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Abstract: With the miniaturization of micro-electro-mechanical system (MEMS) gyroscopes, it is
necessary to study their nonlinearity. The phase-frequency characteristics, which affect the start-up
time, are crucial for guaranteeing the gyroscopes’ applicability. Nevertheless, although the
amplitude-frequency (A-f) effect, one of the most obvious problems in nonlinearity, has been well
studied, the phase response of nonlinear gyroscopes is rarely mentioned. In this work, an elaborate
study on the characteristics and locking process of nonlinear MEMS gyroscopes is reported. We
solved the dynamic equation using the harmonic balance method and simulated the phase-locked
loop (PLL) actuation process with an iterative calculation method. It was shown that there existed
an apparent overhanging and multi-valued phenomenon in both the amplitude–frequency and
phase–frequency curves of nonlinear gyroscopes. Meanwhile, it was ascertained by our simulations
that the locking time of PLL was retarded by the nonlinearity under certain conditions. Moreover,
experiments demonstrating the effect of nonlinearity were aggravated by the high quality factor of
the drive mode due to the instability of the vibration amplitude. A nonlinear PLL (NPLL) containing
an integrator was designed to accelerate the locking process. The results show that the start-up time
was reduced by an order of magnitude when the appropriate integral coefficient was used.

Keywords: micro-electro-mechanical system (MEMS); gyroscopes; nonlinearity; phase-locked loop
(PLL); nonlinear PLL (NPLL)

1. Introduction

In the past decade, micro-electro-mechanical system (MEMS) gyroscopes, which are used for
detecting the angular velocity of objects in inertial systems, have occupied a large market share in
navigation control and consumer electronics due to their small size, low power consumption, and low
cost [1–3]. The gyroscope consists of two orthogonal resonators, the drive mode, and the sense
mode. The stability of the drive mode is a prerequisite for the normal operation of gyroscopes. Many
performance metrics, including the scale factor, linearity, and bias instability, are affected by the stability
of the drive mode. Meanwhile, the time for missile missions is usually below 180 seconds, while the
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flight time in tank applications is only 10 seconds [4,5]. Therefore, it is necessary to drive gyroscopes
quickly and steadily to the operation state.

Until now, there are two primary actuation methods for MEMS gyroscopes: phase-locked loop
(PLL) and self-oscillation [6–8]. The self-oscillation method is simple, but the absolute accuracy and
stability of phase-shifting are critical to the high-precision frequency tracking. The PLL is an automatic
control system that synchronizes the input and output phases. With a high loop gain, high-precision
frequency tracking can be achieved. A traditional PLL is composed of a phase detector (PD), a loop
filter (LF), and a voltage-controlled oscillator (VCO). Researchers usually give a block diagram of the
PLL, but rarely mention the specific locking process. Therefore, it is necessary to find a method to
accurately analyze the locking process when a gyroscope is actuated using a PLL.

Meanwhile, the study of nonlinear gyroscopes has been significant in the last two decades due
to the continuous size reduction [9,10]. The nonlinearity in MEMS gyroscopes has a large variety of
sources. It mainly stems from intrinsic material effects, geometric nonlinearity, and electro-mechanical
nonlinearity [11–13]. The harmfulness of nonlinearity in MEMS gyroscopes has been discussed in
detail [13], including the phase noise, frequency stability, and hysteresis of the sweep frequency.
Among the nonlinear features of gyroscopes, the most obvious one is the amplitude–frequency (A-f)
effect, which means that the resonant frequency is related to the amplitude of the driving force. Because
the gyroscope is an electro-mechanical device, the effect of nonlinearity on gyroscopes is ultimately
reflected in the vibration characteristics. It is noteworthy that the quality factor of the drive mode (Qx)
will affect the vibration response’s stabilization process [14]; therefore, its influence on nonlinearity
will be discussed in this paper.

