Miniaturized Platform for Individual Coral Polyps Culture and Monitoring
Abstract
1. Introduction
2. Materials and Methods
2.1. Microdevice Fabrication
2.2. Analysis of Flow Field and Heat Transfer
2.3. Coral Polyps Bail-Out and Culture
2.4. Temperature Measurement and Image Capture
3. Results
3.1. Optimization Design of Microfluidic Chip Structure
3.2. The Evaluation of the Temperature-Control Module
3.3. Explantation of Individual Coral Polyps
3.4. Evaluation of Culture of Individual Coral Polyps
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cleves, P.A.; Strader, M.E.; Bay, L.K.; Pringle, J.R.; Matz, M.V. CRISPR/Cas9-mediated genome editing in a reef-building coral. Proc. Natl. Acad. Sci. USA 2018, 115, 5235–5240. [Google Scholar] [CrossRef] [PubMed]
- Thurber, R.V.; Payet, J.P.; Thurber, A.R.; Correa, A.M. Virus-host interactions and their roles in coral reef health and disease. Nat. Rev. Microbiol. 2017, 15, 205–216. [Google Scholar] [CrossRef] [PubMed]
- Akiva, A.; Neder, M.; Kahil, K.; Gavriel, R.; Pinkas, I.; Goobes, G.; Mass, T. Minerals in the pre-settled coral Stylophora pistillata crystallize via protein and ion changes. Nat. Commun. 2018, 9, 1880. [Google Scholar] [CrossRef] [PubMed]
- Perry, C.; Alvarez-Filip, L.; Graham, N.A.J.; Mumby, P.J.; Macdonald, C. Loss of coral reef growth capacity to track future increases in sea level. Nature 2018, 558, 396–400. [Google Scholar] [CrossRef] [PubMed]
- Mellin, C.; Mouillot, D.; Kulbicki, M.; McClanahan, T.R.; Vigliola, L.; Bradshaw, C.J.A.; Brainard, R.E.; Chabanet, P.; Edgar, G.J.; Fordham, D.A. Humans and seasonal climate variability threaten large-bodied coral reef fish with small ranges. Nat. Commun. 2016, 7, 10491. [Google Scholar] [CrossRef]
- Kwiatkowski, L.; Cox, P.; Halloran, P.R.; Mumby, P.J.; Wiltshire, A.J. Coral bleaching under unconventional scenarios of climate warming and ocean acidification. Nat. Clim. Chang. 2015, 5, 777–781. [Google Scholar] [CrossRef]
- Kwiatkowski, L.; Cox, P.M.; Economou, T.; Halloran, P.R.; Mumby, P.J.; Booth, B.B.B.; Carilli, J.; Guzman, H.M. Caribbean coral growth influenced by anthropogenic aerosol emissions. Nat. Geosci. 2013, 6, 362–366. [Google Scholar] [CrossRef]
- Spalding, M.D.; Brown, B.E. Warm-water coral reefs and climate change. Science 2015, 350, 769–771. [Google Scholar] [CrossRef]
- Zaneveld, J.R.; Burkepile, D.E.; Shantz, A.A.; Pritchard, C.E.; McMinds, R.; Payet, J.M.P.; Welsh, R.; Correa, A.M.S.; Lemoine, N.P.; Rosales, S. Overfishing and nutrient pollution interact with temperature to disrupt coral reefs down to microbial scales. Nat. Commun. 2016, 7, 11833. [Google Scholar] [CrossRef]
- Hughes, T.P.; Anderson, K.D.; Connolly, S.R.; Heron, S.F.; Wilson, S.K. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 2018, 359, 80–83. [Google Scholar] [CrossRef]
- Nakamura, T.; Nadaoka, K.; Watanabe, A. A coral polyp model of photosynthesis, respiration and calcification incorporating a transcellular ion transport mechanism. Coral Reefs 2013, 32, 779–794. [Google Scholar] [CrossRef]
