonance frequency in a hanging setup in air was
detected at 5.0 Hz (Figure 14), which was 1.385 Hz below the calculated resonance frequency. This
constituted a deviation of 27.7%. At resonance frequency, the maximum deflection of 9.3 mm was
detected. Additionally, a basic functionality of the robotic concept to act in water was proven. In future
developments, the presented bending behavior will serve as a propulsion and steering mechanism to
build a more autonomous, self-driving robot. For that case the actuation in water is aspired.

Supplementary Materials: The following are available at http://www.mdpi.com/2072-666X/11/3/298/s1.
Video S1: Robot’s movement under water in a clamped setup.
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DEA Dielectric elastomer actuator
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