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Abstract: An energy storage system using secondary batteries combined with advanced power
control schemes is considered the key technology for the sustainable development of renewable
energy-based power generation and smart micro-grids. The performance of energy storage systems
in practical application mainly depends on their power conditioning systems. This paper proposes
a silicon carbide-based multifunctional power conditioning system for the vanadium redox flow
battery. The proposed system is a two-stage circuit topology, including a three-phase grid-tie
inverter that can perform four-quadrant control of active and reactive power and a bi-directional
multi-channel direct current converter that is responsible for the fast charging and discharging
control of the battery. To achieve the design objectives, i.e., high reliability, high efficiency, and high
operational flexibility, silicon carbide-based switching devices, and advanced digital control schemes
are used in the construction of a power conditioning system for the vanadium redox flow battery.
This paper first describes the proposed system topologies and controller configurations and the
design methods of controllers for each converter in detail, and then results from both simulation
analyses and experimental tests on a 5 kVA hardware prototype are presented to verify the feasibility
and effectiveness of the proposed system and the designed controllers.

Keywords: energy storage system; power conditioning system; silicon carbide; vanadium redox
flow batteries

1. Introduction

In recent years, the development of secure, low-carbon, and renewable energy sources and various
smart micro-grid systems [1], power converter-based system compensating devices [2,3], advanced
power converters using state-of-the-art wide-bandgap (WBG) switching devices, and digital-integrated
intelligent control schemes [4,5] have become very popular research topics in the field of electric
power and energy engineering. To best facilitate the above-mentioned technologies, various types of
power converters are normally required [6–11], whose main components are semiconductor power
switches and various system control units. To further enhance and optimize the performance of power
converters, advanced semiconductor switches based on WBG materials, also known as third-generation
semiconductor materials, such as gallium nitride (GaN) and silicon carbide (SiC), are emerging as very
promising solutions [12,13]. It is well known that WBG materials offer superior characteristics over
silicon in terms of band gap, electron mobility, electric breakdown field, saturated electron velocity,
and thermal conductivity, which make WBG devices much desired for switching applications with
high-voltage, -power, -temperature, and -frequency requirements. In particular, SiC devices with
high-frequency switching capability and superior thermal conductivity are suitable for high-voltage
and -power applications, while GaN has the highest bandgap, electron mobility, electric breakdown
field, and saturated electron velocity, normally used in low- to mid-power systems [14]. In [15],
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the performance of a digitally controlled 2 kVA three-phase shunt-active power filter using GaN high
electron mobility transistors was demonstrated for the first time. In addition, since decarbonization and
green energy are two of the modern trends, renewable energy-based distributed power generation and
on-line energy management systems have been intensively researched over the past decade. How to
improve the performance and optimize the application of grid-level energy storage systems (ESSs) has
also become one of the necessary technologies to promote the sustainable development of renewable
power generation, active power distribution systems, and micro-grids. At present, practical electric
energy storage technologies include pumped hydro system, compressed air energy storage, battery
energy storage systems (BESS), flow battery, superconducting magnetic energy storage, flywheel,
supercapacitor, etc. [16,17]. Among the above-mentioned grid-level ESSs, the vanadium redox flow
battery (VRFB) has the advantages of independent and flexible design of output power and energy
storage capacity, high energy conversion efficiency, safety, and low maintenance costs, which make it
very suitable for a wide range of applications, such as distributed power generation optimization, energy
management and integrated power quality control technology related applications [18,19]. In general,
the performance of ESSs in practical application mainly depends on their power conditioning systems
(PCS). The PCS topology required by the general grid-connected BESS can be divided into two categories:
single-stage [20–23] and two-stage [24–27] according to the circuit architecture. The single-stage system
is more suitable for high-voltage, high-capacity battery packs, while the two-stage circuit architecture
usually includes a single-phase or three-phase direct current to alternative current (DC/AC) converter
and a bi-directional direct current to direct current (DC/DC) power converter for matching with a
wider range of battery pack voltage specifications, and enabling the realization of different charging
and discharging strategies. In fact, various battery-based ESSs have been developed for a long time;
however, most BESSs reported in the literature are based on some specific operation and control
functions required by the system concerned and the system operating functions in this kind of BESS are
quite limited and cannot be universal leading a very high system cost, long payback period, and serious
lack of application flexibility. To improve the above-mentioned shortcomings and to achieve an
advanced and versatile ESS, this paper proposes a SiC-based multifunctional PCS for the VRFB.