- Gardner, S.G.; Nielsen, D.A.; Petrou, K.; Larkum, A.W.D.; Ralph, P.J. Characterisation of coral explants: A model organism for cnidarian–dinoflagellate studies. Coral Reefs 2015, 34, 133–142. [Google Scholar] [CrossRef][Green Version]
- Shapiro, O.H.; Fernandez, V.I.; Garren, M.; Guasto, J.S.; Debaillon-Vesque, F.P.; Kramarsky-Winter, E.; Vardi, A.; Stocker, R. Vortical ciliary flows actively enhance mass transport in reef corals. Proc. Natl. Acad. Sci. USA 2014, 111, 13391–13396. [Google Scholar] [CrossRef] [PubMed]
- Serrano, E.; Coma, R.; Inostroza, K.; Serrano, O. Polyp bail-out by the coral Astroides calycularis (Scleractinia, Dendrophylliidae). Mar. Biodivers. 2017, 48, 1661–1665. [Google Scholar] [CrossRef]
- Nesa, B.; Hidaka, M. High zooxanthella density shortens the survival time of coral cell aggregates under thermal stress. J. Exp. Mar. Biol. Ecol. 2009, 368, 81–87. [Google Scholar] [CrossRef]
- Nesa, B.; Hidaka, M. Thermal stress increases oxidative DNA damage in coral cell aggregates. In Proceedings of the 11th International Coral Reef Symposium, Lauderdale, FL, USA, 7–11 July 2008; Volume 1, pp. 149–151. [Google Scholar]
- Richier, S. Symbiosis-induced adaptation to oxidative stress. J. Exp. Biol. 2005, 208, 277–285. [Google Scholar] [CrossRef]
- Kisten, Y. The Influence of Heterotrophy on the Resilience of Hard Coral Pocillopora Damicornis to Thermal Stress and Bleaching. Ph.D. Thesis, University of KwaZulu-Natal, Durban, South Africa, 2013. [Google Scholar]
- Wecker, P.; Lecellier, G.; Guibert, I.; Zhou, Y.; Bonnard, I.; Berteaux-Lecellier, V. Exposure to the environmentally-persistent insecticide chlordecone induces detoxification genes and causes polyp bail-out in the coral P. damicornis. Chemosphere 2018, 195, 190–200. [Google Scholar] [CrossRef]
- Shapiro, O.H.; Kramarsky-Winter, E.; Gavish, A.R.; Stocker, R.; Vardi, A. A coral-on-a-chip microfluidic platform enabling live-imaging microscopy of reef-building corals. Nat. Commun. 2016, 7, 10860. [Google Scholar] [CrossRef]
- Badhiwala, K.N.; Gonzales, D.L.; Vercosa, D.G.; Avants, B.W.; Robinson, J.T. Microfluidics for electrophysiology, imaging, and behavioral analysis of Hydra. Lab Chip 2018, 18, 2523–2539. [Google Scholar] [CrossRef]
- Huang, L.; Zhao, P.; Wang, W. 3D cell electrorotation and imaging for measuring multiple cellular biophysical properties. Lab Chip 2018, 18, 2359–2368. [Google Scholar] [CrossRef]
- Sano, E.; Mori, C.; Matsuoka, N.; Ozaki, Y.; Yagi, K.; Wada, A.; Tashima, K.; Yamasaki, S.; Tanabe, K.; Yano, K. Tetrafluoroethylene-Propylene Elastomer for Fabrication of Microfluidic Organs-on-Chips Resistant to Drug Absorption. Micromachines 2019, 10, 793. [Google Scholar] [CrossRef] [PubMed]
- Geng, Z.; Gu, Y.; Li, S.; Lin, B.; Liu, P. A Fully Integrated in vitro Diagnostic Microsystem for Pathogen Detection Developed Using a “3D Extensible” Microfluidic Design Paradigm. Micromachines 2019, 10, 873. [Google Scholar] [CrossRef] [PubMed]
