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Abstract: Compared with conventional solid-state relays, micro-electro mechanical system (MEMS)
relays have the advantages of high isolation, low contact resistance, low power consumption,
and abrupt switching characteristics. Nevertheless, the widespread application of MEMS relays
has been limited due to the issue of the conflict between low actuation voltages and high device
performance. This article presents a novel cantilever MEMS relay with an embedded contact
electrode which helps to achieve a low actuation voltage (below 8 V) and high restoring force
simultaneously. Meanwhile, the contact resistance is as low as around 0.4 Ω and the reliability is
verified. To thoroughly investigate and analyze the novel cantilever MEMS relay, a static theoretical
model of the structure was developed. Based on the model, the cantilever MEMS relay was designed
and optimized. Then, the relays were fabricated by the bulk-silicon micromachining process based on
the silicon–glass anodic bonding technology. Finally, the switching performance of the novel cantilever
MEMS relay was measured. Experimental results demonstrate that the proposed MEMS relay has a
low actuation voltage below 8 V and high performance, which is in good agreement with the simulation
results, and shows significant advantages when compared with previous reports. Therefore, the
proposed MEMS relay with an embedded contact electrode is promising in practical applications.

Keywords: micro-electro mechanical system (MEMS) relay; cantilever; low actuation voltage

1. Introduction

Micro-electro mechanical system (MEMS) relays have the potential to be applied in space
technology, communication, and automatic devices [1]. Compared to conventional solid-state relays,
MEMS relays have the advantages of high isolation, low on-resistance, low power consumption,
and abrupt switching characteristics [2]. Besides, they are reliable and inexpensive to facilitate
packaging and system integration as they can be batch manufactured like solid-state relays [3,4].

Among various driving methods for MEMS relays, electrostatic actuation is mostly utilized owing
to the advantages of low power and easy fabrication [5]. Nevertheless, electrostatic MEMS relays have
the issue of the conflict between low actuation voltages and good device performance. In general,
the low actuation voltage implies a low contact force or low restoring force. The former leads to a high
contact resistance [6], while the latter contributes to an easily irreversible stiction [7]. Different ideas
have been proposed to reduce the actuation voltage without lowing the contact force or restoring force.
For example, novel spring structures have been exploited to reduce the actuation voltage [8,9], but the
structural and fabrication complexity is increased. Another method to lower the driving voltage
requires an additional pre-charged electrode [10,11].
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Component reliability is another issue for electrostatic MEMS relays. While stiction is a major
cause for low reliability, numerous studies have dedicated efforts to enhance restoring force to overcome
stiction. Oberhammer has designed a novel mechanism to acquire a large active opening force, but the
contact force is decreased [12]. Increasing the electrode area is another mechanical approach to enhance
restoring force that does not sacrifice the contact force or actuation voltage. However, it requires
a bigger size [13]. Other researches utilize special active anti-stiction mechanisms to provide extra
restoring force [7,14,15], but they increase the structural and fabrication complexity.

In this article, we present a novel cantilever MEMS relay with an embedded contact electrode.
This embedded contact electrode structure helps to achieve a low actuation voltage (below 8 V).
Meanwhile, the contact resistance is as low as around 0.4 Ω and the switching-on time and switching-off

time are lower than 100 µS. To thoroughly investigate and analyze the novel cantilever MEMS relay,
a static theoretical model of the structure was developed. Based on the model, the cantilever MEMS
relay was designed and optimized. Then, the relays were fabricated by the bulk-silicon micromachining
process based on the silicon–glass anodic bonding technology. Finally, the switching performance of
the novel cantilever MEMS relay was measured. The experimental results demonstrate that the MEMS
relay has a low actuation voltage and high performance.