2. The VRFB System and the Proposed PCS Topology

The system architecture of a VRFB is shown in Figure 1. The two electrolytes, positive (V4+/V5+)
and negative (V2+/V3+) electrolytes, in a VRFB are stored in different electrolyte storage tanks. During
charging or discharging, the two electrolytes are separated by an isolation membrane, but selected ions
are allowed to pass through the membrane forming a current path. The concentration and amount of
electrolyte determine the system capacity of VRFB, the design specifications of electrodes determine
the rated power of VRFB, and the number of single cells in series in the battery stack determines
the maximum working voltage of VRFB. It is important to note that to achieve a cost-effective and
high-efficiency design, the number of cells in series cannot be too high. This has resulted in a preferable
lower system voltage. Considering this condition, a two-stage circuit topology is proposed for the VRFB
PCS in this paper. In operation, both the DC/AC power converter and the interleaved multi-channel
DC/DC converter are activated at the same time according to the due operating mode and system
conditions. The detailed circuit architecture of the VRFB PCS proposed in this paper is shown in
Figure 2, where the main function of the interleaved buck-boost converter, consisting of six SiC power
semiconductor switches and inductors Lb, is fast charging/discharging current command tracking. Lb is
used to filter out ripple components in the current caused by the switching of the semiconductor switch.
As can be seen in Figure 2, the architecture consists of three parallel synchronous buck-boost converters,
where the output switching signal of each converter is 120 degrees apart from another, offsetting each
other’s ripples and reducing total output ripple. The left side of Figure 2 shows the grid-tied 3-phase
inverter, whose main functions are DC bus voltage regulation via active power balancing control and
system reactive power compensation via bi-directional reactive power tracking control. To provide a
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clear picture of the above-mentioned control functions, Figure 3 shows the possible active and reactive
power flows in the proposed VRFB PCS.
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3. Controller Design of VRFB PCS

The relevant system parameters and hardware specifications of the proposed VRFB PCS are
shown in Table 1. Following in this section, the required mathematical model derivation and controller
design will be carried out according to the specifications given in Table 1.
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Table 1. Specifications of the proposed system.

Component Item Value

Grid
Three-phase line voltage 220 Vrms, VLL

Voltage frequency 60 Hz

Interleaved
buck-boost converter

Rated power 5 kW
Number of channels 3
VRFB pack voltage 136–153.6 V (48 cells)

Switching frequency 100 kHz
Switching device SiC MOSFET

Filter inductor 383 µH (20%)
Current sensing factor 0.05 V/A

Grid-tie
inverter

Rated power 5 kVA
DC bus voltage 400 V

Switching frequency 100 kHz
Carrier voltage 5 V

LPF 1st order (270 µH)
DC bus capacitor 600 V/1620 µF

DC voltage sensing factor 0.006 V/V
AC voltage sensing factor 0.0031 V/V

Current sensing factor 0.05 V/A

Controller DSP TI TMS320F28335

3.1. Grid-Tie Inverter Modeling and Design of Controllers

To achieve a reliable control scheme, the grid-tie inverter adopts a dual-loop control architecture,
where the inner loop controls inductor currents, and the outer loop controls DC bus voltage and
AC-side reactive power. The overall control architecture is shown in Figure 4.
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3.1.1. Design of Inductor Current Controllers

The mathematical model of inverter’s inductor current in synchronous reference frame can be
derived according to Figure 3:

Lg
dIo_d

dt

Lg
dIo_q

dt
Lg

dIo_0
dt

 = Kpwm


1 0 0
0 1 0
0 0 1




vcond
vconq

vcon0

−


1 0 0
0 1 0
0 0 1




Vg_d
Vg_q

Vg_0

−
0 ωLg 0
−ωLg 0 0

0 0 0




Io_d
Io_q

Io_0


(1)

In this paper, the Type II controller is used to control the inductor currents. Using (1) and the
mathematical form of Type II controller, dq-axis inner inductor current control loops can be obtained,
as shown in Figure 5.
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Figure 5. Inner inductor current control loops (* indicates commands): (a) d-axis; (b) q-axis.

The quantification design of the inner loop inductor current controller is as follows: choosing
the crossover frequency ωi = 41,888 rad/s; zero = 8377.5 rad/s and pole = 136,282.2 rad/s, yielding the
required Type II controller as follows:

Gi(s) =
3.953× 105(s + 8377.5)

s(s + 1.363× 105)
(2)

Figure 6 shows the Bode plot of inner inductor current control loop. The phase margin is 62◦.
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3.1.2. Design of the DC Bus Voltage Controller

Considering the steady-state operating point, the equivalent circuit of the DC bus voltage loop is
as shown in Figure 7.
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The mathematical model of DC bus voltage can be derived according to Figure 7:

Vbus
Io_q

=
−kdc
sCdc

, kdc = 1.5
Vg_q

Vbus
(3)

In this paper, the Type II controller is used to control the DC bus voltage, and thus outer DC bus
voltage control loop can be obtained, as shown in Figure 8.
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The quantification design of the DC bus voltage controller is as follows: choosing the crossover
frequency ωv = 5235.9877 rad/s; zero = 523.598 rad/s; pole = 68,141.144 rad/s, yielding the required
Type II controller as follows:

Gv(s) =
1.071× 107(s + 523.3426)

s(s + 6.814× 104)
(4)

Figure 9 shows the Bode plot of outer DC bus voltage control loop. The phase margin is 80◦.
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3.1.3. Design of Reactive Power Controller

The derivation of the AC-side reactive power controller in this paper takes the grid-side current
flowing into the converter as positive:

Qg = −1.5×Vg_q × Io_d (5)

In this case, the Type II controller is used to control the reactive power, and thus outer reactive
power control loop can be obtained, as shown in Figure 10.
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Figure 10. Outer reactive power control loop (* indicates commands).

