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Abstract: Nanoparticle (NP), as a kind of hard-to-machine component in nanofabrication processes,
dramatically affects the machined surface quality in nano-cutting. However, the surface/subsurface
generation and the plastic deformation mechanisms of the workpiece still remain elusive. Here, the
nano-cutting of a single-crystalline copper workpiece with a single spherical embedded nanoparticle
is explored using molecular dynamics (MD) simulations. Four kinds of surface/subsurface cases
of nanoparticle configuration are revealed, including being removed from the workpiece surface,
moving as a part of the cutting tool, being pressed into the workpiece surface, and not interacting
with the cutting tool, corresponding to four kinds of relative depth ranges between the center
of the nanoparticle and the cutting tool. Significantly different plastic deformation mechanisms
and machined surface qualities of the machined workpiece are also observed, suggesting that the
machined surface quality could be improved by adjusting the cutting depth, which results in a change
of the relative depth. In addition, the nanoparticle also significantly affects the processing forces in
nano-cutting, especially when the cutting tool strongly interacts with the nanoparticle edge.
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1. Introduction

Nano-cutting, as one of the most efficient micro/nanoscale manufacturing techniques, is widely
applied in micro-electro-mechanical system (MEMS) and nano-electromechanical system (NEMS)
to produce components with micro/nanoscale surface roughness or feature size [1–3]. In general,
the crystal orientation of the workpiece is carefully selected and optimized to adjust the direction
of cutting chips accumulation and ensure the surface quality of the workpiece [4]. However, at the
nanoscale, the cutting process could be affected by very small defects, such as the microstructural
components [5], pores/voids [6], second phase substances [7], and nanoparticles [8], leading to poor
machined surface quality. Note that such small defects, especially the substances/nanoparticles, would
significantly affect the machined surface generation [7], microstructural evolution, and processing force
in nanofabrication [8], resulting from the strong interaction between the substances/particles and the
tool. Although high purity materials almost without defects, like amorphous nickel-phosphorous [9],
exist, materials with defects still play a significant role in the nanofabrication because of the specific
requirements of the properties of the workpiece, such as strength, stiffness, and thermal stability [10].
Hence, studies on the nanofabrication mechanisms of difficult-to-machine materials with defects, like
the nanoparticle (NP), are necessary to improve the machined surface quality of the workpiece.

Micromachines 2020, 11, 265; doi:10.3390/mi11030265 www.mdpi.com/journal/micromachines

http://www.mdpi.com/journal/micromachines
http://www.mdpi.com
http://dx.doi.org/10.3390/mi11030265
http://www.mdpi.com/journal/micromachines
https://www.mdpi.com/2072-666X/11/3/265?type=check_update&version=2


Micromachines 2020, 11, 265 2 of 11

NP, as a kind of special hard-to-machine component in the workpiece, plays a great role in
the plastic deformation mechanisms of the workpiece in nanofabrication, which draws a lot of
attention [11,12]. Due to the fact that the NP is generally used to enhance the mechanical properties
of some special materials, for example, metal matrix composites [13,14], it can exist in the surface or
subsurface of the raw materials in nanofabrication. Ge et al. [15] conducted ultra-precision turning
tests to investigate the surface/subsurface motion of the NP in the metal matrix composites, deeming
that the distance from the NP to material free surface determines the NP be pulled out or pressed into
the machined surface. The research by Ding et al. [16] suggests that NPs play an important role in the
void generation of the machined workpiece. Xu et al. [17] found that the NP could be removed as a
whole entity or be fractured into several pieces because of the strong interaction between the NP and
the cutting tool, and the fractured NP pieces could enlarge the void regions on the machined surface.
The NPs have an important influence on the mechanical behaviors of the workpiece in nanofabrication,
but the research on the nano-cutting mechanism of the workpiece with NPs is still lacking.