2. Design of the Cantilever Micro-Electro Mechanical System (MEMS) Relay

Figure 1 illustrates the proposed cantilever relay with an embedded contact electrode and
a conventional cantilever switch. The designed MEMS relay is comprised of a hollow suspended
spring, a driving plate, and a contact electrode. The hollow suspended spring lowers the actuation
voltage and enhances the device stability considerably, which has been demonstrated in our earlier
work [4].
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3. Modeling and Simulation

3.1. Static Modeling

With the low stiffness of the suspended spring and high stiffness of the driving plate, the driving
plate can be regarded as a rigid body. As shown in Figure 2d, Point 1 is the joint between the spring
and the plate,ω1 is its deflection, and θ1 is its rotation angle. The deflection at Point x can be derived:

y = ω1 + θ1x1, (1)

where x1 designates the location of Point x as shown in Figure 2d. Therefore, the magnitude of the
electrostatic force at Point x can be determined (Point x is not at the contact electrode):

qx = ε0
Ve

2

2(g0 − y)2 W2, (2)

where ε0 is the permittivity of air, g0 is the original air gap between the cantilever beam and the gate
electrode, Ve is the driving voltage, and W2 is the plate width. Mqx can be derived as:

Mqx = ε0
Ve

2

2(g0 − y)2 W2·x1, (3)
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The electrostatic forces along the plate are equivalent to a concentrated load at Point 1, which can
be determined by integrating Equations (2) and (3):

Fe =

∫ L2

0
ε0

Ve
2

2(g0 − y)2 W2dx1 −

∫ L2−xc

L2−L3−xc

ε0
Ve

2

2(g0 − y)2 W2dx1, (4)
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Me =

∫ L2

0
ε0

Ve
2

2(g0 − y)2 W2x1dx1 −

∫ L2−xc

L2−L3−xc

ε0
Ve

2

2(g0 − y)2 W2x1dx1, (5)

where xc designates the location of the contact electrode as shown in Figure 2a. The deflection and
rotation angle at Point 1 can be derived:

ω1 =
FeL1

3

3EI
+

MeL1
2

2EI
, (6)

θ1 =
FeL1

2

2EI
+

MeL1

EI
, (7)

where E and I are the Young’s modulus and the second moment of inertia of the suspended spring,
and L1 is the spring length. When the driving voltage Ve is small, the deflection of the relay can be
determined by numerical calculation by Equations (1)–(7). If there is no solution for Equations (1)–(7),
Ve reaches the pull-in voltage.

The finite element model was established by COMSOL (version 5.4, COMSOL Co., Ltd., Stockholm,
Sweden). The structural parameters of the traditional and proposed MEMS relay are listed in Table 1.
We change the position of contact electrode and keep the other parameters unchanged to verify the
effect of promoting the relay performance.

Table 1. Geometric parameters of the proposed MEMS relay.

Symbol Description of Parameters Value

L1 Length of the hollow spring 460 µm

W1

Equivalent Width of the hollow
spring

(coupled with four 20 µm wide
microbeams)

80 µm

L2 Length of the driving plate 540 µm
W2 Width of the driving plate 330 µm
L3 Length of the contact electrode 50 µm
W3 Width of the contact electrode 180 µm

t Thickness of the cantilever beam 22 µm
g0 Distance of the air gap 1.5 µm
gc Distance of the contact gap 0.7 µm
xc Position of the contact electrode 0–250 µm

Figure 3 illustrates the simulated results of the actuation voltage. The simulation results show
that the actuation voltage decreases with the contact electrode moving inside or becoming smaller.
According to Figure 3, when the length of the contact electrode is 50 µm as designed, the actuation
voltage drops from 8.02 V to 7.81 V when the contact electrode of the conventional relay moves 250 µm
inside. The decrement is bigger if the area of the contact electrode becomes bigger.
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We also simulated the contact force and restoring force against the value of xc. We imposed the
same actuation voltage of 9 V, and Figure 4 shows that the contact force increases dramatically with
xc increasing. Then, we solved the minimal force imposed on the contact electrode that ensured the
relay close. The minimal force, which is regarded as the restoring force when the relay keeps closed,
also increases with xc increasing.
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3.2. Dynamic Modeling

