

Supplementary Materials

Strain-Insensitive Elastic Surface Electromyographic (sEMG) Electrode for Efficient Recognition of Exercise Intensities

Daxiu Tang ^{1,2,3}, Zhe Yu ^{2,3,4}, Yong He ^{2,3}, Waqas Asghar ^{2,3,5}, Ya-Nan Zheng ^{2,3,4}, Fali Li ^{2,3,4}, Changcheng Shi ^{2,3}, Roozbeh Zarei ^{2,3,6}, Yiwei Liu ^{2,3,4}, Jie Shang ^{2,3,4,*}, Xiang Liu ^{1,*} and Run-Wei Li ^{2,3,4,*}

- ¹ Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
- ² CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- ³ Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- ⁴ Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- ⁵ Department of Mechanical Engineering, University of Engineering and Technology Taxila, Taxila 47050, Pakistan
- ⁶ Swinburne Data Science Research Institute, Swinburne University of Technology, Melbourne VIC 3122, Australia
- * Correspondence: shangjie@nimte.ac.cn (J.S.); lxjim@126.com (X.L.); runweili@nimte.ac.cn (R.L.)

Figure S1. Photos of (**a**) electromechanical measurement, (**b**) the connection between electrode and surface electromyography (sEMG) device, and (**c**) sEMG signal collection.

Figure S2. Resistivity variation of electrode at different temperatures.

Figure S3. Tensile stress–strain curve of our sEMG electrode.

Figure S4. Resistivity change of three-layered sEMG electrode in different directions with the repeated loading and unloading of various strains: (a) transverse resistivity and (b) longitudinal resistivity.

Figure S5. Verification of LM(LM means galinstan) leakage. (**a**) Repeated stretching of sEMG electrode for 100 times (at 30% stretching strain). (**b**) After stretching and rubbing no sign of LM is found, which indicates the high skin-friendliness of the electrode.

Figure S6. Stability test of Ag/AgCl electrode. (**a**) Time-dependent impedance increase of Ag/AgCl electrode. (**b**) sEMG signal of fresh Ag/AgCl electrode and after the passage of 7 days.

Figure S7. Impedance change of traditional Ag + polydimethylsiloxane (PDMS) electrode (1:1 mass ratio) under different stretching strains.

Figure S8. sEMG signal test for recording various gestures of a human hand. (**a**) Various gestures of a human hand. (**b**) Resultant sEMG signals.

© 2020 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).