A cubic term of vibration displacement is introduced into the dynamic equation when the
gyroscope displays nonlinear characteristics, in which case the drive mode of nonlinear gyroscopes
can be modeled as a Duffing oscillator [15]. This so-called Duffing equation is solved via the harmonic
balance method in this paper, and the corresponding amplitude response, as well as the phase
response, are obtained. The stability of the closed-loop drive system in the presence of nonlinearity
is demonstrated under certain characteristics [16]. For nonlinear gyroscopes, self-oscillation is not
suitable due to the existence of the A-f effect. Therefore, it is necessary to study the PLL method to
drive the nonlinear gyroscope quickly and stably. The drive mode of gyroscopes and the PLL constitute
a closed-loop system, and the final operation point is the intersection of their phase–frequency curves.
The length of the locking process is the duration of frequency oscillation from the initial frequency of
PLL to the final operation frequency. Simulations in this paper show that the nonlinearity of a gyroscope
will elongate the locking process under certain conditions. A large amount of work has been published
to reduce the nonlinearity in MEMS gyroscopes [17,18]. Tatar et al. [18] experimentally indicated that a
shaped finger design can cancel the softening nonlinearity by introducing a DC-voltage-controlled
cubic hardening. In contrast to the structural improvement, another method is to optimize the PLL
circuit itself. In this study, the phase–frequency curve of the PLL was changed by designing an
integrator before the VCO to accelerate the locking process of nonlinear gyroscopes. The relevant
simulations and experiments were performed to validate our design. There are three aspects to the
contribution of the present work:

(1) The dynamic equation of a nonlinear gyroscope was solved using the harmonic balance
method, and the corresponding amplitude–frequency, as well as phase–frequency curves, were mapped.
Meanwhile, the effect of a high quality factor on linearity is also explained.

(2) The iterative calculation was used to show the locking process when gyroscopes were actuated
using a PLL. The corresponding simulations indicated that the nonlinearity would delay the gyroscope’s
locking process under certain conditions.

(3) A nonlinear PLL (NPLL) containing an integrator was designed. The simulation and
experimental results showed that the improved locking process of nonlinear gyroscopes was accelerated,
and the drive mode vibrated at the resonant frequency with maximum energy utilization.
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2. Analysis and Methods

2.1. The Working Principle and Characteristics of Gyroscopes

A typical MEMS gyroscope usually consists of mass blocks, anchor points, support beams,
actuation combs, detection combs, feedback combs, and stiffness correction combs. It is an angular
rate sensor based on the Coriolis effect in classical Newtonian mechanics, whose principle is that a
moving object tends to continue vibrating in the same plane even if its support rotates. The Coriolis
effect causes the object to exert a force perpendicular to the direction of motion on its support. Figure 1
shows the working principle.
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In Figure 1, the dotted box and the solid box represent the initial position and new position of
the mass block, respectively. The mass is forced to undergo a sinusoidal vibration along the x-axis.
The stiffnesses of the folded support beams are disparate in different directions, the result of which
means that the movements of the drive and sense frame do not affect each other. When the device
experiences a rotation, a Coriolis displacement will be generated in the orthogonal direction (y-axis) of
the original velocity. Therefore, the vibration of the gyroscope consists of a drive mode and a sense
mode, in which the drive mode is along the x-axis and is used to generate a stable vibration, including
frequency tracking and amplitude stabilization. The sense mode is along the y-axis and is used to
extract the input angular rate by detecting the Coriolis displacement. Both the drive mode and sense
mode can be regarded as a “spring-mass-damping” second-order vibration system.

Ignoring the coupling between the two modes, the Coriolis force on the x-axis caused by input
angular velocity, and the nonlinearity of drive mode, the dynamic equation is:

mx
..
x + cxx

.
x + kxx = Fx, (1)

where cxx, kxx, mx, and Fx are the damping coefficient, stiffness coefficient, effective mass, and driving
force of the drive mode, respectively. x,

.
x and

..
x are the displacement, velocity, and acceleration of the

drive mode, respectively. cxx and kxx can be represented by other parameters and Equation (1) can be
rewritten as:

ωx =

(
kxx

mx

) 1
2

, (2)