The dynamic model is established using a similar way which has been introduced in earlier work.
The dynamic Euler–Bernoulli beam equation can describe the transient response of the cantilever relay:

m
∂2y
∂t2 + D

∂y
∂t

+ EI
∂4y
∂x4

= Fe − Fc, (8)

where m is the mass per unit length of the cantilever relay, y(x, t) is the downward deflection of the
relay at time t, D is the damping factor, EI is the flexural rigidity, Fe is the electrostatic force, and Fc is
the contact force. The initial and boundary conditions are as follows: y(x, 0) = 0,

∂y(x,0)
∂t = 0,

(9)
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 y(0, t) = 0, ∂y(0,t)
∂x = 0,

∂2 y(l,t)
∂x2 = 0.

(10)

Since the suspended spring of the relay is hollowed, the air damping of the spring can be ignored.
It is assumed that the relay operates in an air medium, then the air damping of the driving plate can be
simplified as:

D = KW2
µ

1 + 9.638(λ0/g0)
1.159

L2
2

(g0 − y)3 . (11)

where K is the flow coefficient, which is 0.013 in our design; µ is the air damping coefficient, and λ0 is
the mean free path of the air molecules (≈64 nm).

The electrostatic force is:

Fe = ε0
Ve

2

2(g0 − y)2 W2. (12)

The contact force can be approximated by a linear spring model:

Fc = kc(y− gc)·H(y− gc), x ∈ [L1 + L2 − L3 − xc, L1 + L2 − xc], (13)

where the Heaviside function H(y − gc) ensures that the force is only applied when the relay makes
contact. The spring constant kc takes an empirical value, ensuring the contact deformation is small.

The dynamic model was simulated by COMSOL. Figure 5 illustrates the simulated dynamic
responses of the conventional and proposed MEMS relay of different contact electrode positions.
Being imposed the same driving voltage of 15 V, the dynamic bounce and switching time are both
suppressed when the contact electrode is moving inside. Particularly, the switching time of the
conventional relay (xc = 0 µm) is about 2.8 time units, while the time is diminished to 1.8 time units
when xc is 200 µm as Figure 5 shows. When the contact electrode is moving inside, it is surrounded
by the driving plate. Thus, the electrostatic force around the contact electrode restrains the contact
bounces, which further reduces the switching time. As is shown in Figure 5, the optimal xc is about
100 µm, which has the minimum contact bounce time.
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4. Fabrication for MEMS Relay

The proposed cantilever relays with embedded contact electrodes were fabricated using
bulk-silicon techniques based on the silicon–glass anodic bonding to form and pattern the mechanical
and actuation structures. The fabrication process is summarized in Figure 6. First, a silicon wafer with
a polished surface was patterned and etched to a depth of 1.5 µm. Next, another step of 1.0 µm was
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etched to form the dimple for the contact electrode. Then, a 4000 Å SiO2 insulating layer was deposited
on the silicon device layer, and then the unexposed region of the SiO2 layer was etched to a depth of
2000 Å. Next, a Cr (400 Å)/Au (10,700 Å)/Pt (200 Å)/Au (1000 Å)/Pt (200 Å)/Au (500 Å) metal layer
(13,000 Å in total) was sputtered and patterned by a lift-off process. Then, the SiO2 layer was etched to
a depth of 2000 Å to remove the unexposed region. On the other side, a Pyrex 7740 glass wafer was
etched 12,500 Å step. Then, the same metal layer as in Step (d) was sputtered to form the electrodes
and leads. Next, the silicon layer after Step (e) was anodically bonded to the glass substrate after Step
(g) and thinned to 22 µm. Finally, the device layer was etched by ICP (Inductively Coupled Plasma) to
release the relay structures.
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5. Experimental Results and Discussion

