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Abstract: In this work, recessed gate AlGaN/GaN metal-insulator-semiconductor high-electron-
mobility transistors (MIS-HEMTs) with double AlGaN barrier designs are fabricated and investigated.
Two different recessed depths are designed, leading to a 5 nm and a 3 nm remaining bottom AlGaN
barrier under the gate region, and two different Al% (15% and 20%) in the bottom AlGaN barriers
are designed. First of all, a double hump trans-conductance (gm)–gate voltage (VG) characteristic
is observed in a recessed gate AlGaN/GaN MIS-HEMT with a 5 nm remaining bottom Al0.2Ga0.8N
barrier under the gate region. Secondly, a physical model is proposed to explain this double
channel characteristic by means of a formation of a top channel below the gate dielectric under
a positive VG. Finally, the impacts of Al% content (15% and 20%) in the bottom AlGaN barrier
and 5 nm/3 nm remaining bottom AlGaN barriers under the gate region are studied in detail,
indicating that lowering Al% content in the bottom can increase the threshold voltage (VTH) toward
an enhancement-mode characteristic.

Keywords: GaN; metal-insulator-semiconductor high-electron-mobility transistor (MIS-HEMT);
recessed gate; double barrier

1. Introduction

AlGaN/GaN high-electron-mobility transistors (HEMTs) are promising for power switching
applications due to the wide band gap, large breakdown electric field, and the inherent high
electron mobility due to two-dimensional electron gas (2DEG) [1,2]. Normally, conventional
AlGaN/GaN Schottky HEMTs suffer high gate leakage, resulting in an unfavorable power loss
during an off-state condition and a low gate overdrive during an on-state condition. In order to
tackle this issue, Metal-insulator-semiconductors high electrons mobility transistors (MIS-HEMTs)
have gained attentions recently [2–4]. Inserting a dielectric in the interface between AlGaN and
gate metal significantly reduces the gate leakage current, allowing a high gate overdrive to have
a fast switch from off-state to on-state operation. Due to a piezoelectric and polarization effects,
a two dimensional electron gas (2DEG) is naturally formed in the interface between GaN and AlGaN,
leading to depletion mode (VTH<0) characteristics. However, an enhancement mode characteristic
is more favorable in practical applications due to a lower power consumption, less failure issues,
and a flexible integration. So far, there are several approaches to realize an enhancement mode
operation, such as a recessed gate structure [5–7], p-GaN/p-AlGaN gate [2,8], Fluoride-based plasma
treatment [9], the metal–oxide–semiconductor field-effect transistor structure [10], cascode-based
topology in connecting high voltage D-mode HEMTs with a low voltage Si MOSFETs or E-mode
HEMTs [11,12], etc. HEMTs with a p-GaN/p-AlGaN gate generally suffer the challenges to effectively
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dope the Mg into top GaN or AlGaN layer and to remove the top p-GaN/p-AlGaN layer in the access
region. The thermal stability of the charges induced by Fluoride-based plasma remains a challenge.
The MOS-type GaN FETs suffer the low electron mobility due to the disappearance of the 2DEG.
The cascode-based topology with dual GaN-based transistors increase the active area and complicates
the layout designs. Therefore, the recessed gate-based HEMT is one of the most popular architectures
to obtaining an enhancement-mode characteristic because the 2DEG can be reduced under the gate by
using a simple etching process, i.e., Reactive-ion etching (RIE)-based etching or atomic layer etching
(ALE). Recently, the recessed gate AlGaN/GaN-based devices show a promising performance toward
an enhancement-mode characteristic [5–7].

Typically, AlGaN/GaN-based HEMTs are fabricated with the single AlGaN barrier layer. A multi
barrier device was demonstrated first in GaAs-based devices in 1985 [13]. Since 1999, a depletion mode
double AlGaN barrier design was first demonstrated by Gaska et al. [14]. Afterwards, depletion-mode
double AlGaN barrier HEMTs have been explored in details in [15–18], showing a high current
drive due to a second transconductance (gm) and lower access resistance. Furthermore, the recent
demonstration using AlGaN/AlN/GaN/AlN epitaxy stack to achieve the double channel has attracted
a lot of attentions [19]. Although the demonstration of the GaN-based HEMTs with a double
barrier exhibits the promising characteristics, the impacts of the Al% in the top and bottom AlGaN
barriers are still unclear. Furthermore, the investigation of the combination of the recessed-based
approach in the HEMTs with double AlGaN barrier designs is lacking as well, which can further
provide the insightful analysis to understand the device physics and structure designs toward an
enhancement-mode characteristic.