Qx =
mxωx

cxx
, (3)

..
x +

ωx

Qx

.
x +ωx

2x = Fx/mx, (4)

where ωx and Qx are the resonant angular frequency and the quality factor of the drive mode,
respectively. Fx changes as a sinusoidal function and can be expressed as A f cosωdt. A f and ωd are the
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amplitude and angular frequency of the driving force, respectively. The vibration displacement of the
drive mode is calculated in Cao et al. [14] and is given as follows:

x =
A f /mx√

(ωx2−ωd
2)

2
+ωx2ωd

2/Qx2
cos(ωdt + φd)

+
A fωdωx/(mxQx)
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2)2

+ωx2ωd
2/Qx2

e
−ωx
2Qx

t cos(
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1− 1/(4Qx2)ωxt)

+
A fωd(ωx

2/Qx
2+ωd

2
−ωx

2)/mx

ωx
√

1−1/(4Qx2)
[
(ωx2−ωd

2)
2
+ωx2ωd

2/Qx2
] e
−ωx
2Qx

t sin
(√

1− 1/(4Qx2)ωxt
)
,

(5)

where φd is the phase shift of the vibration displacement relative to the driving force. The analytical
solution shows that the vibration of the drive mode consists of two transient components and a
steady-state component. The amplitude of both transient components decays exponentially with
time. Therefore, the amplitude of a high-Qx-factor gyroscope is unstable during the starting oscillation
process, and the oscillation time has a positive correlation with the Qx factor. An excitation experiment
using a fixed-frequency signal was performed to measure the start-up process after power on. The
experimental results are shown in Section 3.1.

2.2. The Characteristics and PLL’s Locking Process of Nonlinear Gyroscopes and the Related Improvement

2.2.1. The Frequency Characteristics of Nonlinear Gyroscopes

The dynamic equation of a MEMS gyroscope’s drive mode is:

..
x + δ

.
x + kx = A cosωdt, (6)

where the parameters δ, k, and A control the amount of damping, the stiffness, and the amplitude of
the periodic driving force, respectively. For gyroscopes, nonlinearity mainly comes from mechanical
nonlinearity and electro-mechanical nonlinearity [13]. Mechanical nonlinearity affects the stiffness
coefficient k [13]:

k = k0
(
1 + k1x + k2x2 + . . .

)
. (7)

k1 is usually zero due to the symmetry of the structures. Therefore, the dynamic equation of the
drive mode will induce a k0k2x3 term, which is written as “βx3.” In this case, the nonlinearity is called
hardening (β > 0) and the amplitude–frequency curve bends to the right.

Another common source of nonlinearity is the electro-mechanical nonlinearity [13,19]. The
electrostatic force fe between two parallel plates can be expanded using the Taylor series about a
system’s zero deflection point in the case of a push–pull architecture [19]:

fe =
2n+1∑
j=1

k jx jVdc
2, (8)

where Vdc is the biasing voltage. The even-order terms are canceled out due to symmetry of the exerted
forces. We consider nonlinearities up to the third order; therefore, there is a term “k3x3Vdc

2” on the right
side of the dynamic equation of drive mode. In this case, the nonlinearity is called softening (β < 0) and
the amplitude curve bends to the left. Therefore, both mechanical nonlinearity and electro-mechanical
will introduce a “βx3” term. Therefore, the complete dynamic equation of a nonlinear gyroscope is:

..
x + δ

.
x + αx + βx3 = A cosωdt, (9)

where the parameters α and β control the amount of linear stiffness and nonlinearity, respectively.
Equation (9) is a nonlinear, second-order differential equation, which is usually called the Duffing
equation [18]. It is impossible to calculate the exact analytical solution for this equation. However,
using the method of harmonic balance, we can derive two corresponding frequency response equations,
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which are approximate solutions to the Duffing equation. First, an approximate solution to the Duffing
equation is sought of the form:

x = a cos(ωdt) + b sin(ωdt) = Z cos(ωdt + φd), (10)

Z
2 = a2 + b2, (11)

tanφd = −
b
a

, (12)

where a cos(ωdt) and b sin(ωdt) are two orthogonal components of the vibration displacement. Z is
the amplitude of the vibration displacement. Applying these formulas to the Duffing equation while
neglecting the superharmonics at 3ωd, the frequency response equations can be obtained. The specific
mathematical calculations are shown in Appendix A.