Compared with the high cost and time consuming experimental method, the molecular simulation
method [18,19] can give an in-depth atomic analysis and is widely used to investigate the plastic
deformation mechanism in nanomachining, including the microstructural evolution [20], processing
force [21], internal stress [22], atomic motion [23], surface generation [24], equivalent stress [25], elastic
modulus [26], and friction behaviors [27]. Therefore, it is necessary to study the surface/subsurface
motion of the NP in nano-cutting.

In this work, we investigate the surface/subsurface motion of the NPs in a single-crystalline
copper workpiece using large-scale molecular dynamics (MD) simulations. By adjusting the relative
depths between the cutting tool and the center of the NPs, four different cases are observed for the
surface/subsurface motion of the NPs in nano-cutting, resulting in significantly different subsurface
defects, internal stress distribution, and processing force of the machined workpiece. The results are
potentially essential to reveal the relative machined surface quality of the workpiece with NPs during
the nano-cutting process.

2. Simulation Methods

The nano-cutting processes of the workpiece with an NP at different depths beneath the surface
are performed by MD simulations. Due to the fact that the material is generally removed in a limited
range smaller than the grain size [28], the material of the workpiece is set to single-crystalline copper
with a lattice constant of 3.615 Å. The nano-cutting model consisting of a single-crystalline copper
workpiece, a rigid diamond tool [29], and a diamond NP [30] is shown in Figure 1. For simulation
convenience, the NPs are simplified as spherical shape. The radius R of the NP is 4.0 nm. The distance
L from the right side of the workpiece to the center of the NPs is 10.0 nm. The depth D is the distance
between the center of the NPs and the surface of the workpiece. The cutting depth d is 5.0 nm. The
relative depth ∆D is defined as ∆D = d − D, and the ∆Ds from −5.0 nm to 5.0 nm (every 1.0 nm) are
adopted in this work.
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Figure 1. Nano-cutting molecular dynamics (MD) simulation model with a nanoparticle.

The cutting tool has a rake angle of 0◦ and a clearance angle of 12◦ [31]. The edge radius r of the
cutting tool is 4 nm. The workpiece with a dimension of 60.0 nm × 30.0 nm × 20.0 nm is categorized into
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three layers, containing the Newtonian layer where the atoms follow Newton’s law, thermostat layer
where the atoms are kept at a constant temperature, and fixed boundary layer where the atoms are fixed
to prevent the unexpected atomic motion, respectively. The z-direction of the system is prescribed as a
periodic boundary condition (Periodic B. C.) to eliminate the simulation size effect [32]. The cutting tool
is applied 1 nm from the right side of the workpiece. Before nano-cutting, the workpiece is adjusted to
energy minimization using the conjugate gradient method. Thereafter, the workpiece is relaxed at
293 K and 1 atmosphere using a Nose-Hoover thermostat in the NPT ensemble for 100 ps. Finally,
the NVE ensemble is applied to the equilibrated workpiece during the nano-cutting [33]. The time
step is 1 fs. The nano-cutting direction is {110} <001>. The nano-cutting speed is 50 m/s, i.e. 0.5 Å/ps.
The embedded atom method (EAM) potential is used to describe the Cu–Cu interactions [34,35], and
the Tersoff potential [36] is used to describe the C–C interactions. The Morse potential is adopted to
describe the Cu–C interactions [37,38], as shown in Equation (1).

E(r) = D0[exp(−2α(r− r0)) − 2 exp(−α(r− r0))] r < rc, (1)

where E is the potential energy; D0 is the binding energy (0.1 eV); α is the elastic modulus (1.70 Å−1);
r0 is the atomic spacing (2.20 Å); and rc is the cutoff (5.00 Å) [39,40]. All MD simulations are executed
by the open-source code large-scale atomic/molecular massively parallel simulator (LAMMPS) [41].
The defects in the workpiece are identified by the dislocation extraction algorithm (DXA) [42]. The
twin boundary (TB) is denoted by a single hcp layer, and the stacking fault (SF) (containing intrinsic
stacking fault (ISF) and extrinsic stacking fault (ESF)) is denoted by two adjacent hcp coordinated
layers [43]. The atomic displacement vector is obtained based on the program open visualization tool
(OVITO) [44].