5.1. Test Experiment Platform

Figure 7 shows the experimental platform for electrical performance of the proposed MEMS relay.
It contains a semiconductor analyzer (4200-SCS, Tektronix Inc., Johnston, OH, USA), a manual
probe station (M8, Semiprobe Inc., Winooski, VT, USA), a precision power supply (B2902A,
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Agilent Technologies Inc., Santa Clara, CA, USA), and a digital oscilloscope (Agilent Technologies
Inc., Santa Clara, CA, USA). The drive and load terminals of the proposed relay are connected to the
manual probe station. The semiconductor analyzer applies a scanning voltage of 0 to 15 V to the drive
terminals and records the hysteresis loop of pull-in and pull-off voltage. The digital oscilloscope is
used to record the switching-on time, switching-off time, and switching state when the pull-in voltage
and pull-off voltage are attained. A precision power supply and semiconductor analyzer are used to
measure the contact resistance.
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5.2. Pull-In and Pull-Off Voltage

The proposed MEMS relay uses voltage as the excitation quantity, and the actuation voltage refers
to the corresponding voltage value that makes the MEMS relay act. According to the characteristics
of MEMS relay, it includes the minimum action voltage, which is also called pull-in voltage, and the
maximum release voltage, which is called pull-off voltage. Figure 8 shows the setup schematic for
measuring the actuation voltage.
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Experimental results show that the average pull-in voltages are about 7.5–8.0 V, which is very
similar to the simulated voltages of 7.81–8.02 V. The variation among relays with different contact
electrode positions are not distinguishable due to the fabrication error. This is comprehensible
because the fabrication error is of just 0.1 µm, which has a significant effect on the pull-in voltage
with the air gap being designed as 1.5 µm. However, the actuation voltage of 8 V is low enough
for applicability. The average pull-off voltages are about 5.5–6.0 V, which are lower than the pull-in
voltages. The actuation process of a relay is shown in Figure 9. In this figure, the measured pull-in
voltage and pull-off voltages are 7.5 V and 6 V respectively.
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5.3. Switching-On and Switching-Off Time

Switching-on time refers to the duration from the time when the pull-in voltage of the MEMS
relay attained to the time when the state of the proposed relay changed to be ON. Switching-off time
refers to the duration from the time when the pull-off voltage of the MEMS relay attained in the pull-off

process to the time when the state of the proposed relay changed to be OFF. Figure 10 shows the setup
schematic for measuring the switching-on and switching-off time. The driving power supply applies
a scanning voltage of 0 to 10 V to the drive terminals and the load power supply voltage set to be 5 V.
During the experiment, the digital oscilloscope records the waveform change of voltages.
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Figure 11 shows the result of the switching-on time measurement experiment. As shown in
Figure 11, the measured switching-on time of the proposed relay is about 75 µS. During the pull-in
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process, when the actuation voltage attains to 7.5 V (pull-in voltage), the driving plate of cantilever
begins to bend to the contact electrode. After 75 µS, the circuit gets connected, and the voltage at both
ends of the resistor reaches 5 V.
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Figure 12 shows the result of the switching-off time measurement experiment. As is shown in
Figure 12, the measured switching-off time of the proposed relay is about 25 µS. During the pull-off

process, when the actuation voltage drops to 6 V (pull-off voltage), the driving plate of cantilever
begins to rebound to balance position. After 25 µS, the circuit gets disconnected, and the voltage at
both ends of the resistor turns to 0 V.
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5.4. Contact Resistance

In this research, the contact resistance of the proposed relay is measured using the Kelvin four-wire
method. For each test point, there is a constant current source and a voltage detection unit, which are
strictly separated, and constitute an independent loop. The voltage line must be connected to a test
loop with extremely high input impedance. Meanwhile, the current flowing through the detection
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line is extremely small, which is approximately zero. The constant current source (B2902A) provides
a constant current. The current passes through the contact electrode. Figure 13 shows the setup
schematic for measuring the contact resistance. In this figure, the driving power supply provides
a constant 10 V voltage to make sure the MEMS relay keeps on. The precision power supply provides
a constant current. The digital oscilloscope measures the voltage across the relay. The contact resistance
can be expressed as R = V/I.
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In order to reduce measurement error, the measurements of the contact resistance were carried
out and averaged. Stable and low contact resistance can be obtained when the pull-in voltage is 8 V.
The measured contact resistance of each relay was less than 0.4 Ω. The contact resistance was also
measured under different load currents. The experimental result shows that the contact resistance
was lower at a load current of 20 mA than that at 200 µA. This was due to the softening of the contact
asperities, which may result in a more effective contact area; however, it increased slightly at currents
higher than 20 mA, which may be caused by the resistivity increasing induced by the high temperature
at localized asperities.