[(ωd
2
− α−

3
4
βZ2)

2
+ (δωd)

2]Z2 = A2 (13)

Zωdδ = −A sinφd (14)

Equation (13) is an implicit equation, whose variables are A and Z. Equation (14) is an implicit
equation of three variables, and the extra one is φd. We selected the same parameters from
Sohanian-Haghighi and Davaie-Markazi [20] (δ = 0.1, α = 1) for the calculation and simulation. The
numerical solutions of these implicit equations under specific conditions are mapped in Section 3.2.1.
In fact, due to the presence of nonlinearity, the amplitude–frequency and phase–frequency curves of a
nonlinear gyroscope are no longer monotonic. Many papers only discuss the amplitude–frequency
characteristics at different driving forces, which is called the “A-f” effect [13,18]. However, the influence
of nonlinearity on the phase characteristics is rarely discussed. This paper explains the effect of the
phase–frequency characteristics of a nonlinear gyroscope on the locking process.

2.2.2. The Effect of Nonlinearity on PLL’s Locking Process

In this paper, the phase characteristics of the drive mode are significant because it and the
phase characteristics of PLL determine the locking process of a nonlinear gyroscope. Intuitively, the
final working frequency of the drive mode is the frequency of the intersection of the gyroscope’s
phase–frequency and PLL’s phase–frequency curves. Mathematically it is the solution of the following
two equations:

Zωdδ = −A sinφd, (15)

ωd = ω0 + kd cosφd, (16)

where ω0 and kd are the initial angular frequency and linear gain factor of the VCO, respectively.
Equation (16) is the phase–frequency relationship of a traditional PLL. This PLL consists of a multiplier,
a low-pass filter (LPF), and a VCO. The output of an LPF was assumed to be cosφd with a unit gain for
the sake of discussion. A swept frequency excitation experiment was conducted to demonstrate the
nonlinearity of the gyroscopes developed by our group. The figure below shows the experimental
result of the gyroscope developed by our group.

The output in Figure 2 represents the output voltage of the drive mode. Notice that the resonant
frequencies measured by sweeping the frequency up (red dots and dash line) and sweeping the frequency
down (blue dots and dash line) were different. The black line is the synthesized amplitude–frequency
curve (bending to the right) according to the experimental results and it demonstrates the positive
polarity of β.
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Section 2 in Tiwari and Candler [13] analyzes that the experimental measurement of Duffing
nonlinearity has an obvious phenomenon, which is where the branch is unstable and approaching it
from one stable branch causes the resonator to jump to the other stable branch. Notice that the output
changes of our gyroscope have this jump phenomenon in both the red and blue lines, which further
verifies the nonlinearity.

To verify the effect of nonlinearity on the PLL’s locking process, two contrastive simulations with
different β were performed based on the iterative method. The PLL used in the simulations was the
same. Specifically, the PLL exported a signal with an initial frequency to drive the gyroscopes to
generate the vibration displacement, which had a phase shift relative to the excitation signal. The PD
discriminated the phase shift and generated an error signal, which impelled the VCO to generate a new
excitation signal with a changed frequency. This process was iterated to the final operation state or
divergent state, in which the gyroscope’s vibration was unstable. The detailed simulations are shown
in Section 3.2.2.

2.2.3. The Design of a Nonlinear PLL

The above analysis indicates the traditional PLL is deficient for a nonlinear gyroscope. One
improvement is to shorten the locking process, and the other is to ensure the gyroscope vibrates
at the resonant frequency, in which case, the gyroscope has the maximum amplitude and energy
utilization and a −90◦ phase shift between the driving force and the vibration displacement. In this
study, an integrator was designed into the traditional PLL to achieve the improvements mentioned
above. The novel PLL is called a nonlinear PLL (NPLL). The closed-loop system was composed of an
NPLL and a nonlinear gyroscope is shown in Figure 3.
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C-V: capacitance-voltage, V-F: voltage-force.