There are two parts of the validation of the MD model in this work, including the rationality
of the size of the nano-cutting MD model and the correctness of simulation parameters in the MD
simulation. For the size of the nano-cutting MD model, the the size of the workpiece at the cutting
direction (x-direction) is large enough for the sufficient interaction between the workpiece and the NPs,
and the size of the workpiece at the z-direction is eliminated by using periodic boundary condition,
which is validated in both Xu [17] and Zhang [29] works; hence, the size of the nano-cutting MD model
is also reasonable. For the parameters in the MD simulation, in both Xiao [45] and Zhang [46,47]
works, the EAM potential for Cu-Cu system and Morse potential for Cu-C system are used in the
nano-cutting MD simulation, and the MD simulation results are validated through the experimental
results in details. In addition, the NPT ensemble for Cu-Cu system relaxation and the NPT ensemble
for the nano-cutting MD simulation in this work are also consistent with such works. Hence, the
potentials and ensembles used in this work are reasonable.

3. Results and Discussions

3.1. Mechanical Response

In nano-cutting, the NP moves and rotates at the cutting direction as a result of the interaction
between the cutting tool and the NP. The trajectories of the NPs in the x-y plane for different ∆Ds are
shown in Figure 2a. Because the periodic B. C. is adopted at z-direction, the NP motion at z-direction is
not discussed. The trajectories are divided into four cases, and the corresponding atomic motion vector
of the workpiece for each case is shown in Figure 2b–f, respectively. The red arrows point to the atomic
motion direction in atomic motion figures. The hcp structure layers like TB and ISF are colored in red.
In nano-cutting the single-crystalline copper without NPs, as shown in Figure 2b, a TB in front of the
cutting tool propagates to the workpiece free surface along the {111} plane and divides the surface
into two parts, which can be treated as the primary deformation plane [48]; another TB is beneath
the clearance face of the cutting tool. The TBs are divided into several parts by the Shockley partial
dislocations, and some of the Shockley partial dislocations meet and form the stair-rod dislocations
beneath the cutting tool [49]. A few ISFs form on the {111} plane surrounding the cutting tool. The
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angle from such ISFs to the {110} <001> cutting direction is 36.3◦. A stagnation region forms in front of
the cutting tool, where the atomic displacement vectors tend to be zero. The stagnation region usually
works as a part of the cutting tool and interacts with the workpiece surface in nano-cutting. Note that
the range and shape of the stagnation region are always changing. The stagnation region divides the
workpiece surface atoms into two parts: the atoms above the stagnation region flow along with the
cutting tool, forming the nano-cutting chips; the atoms below the stagnation region are pressed into
the workpiece subsurface by the clearance face of the cutting tool, forming the machined surface.
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during the nano-cutting process (a). The atomic motion vector in the workpiece with no NPs (b), with
NP for ∆D = 4 nm (c), 2 nm (d), 0 nm (e), and −5 nm (f) at cutting distance of 15 nm.