In this work, recessed gate MIS-HEMTs with double AlGaN barrier designs with different recessed
depths (3 nm or 5 nm remaining bottom AlGaN barrier under the gate region) and different Al%
content in the bottom AlGaN barrier (15% and 20%) are fabricated and investigated. First of all,
we observed a double hump gm–VG characteristic in a recessed gate AlGaN/GaN MIS-HEMT with a
5nm remaining bottom Al0.2Ga0.8N barrier under the gate region. Then, a physical model considering
the formation of the top channel under a positive VG is proposed to explain this double hump in
the gm–VG characteristic. Furthermore, the impacts from the Al% (20% and 15%) in bottom AlGaN
barrier and recessed depth (3 nm and 5 nm remaining bottom AlGaN barrier under the gate region)
are discussed to understand the device characteristics and the VTH can be increased by designing the
device with a lower Al% in the bottom AlGaN barrier.

2. Device Fabrications

Figure 1 shows the schematic of the epitaxy structure in this study and Figure 2 shows an example
of the transmission electron microscopy (TEM) image in an epitaxy structure with a double AlGaN
barrier. This structure was grown by metal–organic chemical vapor deposition (MOCVD) on a silicon
(111) substrate and consists of an AlN nucleation layer, a GaN channel, a bottom AlGaN barrier with
two different Al contents (20% and 15%), a top AlGaN barrier with 30% Al content, and a 1 nm GaN cap.
The Al% (20% and 30%) in AlGaN barrier is calibrated with the XPS by using a single AlGaN barrier
hetero-structure. The calibrated growing conditions in MOCVD are used for the double AlGaN barrier
hetero-structure. Figure 3 shows the simulated band diagram with the double AlGaN barriers, clearly
indicating the existence of the electrons in the interface between top AlGaN/bottom AlGaN and bottom
AlGaN/GaN. The recessed gate structure was formed by reactive ion etching (RIE). In order to control
the etching depth, low etching rate of 5Å/sec is achieved by the mixed BCl3 (10 sccm)/Cl2 (15 sccm)
gas. A gate recessed process is performed and a 15-nm Plasma-enhanced chemical vapor deposition
(PECVD) Si3N4 is deposited as a surface passivation layer in the access region and a gate dielectric.
TiN is used as the gate metal. The Ti/Al-based Au-free Ohmic contacts were formed by etching the
Si3N4 layers and etching the AlGaN barrier. This was followed by annealing at 600 ◦C for 1 min in
N2, resulting in 1 ohm.mm of Rc (contact resistance). Figure 4 shows the schematic of recessed gate
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MIS-HEMTs with a double AlGaN barrier. The important varied parameters are summarized in Table 1.
The devices with Lg = 1 um, Lgs = 2 um, and Lgd = 6 um are fabricated for electrical characterizations.Micromachines 2020, 11, x 3 of 10 
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Table 1. Summary of the Varied Parameters.

Parameters Top AlGaN Barrier Bottom AlGaN Barrier

Thickness 10 nm 5 nm

Al% 30%
20%
15%

Recessed depth

Remaining bottom AlGaN barrier under the gate region – 5 nm
3 nm

3. Results

In the case of devices with a 5 nm remaining bottom AlGaN barrier under the gate area, a gate
recess process is performed to etch until it reaches the surface of the bottom AlGaN barrier (Figure 4a).
The ID–VG, IG-VG, and gm–VG characteristics are shown in Figure 5. Note that all ID–VG characteristics
in this work are measured from a lower VG till a higher VG. A double hump of gm–VG characteristic
is observed in Figure 5c, which is similar to the literature [15–18]. The double hump of gm–VG