When the closed-loop system is stable, it means the frequency of the VCO’s output signal
is constant or perturbed within a small range. In this case, the output of the LPF is zero or has
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perturbations around zero; otherwise, the frequency of the VCO’s output signal is changed because of
the existence of an integrator. Therefore, the phase shift between the driving force and the vibration
displacement is −90◦ such that the drive mode vibrates at the resonant frequency. The phase shift of
the capacitance-voltage (C-V) conversion is ignored here. The mathematical form of the integrator is:

E = Kc

∑
e(i)n, (17)

where E and Kc are the output of the integrator and the integration coefficient, respectively. e(i) is the
output of the LPF. n is the power of the integral term. By adding an integrator, the phase–frequency
curve of the PLL is changed to shorten the locking process of a nonlinear gyroscope, and this is
implemented via the frequency of the VCO’s output signal being quickly iterated to the resonant
frequency. The corresponding simulations and experiments were performed to verify the validity of
this integrator design.

3. Results and Discussion

3.1. The Start-Up Oscillation Process of MEMS Gyroscopes

For this section, the same experiments were conducted for a gyroscope with a higher Qx factor and
a gyroscope with a lower Qx factor, both of which were developed by our group and have nonlinear
characteristics. Here we list the experimental data of the gyroscope with a higher Qx factor. An
excitation experiment with a fixed-frequency signal was performed to measure the start-up oscillation
process of the gyroscope. Figure 4 shows the output of the drive mode over time.
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The result shows that the vibration amplitude oscillated during the start-up process, which was
due to the continuous attenuation of the transient response. It took about 40 seconds to stabilize the
vibration amplitude, which demonstrated that the Qx factor was very high.

A power-off experiment was performed to calculate the exact Qx. The specific experimental
method was described in References [21,22]. Figure 5 shows the output of the drive mode over time
after power-off.

The result shows that the vibration amplitude of the drive mode decayed with time after power-off.
The Qx factor is the embodiment of the system energy loss; therefore, the Qx factor can be calculated
using the attenuation of the vibration amplitude. The formula for calculating the Qx factor value given
in Zhang et al. [21] is:

Qx = π fx
1
λ

, (18)

where fx is the resonant frequency of the drive mode. 1
λ is the relaxation response time after power-off,

and the specific value was about 9.6 s. The calculated value of Qx factor was about 300,000. We also
repeatedly measured the lower-Qx-factor gyroscope, whose start-up stabilization process and power-off

decay process was rapid, and the value of the Qx factor was about 50,000. The two gyroscopes were
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used to design comparative experiments that explained the effect of the quality factor on the locking
process of gyroscopes with nonlinearity.
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3.2. The Simulation and Experimental Results of Nonlinear Gyroscopes

3.2.1. The Frequency Characteristics of Nonlinear Gyroscopes

The amplitude and phase response of nonlinear MEMS gyroscopes under different driving forces
were mapped by solving Equations (13) and (14) and are shown in Figure 6.
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The results show that the nonlinearity of MEMS gyroscopes caused an overhanging and a
multi-valued phenomenon in the amplitude–frequency and phase–frequency curves. Meanwhile,
the magnitude of the driving force caused these curves to change. Figure 6 clearly shows the “A-f”
effect of nonlinear gyroscopes, which has been mentioned in many papers. The characteristic of the
phase–frequency curve changing with the driving force is significant, especially for the locking process
of a high-Qx nonlinear gyroscope.