From Figure 2a, the surface/subsurface motion of the NP in nano-cutting can be distinguished
into four cases based on the value of ∆D: Case 1 (NP with ∆D > 2 nm), the strong interaction between
the NP and the nano-cutting chips in front of the cutting tool leads to the NP rolling upwards and
moving out from the workpiece surface. The cutting tool has not directly contacted with the NP, but
the stagnation region between the NP and the cutting tool pushes the NP rolling upwards, as shown in
Figure 2c; Case 2 (NP with ∆D = 2 nm), instead of moving away from the workpiece free surface, the
distance between the NP and the cutting tool at y-direction is constant. It means that the NP works as
a part of the cutting tool to press and divide the workpiece surface atoms. Hence, the atoms in front
of the NP are cut into two parts: some of the atoms move upwards along the edge of NP, forming
the nano-cutting chips, and the other atoms are pressed into the workpiece subsurface, forming the
machined surface. More ISFs are observed beneath the NP than those beneath the NP with ∆D > 2 nm.
Due to the NP moving along the cutting direction without rolling, a long pore region forms behind NP,
as shown in Figure 2d; Case 3 (NP with −4 nm < ∆D < 2 nm), as the cutting tool contacting to the NP,
the NP is subjected to high compressive pressure at y-direction from the cutting tool, leading to the NP
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embedding into the workpiece. The NP works as a new rake face of the cutting tool, participating
in the nano-cutting process, pushing the atoms in front of the NP upwards. These atoms flow away
from the workpiece surface and form the nano-cutting chips. Finally, a large pore forms behind the
NP, which seriously affects the machined surface roughness, as shown in Figure 2e; and Case 4 (NP
with ∆D ≤ −4 nm), the TB is not affected by the NP, and no other TBs form surrounding the NP. The
number of Shockley partial dislocations, stair-rod dislocations, TBs, and ISFs is also similar to that
in the workpiece with no NPs. Although a small pore forms in front of the NP, the NP stays at the
initial position since it does not contact the cutting tool, as shown in Figure 2f. We selected four typical
∆Ds that contain 4 nm, 2 nm, 0 nm, and −5 nm in the above four cases to discuss the NP effect on the
nano-cutting process, respectively.

3.2. Plastic Deformation Mechanism

The defects at the cutting distance of 15 nm in the surface/subsurface of the workpiece with
different ∆Ds corresponding to the four cases are shown in Figure 3, where the fcc atoms are hidden
and the hcp and other types of crystal structure atoms are colored in red and gray, respectively. The
perfect dislocations, Shockley partial dislocations, and stair-rod dislocations, are colored in blue, green,
and purple, respectively.
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In nano-cutting for NP with ∆D = 4 nm, the TB expansion is not affected by the NP, until it reaches
the NP edge. Thus, only a part of the TB expands to the workpiece free surface, as shown in Figure 3b.
Compared to the results from Figure 3a, more TBs and ISFs form surrounding the NP. In addition,
surrounding the NP, a number of Shockley partial dislocations nucleate and propagate, which locate
at the edge of the TBs and ISFs. In addition, the Stair-rod dislocations surrounding the NP region
form by the meeting Shockley partial dislocations [50,51]. In the nano-cutting for NP with ∆D = 2 nm,
the TB expansion is also affected by the NP, and with the increase of cutting distance, more TBs form
surrounding the NP, as shown in Figure 3c, which is similar to the results in the nano-cutting for
NP with ∆D = 4 nm. The TBs are divided into several parts by the Shockley partial dislocations. A
few stair-rod dislocations are observed surrounding the NP in this high internal stress region. In the
nano-cutting for NP with ∆D = 0 nm, the NP is pressed into the workpiece subsurface by the cutting
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tool, resulting in a large number of TBs, SFs, and various types of dislocations forming in the plastic
deformation region, as shown in Figure 3d. In the nano-cutting for NP with ∆D = −5 nm, due to the
fact that the position of the NP is lower than the cutting depth, the cutting tool does not drive the
motion of the NP, as shown in Figure 3e. From the above results, the NPs with −4 nm < ∆D ≤ 2 nm
lead to poor machined subsurface quality and should be avoided in the actual nanofabrication.