5.5. Contact Lifetime

The contact lifetime was measured on the manual probe station by the semiconductor analyzer
(4200-SCS). The source/measure unit provides two independent channels: one channel was used for
providing the driving voltage, the other for measuring the load circuit resistance. The driving voltage
was set at 15 V which has a low contact resistance and rapid response. MEMS relays are mostly
operated in two modes: cold-switching operation and hot-switching operation. Cold-switching refers
to relay closure before applying voltage and voltage removal before relay opening, while hot-switching
refers to the relay actuation synchronized with the electrical switching. Figure 14 shows the setup
schematic for measuring the contact lifetime.
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6. Conclusions 

In this article, we present a novel cantilever MEMS relay with an embedded contact electrode. 
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experimental results demonstrate that the MEMS relay has a low actuation voltage and high 
performance. 

Author Contributions: Conceptualization, Y.R. and Z.Y.; data curation, Z.S.; formal analysis, H.L.; funding 
acquisition, Y.R.; investigation, H.L.; methodology, Y.R.; project administration, Y.R.; resources, Z.S.; software, 
H.L.; supervision, Y.R.; visualization, Y.R.; writing—original draft preparation, H.L.; writing—review and 
editing, H.L. All authors have read and agreed to the published version of the manuscript. 

Funding: This research was funded by the Key Research and Development Program of Shandong Province 
(grant number: 2017GGX30138) and Zibo City Innovation and Development Key Project (grant number: 
2016CX19A024). 

Conflicts of Interest: The authors declare no conflicts of interest. 

Figure 14. The setup schematic for measuring the contact lifetime.

In the cold-switching operation experiment, the load of the semiconductor analyzer was set at
30 mV and 30 µA. After a 5 × 106 test cycle, the contact resistance of the MEMS relay rises to above
10 Ω, which means a failure of the relay. This may be due to the formation of an insulating film on the
contact surface. On the other hand, when the load was set at 12 V and 20 mA, the test was carried out
about 6000 cycles before the MEMS relay reached failure.

5.6. Comparison of the Performance

Table 2 makes a comparison of the performance for MEMS relays reported in the literature
and this research. From this table, we can conclude that the proposed MEMS relay in this research
achieves a lower actuation voltage (below 8 V) than the MEMS relays reported in the literature;
meanwhile, the contact resistance, switching time, and contact lifetime performance show a certain
degree of advantage.

Table 2. Comparison of the performance for MEMS relays reported in literature.

Research Institute Actuation Voltage
(V)

Contact
Resistance (Ω)

Switching Time
(µS) Contact Lifetime

MIT [16] 20 0.05 20,000–50,000 -
KAIST [17] 40 0.005 230 4.9 × 105

UCSD [18] 75–90 1.5 <10 -
ADI [19] 80 1.6 <30 10 × 109

This research <8 0.4 <75 5 × 106

6. Conclusions

In this article, we present a novel cantilever MEMS relay with an embedded contact electrode.
This embedded contact electrode structure helps to achieve a low actuation voltage (below 8 V) and high
device performance simultaneously. To thoroughly investigate and analyze the novel cantilever MEMS
relay, a static theoretical model of the structure was developed. Based on the model, the cantilever
MEMS relay was designed and optimized. Then, the relays were fabricated by the bulk-silicon
micromachining process based on the silicon–glass anodic bonding technology. Finally, the switching
performance of the novel cantilever MEMS relay was measured. The experimental results demonstrate
that the MEMS relay has a low actuation voltage and high performance.
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