3.2.2. The PLL’s Locking Process of Nonlinear Gyroscopes

An identical PLL was used to drive a nonlinear gyroscope and a gyroscope with poor nonlinearity
in turn. According to the iterative method mentioned above, the process of each iteration was recorded
in detail until the gyroscopes were finally stabilized at the operation point. We assumed that the system
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reached a steady state when the angular frequency difference before and after an iteration was less
than 0.00005. The phase–frequency relationship of the PLL was ωd = 1.3 + 0.21 cosφd. Figure 7 shows
the detailed simulation results.
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Figure 7a,b shows the illustration of the iterative method in the locking process of the gyroscopes.
The blue line is the phase–frequency curve of the gyroscopes, while the red line is the phase–frequency
curve of the PLL. The intersection of these two curves is the final operation point. The results show
that the region of frequency variation during the locking process was different in the presence of
distinct nonlinearity. Figure 7c,d shows the ωd with iterations in both cases. Compared with the
gyroscope with poor nonlinearity, the iterative number of the nonlinear gyroscope’s locking process
was greater, which meant a longer locking time. Therefore, the locking time of the PLL was retarded
by the nonlinearity under certain conditions. An experiment was conducted to show the actual
locking process of a nonlinear gyroscope, which was the lower Qx factor one mentioned in Section 3.1.
The experimental result is shown in Figure 8a. For a high-Qx nonlinear gyroscope, the unstable
vibration amplitude due to the transient response during the start-up process could be simplified to
the varying steady-response amplitude generated by an unstable excitation signal while ignoring the
transient response. Therefore, according to the effect of the magnitude of the driving force on the
phase characteristics shown in Figure 6, the phase–frequency curve of a high-Qx-factor gyroscope
with nonlinearity during the start-up process was unstable. This unsteadiness affected the nonlinear
gyroscope’s locking process. A contrastive experiment was conducted using the higher-Qx-factor
gyroscope mentioned in Section 3.1. Figure 8b shows the experimental results.

In actual tests, when the output of the LPF oscillated within a fixed range (the rectangular section
to the right of the timeline in Figure 8a,b), the drive mode generated an observable sinusoidal waveform.
This means the operation frequency of the PLL’s output signal was slightly perturbed in practice when
the drive mode was stable. The locking process refers to the system from power on to this slight
disturbance state. The experimental results show that the frequency locking process of the nonlinear
gyroscope was >10 s in duration, and a higher Qx factor made the locking time longer, which is
consistent with the previous analysis.
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3.2.3. The Simulation and Experimental Results of the NPLLs

Equation (17) shows that both the integration coefficient and the power of the integral term affect
the design of an NPLL. When n is an even number, the output of the integrator is positive, which means
the frequency of VCO’s output signal is always greater than the initial frequency, which means the
NPLL cannot complete the locking process when the resonant frequency of drive mode is less than the
initial frequency. Therefore, we chose the value of n to be 1 and 3 to simulate the locking process of
an NPLL. When n was different, in order to realize the fast iteration of the frequency of the VCO’s
output signal to the resonant frequency, the calculated Kc was also different. Therefore, simulations
of different parameters were implemented. Here, a nonlinear gyroscope (β = 3.3) was used in the
simulation. Figure 9 shows the simulation results in detail.
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Figure 9. (a) The ωd with iterations using NPLLs with different parameters, (b) the φd with iterations
using NPLLs with different parameters, and (c) the locking process diagram of a nonlinear gyroscope
using an NPLL (β = 3.3, Kc = 2.614, n = 3).

Figure 9a shows that for NPLLs with different parameters, the numbers of iterations was reduced
compared to Figure 7c. Therefore, the frequency locking process of nonlinear gyroscopes could be
accelerated by adding an integrator into a traditional PLL. Figure 9b shows that the phase shift between
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the driving force and the vibration displacement was −90◦ under different parameters, which means
that the gyroscope vibrated at the resonant frequency. Figure 9c shows the locking process under
specific parameters, in which the thin gray line is the phase–frequency curve of the NPLL during the
first iteration. Note that the intersection of the gray line and the blue line is not the final operation point
because the gray line changes with time because of the integrator. In fact, the red dots are the operation
points in the iterative process. By designing an appropriate coefficient Kc, the operation frequency
converged to the vicinity of the resonant frequency after one iteration, and the locking process was
completed in this case. Meanwhile, two experiments were performed to validate the integrator design
using the lower-Qx- and the high-Qx-factor gyroscopes mentioned in Section 3.1. The corresponding
experimental result is shown in Figure 10.
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It can be seen that the frequency locking time of the lower-Qx and the higher-Qx nonlinear
gyroscopes using the NPLL was about 3 s and 9 s, respectively. For the PLL and NPLL, the output of
the LPF and the output of the integrator were used to control the VCO, respectively. Therefore, these
two different parameters were used to compare the locking time of the working frequency. Compared
with the traditional PLL excitation method, the frequency locking time using the NPLL method was
reduced by about an order of magnitude, which verified the effectiveness of the NPLL design.