Figure 4 shows the distribution of the von Mises stresses for different cases at a cutting-distance of
15 nm. In the nano-cutting of the workpiece with no NPs, the strong interaction between the cutting
tool and the free surface of the workpiece leads to high von Mises stresses in front of the cutting
tool. The von Mises stresses at the edge of the stagnation region are higher than those both inside the
stagnation region and in the plastic deformation region of the workpiece. This is because the atoms
in the stagnation region are relatively stationary and can be treated as a new rake face of the cutting
tool interacting with the workpiece in nano-cutting [52]. Hence, the von Mises stresses at the edge of
the stagnation region are the highest, and the maximum von Mises stress is 25.7 GPa. The von Mises
stress in the machined surface region behind the clearance face of the cutting tool is less than 3 GPa,
as shown in Figure 4a. This is because of the sufficient release of the internal stress of the machined
surface, although there is still a small amount of residual stress [53,54].
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In the nano-cutting of NP with ∆D = 4 nm, the cutting tool pushes the workpiece surface atoms
forward, leading to high von Mises stress between the NP and the cutting tool. The von Mises stress
transfers into the workpiece subsurface on the {111} plane, which is similar to the expansion of the
ISFs. It means that the high internal stress in the plastic deformation region could transfer with the
defect expanding, such as the TBs and ISFs. Then, the von Mises stress reaches the NP surface, leading
to the NP rolling and being removed from the workpiece surface. Only the NP edge that contacts
the cutting tool exhibits high von Mises stress, while the von Mises stress in the other side of the NP
trends to zero, as shown in Figure 4b. The maximum von Mises stress is 31.7 GPa. In the nano-cutting
for NP with ∆D = 2 nm, the strong interaction between the cutting tool edge and NP leads to the
right side of the NP exhibiting high von Mises stress. Because the cutting tool pushes the NP moving
but without rolling in the cutting direction, the left part of the NP would push the workpiece surface
atoms, leading to high von Mises stresses in the plastic deformation region. The direction of the von
Mises stress gradient on both sides of the NP is parallel to the cutting direction. Hence, the NP would
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not move upward and be removed from the workpiece, or move downward and be pressed into the
workpiece, but it moves along the cutting direction with the cutting tool, as shown in Figure 4c. The
maximum von Mises stress is 33.5 GPa, which exists in the contact region between the cutting tool and
the NP. In the nano-cutting for NP with ∆D = 0 nm, similar to the results of the nano-cutting for NP
with ∆D = 2 nm, high von Mises stress forms on both sides of the NP. However, the direction of the
von Mises stress gradient is obliquely downward, leading to the NP continuously being pressed into
the workpiece subsurface. During the nano-cutting process, a large number of atoms are extruded out
of the workpiece free surface, forming more nano-cutting chips (compared with the other three cases).
Hence, the internal stress in the plastic deformation region is the highest in the above four cases, and
the maximum von Mises stress is 37.6 GPa. In the nano-cutting for NP with ∆D = −5 nm, the von
Mises stress transmission during the nano-cutting process is similar to the results in the workpiece
with no NPs. When the cutting tool moves near the top of the NP, the internal stress transmission
would be blocked by the NP and such blocked and absorbed internal stresses have not changed the
internal stress inside the NP, as shown in Figure 4e.

3.3. Machined Surface Quality

Figure 5 shows the machined surface qualities resulting from the motion of the NPs for the four
different cases. The machined surface of the workpiece with no NPs is smooth and has no pores, as
shown in Figure 5a. In the nano-cutting for NP with ∆D = 4 nm, where the NP moves out of the
surface, the machined surface is similar to that of the workpiece with no NPs. The NP interacts with
the cutting tool and rapidly rolls along with the nano-cutting chips away from the workpiece surface.
The removed NP can be observed in the nano-cutting chips, as shown in Figure 5b. However, in the
nano-cutting for NP with ∆D = 2 nm, where the NP moves as a part of the cutting tool, a large shadow
is seen in the workpiece machined surface. The NP rolls at the cutting direction with the cutting tool,
leaving a long pore on the machined surface. Although the material tends to fill the pore, a small
pore still exists on the machined surface. Note that, due to the fact that the NP always moves with
the cutting tool, many pores are formed on the machined surface. In the nano-cutting for NP with
∆D = 0 nm, where the NP embeds into the workpiece, a large and deep pore forms in the machined
surface. The NP is pushed into the workpiece subsurface in nano-cutting. Meanwhile, a large amount
of material is removed from the workpiece surface. In the nano-cutting for NP with ∆D = −5 nm, the
NP is not influenced by the cutting tool and stays at its initial position, as shown in Figure 5e.
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3.4. Processing Force