- Berger, E.; Magliaro, C.; Paczia, N.; Monzel, A.S.; Antony, P.; Linster, C.L.; Bolognin, S.; Ahluwalia, A.; Schwamborn, J.C. Millifluidic culture improves human midbrain organoid vitality and differentiation. Lab Chip 2018, 18, 3172–3183. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.D.; Wang, Y.T.; Wang, J.R.; Wu, J.L.; Meng, X.S.; Hu, P.; Mu, X.; Liang, Q.L.; Luo, G.A. Design and fabrication of a liver-on-a-chip platform for convenient, highly efficient, and safe in situ perfusion culture of 3D hepatic spheroids. Lab Chip 2018, 18, 2547–2562. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.; Ryu, H.; Tahk, D.; Ko, J.; Chung, Y.; Lee, H.K.; Lee, T.R.; Jeon, N.L. “Open-top” microfluidic device for in vitro three-dimensional capillary beds. Lab Chip 2017, 17, 3405–3414. [Google Scholar] [CrossRef] [PubMed]
- Maw, M.; Pan, X.; Peng, Z.; Wang, Y.; Zhao, L.; Dai, B.; Wang, J. A changeable lab-on-a-chip detector for marine nonindigenous microorganisms in ship’s ballast water. Micromachines 2018, 9, 20. [Google Scholar] [CrossRef]
- Trinh, T.N.D.; Lee, N.Y. A rapid and eco-friendly isothermal amplification microdevice for multiplex detection of foodborne pathogens. Lab Chip 2018, 18, 2369–2377. [Google Scholar] [CrossRef]
- Churchill, S.W. Friction-factor equation spans all fluid-flow regimes. Chem. Eng. 1977, 84, 91–92. [Google Scholar]
- Domart-Coulon, I.J.; Elbert, D.C.; Scully, E.P.; Calimlim, P.S.; Ostrander, G.K. Aragonite crystallization in primary cell cultures of multicellular isolates from a hard coral, Pocillopora damicornis. Proc. Natl. Acad. Sci. USA 2001, 98, 11885–11890. [Google Scholar] [CrossRef]
- Domart-Coulon, I.; Tambutté, S.; Tambutté, E.; Allemand, D. Short term viability of soft tissue detached from the skeleton of reef-building corals. J. Exp. Mar. Biol. Ecol. 2004, 309, 199–217. [Google Scholar] [CrossRef]
- Mazzei, D.; Guzzardi, M.A.; Giusti, S.; Ahluwalia, A. A low shear stress modular bioreactor for connected cell culture under high flow rates. Biotechnol. Bioeng. 2010, 106, 127–137. [Google Scholar] [CrossRef] [PubMed]
- Chou, J.; Li, L.E.; Kulla, E.; Christodoulides, N.; Floriano, P.N.; McDevitt, J.T. Effects of sample delivery on analyte capture in porous bead sensors. Lab Chip 2012, 12, 5249. [Google Scholar] [CrossRef] [PubMed]
- Reidenbach, M.A.; Monismith, S.G.; Koseff, J.R.; Yahel, G.; Genin, A. Boundary layer turbulence and flow structure over a fringing coral reef. Limnol. Oceanogr. 2006, 51, 1956–1968. [Google Scholar] [CrossRef]
- Nakamura, T.; Van Woesik, R. Water-flow rates and passive diffusion partially explain differential survival of corals during the 1998 bleaching event. Mar. Ecol. Prog. Ser. 2001, 212, 301–304. [Google Scholar] [CrossRef]
- Ward, J.R.; Kim, K.; Harvell, C. Temperature affects coral disease resistance and pathogen growth. Mar. Ecol. Prog. Ser. 2007, 329, 115–121. [Google Scholar] [CrossRef]
- Oliver, T.A.; Palumbi, S.R. Do fluctuating temperature environments elevate coral thermal tolerance? Coral Reefs 2011, 30, 429–440. [Google Scholar] [CrossRef]
- Kemp, D.W.; Oakley, C.A.; Thornhill, D.J.; Newcomb, L.A.; Schmidt, G.W.; Fitt, W.K. Catastrophic mortality on inshore coral reefs of the Florida Keys due to severe low-temperature stress. Glob. Chang. Biol. 2011, 17, 3468–3477. [Google Scholar] [CrossRef]