A mixed analog/digital circuit was designed to complete the overall test. A printed circuit board
(PCB) was fabricated to mount with the test circuit, and the gyroscope was fixed after being packaged
in a wafer level. The PCB was divided into the obverse and the reverse. Besides the interface circuit
of gyroscopes and power supply, the whole signal processing was based on a digital algorithm in a
microcontroller unit (MCU). The test system and gyroscope system are shown in Figure 11.
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The test system was composed of the nonlinear gyroscope device, peripheral circuit, oscilloscope,
and power supply. The whole gyroscope system was powered by a USB interface. The wave in the
oscilloscope was a pure sine wave, which indicates that the gyroscope with nonlinearity was locked at
the working frequency successfully.

4. Conclusions

This study investigated the characteristics and driving process of nonlinear gyroscopes. First, the
amplitude and phase response of nonlinear gyroscopes were mapped by solving the dynamic equation
using the harmonic balance method. Then, the locking process of gyroscopes was analyzed, and an
iterative calculation method was proposed to obtain precise changes in frequency and phase during
the locking process. The simulation results showed that the region of frequency variation was different
and the locking process was lengthened in the presence of a distinct nonlinearity. Corresponding
experiments were conducted to show the actual locking process of a nonlinear gyroscope and verify
that the high Qx factor had a negative effect on the locking time. Finally, an integrator was added to the
traditional PLL to artificially change its phase–frequency curve. Simulation results indicated that the
locking process of a nonlinear gyroscope could be completed in the initial iterations by designing an
appropriate integration coefficient. The experimental results show that the locking time was shortened
by an order of magnitude using the NPLL. Simultaneously, the gyroscope vibrated at its resonant
frequency with maximum energy utilization.
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Appendix A

The dynamic equation of a nonlinear gyroscope is
..
x + δ

.
x + αx + βx3 = A cosωdt,. Using the

method of harmonic balance, an approximate solution to the Duffing equation is sought of the form:

x = a cos(ωdt) + b sin(ωdt) = Z cos(ωdt−φ), withZ2 = a2 + b2and tanφ =
b
a

.

Application in the Duffing equation leads to:(
−ωd

2a +ωdδb + αa + 3
4βa3 + 3

4βab2
−A

)
cos(ωdt) +

(
−ωd

2b−ωdδa + αb + 3
4βb3 + 3

4βba2
)

sin(ωdt) + ( 1
4 βa3

−
3
4βab2) cos(3ωdt) + (− 1

4βb3 + 3
4 βba2) sin(3ωdt) = 0.

Neglecting the superharmonics at 3ωd, the two terms cos(ωdt) and sin(ωdt) must be zero.
As a result:

−ωd
2a +ωdδb + αa +

3
4
βa3 +

3
4
βab2

−A = 0 (A1), −ωd
2b +ωdδa + αb +

3
4
βb3 +

3
4
βba2 = 0 (A2).

Squaring both equations and adding leads to the amplitude-frequency response:

[(ωd
2
− α−

3
4
βZ2)

2
+ (δωd)

2]Z2 = A2.
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By using Equation (A1) divided byZ cosφ and Equation (A2) divided byZ sinφ, and subtracting
both new equations leads to the phase response:

Zωdδ = A sinφ.
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