Figure 6 shows the evolution of processing force components, i.e., the tangential force/cutting
force (x-direction), normal force (y-direction), and lateral force (z-direction). Both the cutting force and
normal force increase with the cutting distance (<5 nm), and then they reach a stable cutting stage
(>10 nm), as shown in Figure 6a–e. The three components of the processing force fluctuate because of
the defect evolution in the workpiece. The mean value of the processing force in x- and y-directions at
the stable stage is calculated, as shown in Figure 6f. The lateral force has a mean value of zero during
the nano-cutting process due to the balanced and opposing forces from the two sides of the groove.
The workpiece atoms above the TB in front of the cutting tool is pile-up, which would be pressed
upwards by the cutting tool, forming the nano-cutting chips; meanwhile, the atoms below the TB are
pressed into the workpiece subsurface, forming the machined surface. Hence, the cutting force is the
highest, followed by the normal force, and the lateral force is lowest.

Compared with the cutting force in the workpiece with no NPs in Figure 6a, the interaction
between the NP and the TB in the nano-cutting for NP with ∆D = 4 nm leads to a higher normal force
(approximately 2 times), as shown in Figure 6b. In the nano-cutting for NP with ∆D = 2 nm, at the
beginning of the nano-cutting, the normal force quickly increases due to the strong interaction between
the NP and the cutting tool. It reaches the peak value at the cutting distance of 5 nm, and then it
decreases to a relatively stable value. A similar cutting force is attained compared with the NP with
∆D = 4 nm. In the nano-cutting for NP with ∆D = 0 nm, due to the fact that the NP is pressed into
the workpiece subsurface, both the cutting force and normal force rapidly increase with the cutting
distance, as shown in Figure 6d. The processing force curve for the NP with ∆D = −5 nm is similar
to that of the workpiece with no NPs. The mean value is also similar to that in the workpiece with
no NPs. This is because the processing force is not strongly influenced by the NP, and the NP stays
at the initial position during the nano-cutting process. Hence, to obtain a better processing force in
nano-cutting, the NP with ∆D = −5 nm should be selected by choosing a lower cutting depth than the
position of the NPs.
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4. Conclusions

The selection of appropriate cutting depth is important and meaningful for the nano-cutting
process to obtain better-machined surface quality and less residual stress of the workpiece with
several embedded nanoparticles. The nano-cutting processes of the single-crystalline copper with
a nanoparticle at different depths relative to the workpiece surface are systematically investigated
using molecular dynamics simulations. At a fixed nano-cutting depth, four kinds of nano-cutting
mechanisms are observed. Only when the center of the nanoparticle is higher than the edge center
of the cutting tool can the nanoparticle be removed from the workpiece surface. In other cases, the
nanoparticles are left inside the workpiece, moving as a part of the cutting tool, being embedded
deeper by the cutting tool, or not interacting with the cutting tool. A large and deep pore remains in
the workpiece surface after the nanoparticle is pressed down into the workpiece by the cutting tool,
which should be avoided in the nano-cutting process for better surface quality. Very high internal stress
generates in the region close to the contact area when the cutting tool collides with the nanoparticle.
The spread of the high stress along the moving direction at the nanoparticle–workpiece interface causes
the generation and propagation of the defects so that more defects are found in the workpiece in which
the nanoparticles are left and have interacted with the cutting tool.

Hence, in nano-cutting, to remove the nanoparticle from the workpiece surface, the nanoparticles
with a relative depth ∆D greater than 2 nm should be selected by choosing a higher cutting depth than
the position of the nanoparticles; to obtain a better processing forces in nano-cutting, the nanoparticle
with a relative depth ∆D less than −4 nm should be selected by choosing a lower cutting depth than
the position of the nanoparticles; and to obtain better machined surface quality, the nanoparticle with
a relative depth ∆D greater than 2 nm or the nanoparticle with a relative depth ∆D less than −4 nm
should be selected by choosing a lower/higher cutting depth than the position of the nanoparticles.
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