characteristics in these references [15–18] arises from a shrinking of the depletion region below the gate,
due to the depletion-mode characteristics. In our case, the recessed gate AlGaN/GaN MIS-HEMTs
has a double barrier design. A double channel model that considers the electron transfer from the
bottom channel to the top channel is proposed to explain the double hump gm-VG characteristics.
First of all, once the VG is larger than VTH, the bottom channel is gradually turned on (Figures 6a
and 7a), resulting in a first gm peak as shown in Figure 5c. It is worth noting that at this stage the top
channel from source to drain is initially disconnected below the gate dielectric due to a recessed gate
process. However, when the VG is above 5 V, the top channel could be connected again, as shown in
Figure 6b. In this scenario, the electrons can be transferred from the lateral 2DEG channel in the access
region and/or interface below the bottom AlGaN barrier to the interface between the dielectric and
the bottom AlGaN barrier [20,21] (Figure 7b). Then, the electrons can be accumulated under the gate
dielectric [20,22]. This leads to the formation of the second channel under the gate, further connecting
the source and drain to form the top channel leading to a second gm peak (Figure 5c).
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with 20% Al content, VTH ~0 V is realized (VTH is defined at VG of ID = 0.1 mA/mm).
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Figure 8 shows an example of Capacitance-Voltage (CV) measurement in the device with 3 nm
remaining bottom Al0.15Ga0.85N barrier. The capacitance is increase when the gate voltage is larger
than 0 V, indicating the formation of the first channel (Figures 6a and 7a). Once the gate voltage is
applied larger enough, the capacitance is increased again, which is mainly due to the formation of the
channel between dielectric and bottom AlGaN barrier (Figures 6b and 7b), consistent with the reported
literature [19].
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Figure 9 shows the ID–VG characteristics in the devices with different Al% content (Al0.2Ga0.8N
and Al0.15Ga0.85N) in the bottom barriers and two different recessed depths (5 nm and 3 nm bottom
AlGaN thickness under the gate area). The ID decreases but the VTH increases with a thinner remaining
bottom AlGaN barrier (Figure 9b). Furthermore, the subthreshold slope (SS) is increased once the
Al% in the bottom AlGaN barrier is decreased, which is mainly due to the low electron density in the
channel between bottom AlGaN/GaN. By designing with 3nm remaining bottom Al0.15Ga0.85N barrier
under the gate region, VTH ~3.25 V is achieved (VTH is defined at VG of ID = 0.1 mA/mm).
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Figure 10 shows the gm–VG characteristics in the devices with different Al% content (Al0.2Ga0.8N
and Al0.15Ga0.85N) in the bottom barriers and two different recessed depths (5 nm and 3 nm bottom
AlGaN thickness under the gate area). In the case of the devices with a 5 nm remaining bottom
AlGaN barrier, lowering the Al% in the bottom AlGaN barrier decreases the gm peaks (Figure 10a).
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Furthermore, double hump gm–VG characteristics can still be observed in the device with a 3 nm
remaining bottom Al0.2Ga0.8N barrier under the gate region. First, the first gm peak decreases with
a thinner remaining bottom AlGaN barrier under the gate dielectric, suggesting that the remaining
bottom AlGaN barrier under the gate region limits the current contribution from the bottom channel.
Second, the gm increases after 4 V in the device with a 3 nm remaining bottom Al0.2Ga0.8N barrier
under the gate region (Figure 10b). Whereas, the gm increases after 5 V in the devices with a 5 nm
remaining bottom Al0.2Ga0.8N barrier under the gate region (Figure 10a). This is in agreement with the
model proposed above: Due to a thinner AlGaN barrier, a lower gate voltage can allow the electrons to
transfer from the bottom channel to the area below the gate. Third, the second gm is higher than the
first gm in the devices with a 3 nm remaining bottom AlGaN barrier under the gate region (Figure 10b).
However, the first gm is higher than the second gm in the devices with a 5 nm remaining bottom
AlGaN barrier under the gate region (Figure 10a). These observations suggest that the main current
contribution in the devices with a 5 nm remaining bottom AlGaN barrier under the gate region is the
bottom channel. However, in the devices with a 3 nm remaining bottom AlGaN barrier under the gate
region, the main current contribution is derived from the top channel.
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Table 2 summarizes the comparisons of this work with other recent reports in double channel
HEMTs, indicating our work shows the promising characteristics in terms of Ion/Ioff ratio and VTH

toward an enhancement mode characteristic.
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Table 2. Reference for the double channel GaN HEMTs.

Reference Barrier designs Ion/Ioff
SS

(mV/dec)
VTH (V)

@0.1mA/mm
1nd gm

(mS/mm)
2nd gm

(mS/mm)

Our work

Al0.3Ga0.7N/Al0.2Ga0.8N/GaN
5nm remaining bottom Al0.2Ga0.8N 1.2 × 1011 80.7 ~0 68.9 39

Al0.3Ga0.7N/Al0.15Ga0.85N/GaN
5nm remaining bottom

Al0.15Ga0.85N
4.8 × 1010 87.9 0.25 34.8 7.6

Al0.3Ga0.7N/ Al0.2Ga0.8N /GaN
3nm remaining bottom Al0.2Ga0.8N - 153.1 0.5 18.8 90

Al0.3Ga0.7N/ Al0.15Ga0.85N /GaN
3nm remaining bottom

Al0.15Ga0.85N
5.5 × 1010 229.3 3.25 - 71.2

Kamath et al. [17] Al0.3Ga0.7N/GaN/Al0.15Ga0.75N/GaN - - ~−7.8 34 89

Wei et al. [19] AlGaN/AlN/GaN/AlN with 1.5 nm
over-etch upper GaN layer ~109 72 0.5 170 103

Lee et al. [23] AlGaN/GaN/AlGaN/GaN
Fin Structure - - 0.2 133 -

Deen et al. [24] AlN/GaN/AlN/GaN - - ~−4 190 -

4. Conclusions

In summary, recessed gate AlGaN/GaN MIS-HEMTs with double AlGaN barrier designs are
investigated and discussed. A double hump of the gm–VG characteristic can be observed in the recessed
gate AlGaN/GaN MIS-HEMTs with double AlGaN barrier designs. A physical model is proposed to
explain the double channel characteristics, which is mainly due to the formation of the top channel
under a high VG bias. Once the gate voltage is applied at a high enough level, the top channel is
formed, leading to an increase in drain current due to the current contribution from the top channel.
Furthermore, by lowering the Al% in the bottom AlGaN barrier, the devices show a more positive
VTH with the same recessed depth, indicating that a double AlGaN barrier design in recessed gate
MIS-HEMTs can be an alternative strategy to achieve an enhancement mode characteristic.
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