- Mass, T.; Drake, J.L.; Haramaty, L.; Rosenthal, Y.; Schofield, O.M.; Sherrell, R.M.; Falkowski, P.G. Aragonite precipitation by “proto-polyps” in coral cell cultures. PLoS ONE 2012, 7, e35049. [Google Scholar] [CrossRef]
- Fordyce, A.J.; Camp, E.F.; Ainsworth, T.D. Polyp bailout in Pocillopora damicornis following thermal stress. F1000Res 2017, 6, 687. [Google Scholar] [CrossRef]
- Marubini, F.; Ferrier-Pagès, C.; Furla, P.; Allemand, D. Coral calcification responds to seawater acidification: A working hypothesis towards a physiological mechanism. Coral Reefs 2008, 27, 491–499. [Google Scholar] [CrossRef]
- Bell, T.; Nishida, K.; Ishikawa, K.; Suzuki, A.; Nakamura, T.; Sakai, K.; Ohno, Y.; Iguchi, A.; Yokoyama, Y. Temperature-controlled culture experiments with primary polyps of coral Acropora digitifera: Calcification rate variations and skeletal Sr/Ca, Mg/Ca, and Na/Ca ratios. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2017, 484, 129–135. [Google Scholar] [CrossRef]
- Visram, S.; Douglas, A.E. Resilience and acclimation to bleaching stressors in the scleractinian coral Porites cylindrica. J. Exp. Mar. Biol. Ecol. 2007, 349, 35–44. [Google Scholar] [CrossRef]
- Ayuso, J.M.; Virumbrales-Munoz, M.; McMinn, P.H.; Rehman, S.; Gomez, I.; Karim, M.R.; Trusttchel, R.; Wisinski, K.B.; Beebe, D.J.; Skala, M.C. Tumor-on-a-chip: A microfluidic model to study cell response to environmental gradients. Lab Chip 2019, 19, 3461–3471. [Google Scholar] [CrossRef] [PubMed]
- Ahn, J.; Sei, Y.J.; Jeon, N.L.; Kim, Y. Tumor microenvironment on a chip: The progress and future perspective. Bioengineering 2017, 4, 64. [Google Scholar] [CrossRef]
- Zheng, Y.; Wu, Z.; Khan, M.; Mao, S.; Manibalan, K.; Li, N.; Lin, J.-M.; Lin, L. Multifunctional Regulation of 3D Cell-Laden Microsphere Culture on an Integrated Microfluidic Device. Anal. Chem. 2019, 91, 12283–12289. [Google Scholar] [CrossRef] [PubMed]
Parameters | Values |
---|---|
Density (PMMA) | 1190 |
Heat capacity (PMMA) | 1420 |
Heat conductivity coefficient (PMMA) | 0.19 |
Heat capacity (water) | 4200 |
Heat conductivity coefficient (water) | 0.58 |
Surface roughness (e) | 0.01 mm |
The inlet flow rate of the pipe | 10 L/min |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, Y.; Zhao, J.; He, C.; Lu, Z.; Lu, X. Miniaturized Platform for Individual Coral Polyps Culture and Monitoring. Micromachines 2020, 11, 127. https://doi.org/10.3390/mi11020127
Luo Y, Zhao J, He C, Lu Z, Lu X. Miniaturized Platform for Individual Coral Polyps Culture and Monitoring. Micromachines. 2020; 11(2):127. https://doi.org/10.3390/mi11020127
Chicago/Turabian StyleLuo, Yongsheng, Jinglun Zhao, Chunpeng He, Zuhong Lu, and Xiaolin Lu. 2020. "Miniaturized Platform for Individual Coral Polyps Culture and Monitoring" Micromachines 11, no. 2: 127. https://doi.org/10.3390/mi11020127
APA StyleLuo, Y., Zhao, J., He, C., Lu, Z., & Lu, X. (2020). Miniaturized Platform for Individual Coral Polyps Culture and Monitoring. Micromachines, 11(2), 127. https://doi.org/10.3390/mi11020127