The quantification design of the reactive power controller is as follows: choosing the crossover
frequency ωq = 3490.6585 rad/s; zero = 1745.329 rad/s; pole = 6981.317 rad/s, yielding the required
Type II controller as follows:

Gv(s) =
8359(s + 1745.4241)

s(s + 6981)
(6)

Figure 11 shows the Bode plot of outer reactive power control loop. The phase margin is 127◦.
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3.2. Interleaved Buck-Boost Converter Controllers

The interleaved buck-boost converter adopts a single-loop inductor current controller, and each
channel is individually controlled and uses a different phase shift angle. The overall control architecture
is shown in Figure 12.
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Design of Inductor Current Controller

The proposed interleaved buck-boost converter is composed of multiple buck-boost converters,
and its operating principle is the same as that of a single buck-boost converter. Therefore, only the
controller design of a single buck-boost converter is illustrated. Taking leg A as an example,
the mathematical model of the inductor current is as follows:

Lb1
diLb1

dt
= vcon1Kpwm −Vb, Kpwm =

Vbus
vtri

(7)
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In this control case, the Type II controller is again used to control the inductor current, and thus inductor
current control loop can be obtained, as shown in Figure 13.
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According to Figure 13, the transfer function of inductor current loop is as follows:

Hi1(s) = Kpwm ×
1

sLb
× ks (8)

The quantification design of the inductor current controller is as follows: choosing the crossover
frequency ωi = 39,270 rad/s; zero = 5167.1 rad/s; pole = 298,280 rad/s, yielding the required Type II
controller as follows:

Gi(s) =
1.122× 106(s + 5167.1)

s(s + 2.9828× 105)
(9)

Figure 14 shows the Bode plot of the designed inductor current control loop. The phase margin is 75◦.

Micromachines 2020, 11, x 9 of 23 

 

tri

bus
pwmbpwmcon

Lb
b v

VKVKv
dt
diL =−= ,1

1
1  (7)

In this control case, the Type II controller is again used to control the inductor current, and thus 
inductor current control loop can be obtained, as shown in Figure 13. 

 
Figure 13. Buck-boost converter inductor current control loop (* indicates command). 

According to Figure 13, the transfer function of inductor current loop is as follows: 

s
b

pwmi k
sL

KsH ××= 1)(1
 (8)

The quantification design of the inductor current controller is as follows: choosing the 
crossover frequency ωi = 39,270 rad/s; zero = 5167.1 rad/s; pole = 298,280 rad/s, yielding the required 
Type II controller as follows: 

)109828.2(
)1.5167(10122.1)( 5

6

×+
+×=

ss
ssGi  (9)

Figure 14 shows the Bode plot of the designed inductor current control loop. The phase margin 
is 75°. 

 
Figure 14. Bode plot of buck-boost converter inductor current control loop. 

4. Cases Simulation 

4.1. Ramp-Up Procedure 

To verify the correctness of the designed PCS controllers presented in the previous section, a 
software model of the proposed VRFB PCS is developed with power simulation software as shown 

bsL
1

)(
)(
pss
zsk

+
+

-100

-50

0

50

100

M
ag

ni
tu

de
 (d

B
)

102 103 104 105 106 107
-180

-135

-90

-45

0

P
ha

se
 (d

eg
)

Bode Diagram

Frequency  (rad/s)

 

105 106 107

iagram

y  (rad/s)

Hi
Gi
Gi*Hi

System: Gi*Hi
Frequency (rad/s): 3.92×104 

Magnitude (dB): 0.00621
Phase (deg): −105

Figure 14. Bode plot of buck-boost converter inductor current control loop.

4. Cases Simulation

4.1. Ramp-Up Procedure

To verify the correctness of the designed PCS controllers presented in the previous section,
a software model of the proposed VRFB PCS is developed with power simulation software as shown
in Figure 15. Two typical simulation cases, the ramp-up procedure and charging/discharging with
four-quadrant P-Q control of the grid-tie inverter, are carried out in this study. Figure 16 shows the
result of simulating ramp-up procedure of the system. This is to verify that the designed PCS can
securely establish the required DC bus voltage of 400 V. As can be seen in Figure 16, after the grid-tie
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converter confirms the status of synchronization with the grid, the circuit starts to charge the DC bus
capacitor slowly, and the rated DC bus voltage of PCS is boosted from 360 V and finally controlled at
the target value of 400 V to complete the preparation of the system for various functional operations.
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Figure 15. The power simulation software model of the proposed VRFB PCS. Figure 15. The power simulation software model of the proposed VRFB PCS.
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Figure 16. Waveforms of DC bus voltage (top), grid three-phase voltages and a-phase current (mid),
grid a-phase voltage and three-phase currents (bottom).

4.2. Charging/Discharging with P-Q Four-Quadrant Control of the Grid-Tie Inverter

This case verifies simultaneous operation of the charging/discharging of VRFB and the function
of reactive power regulation. In this operation mode, the charging/discharging current of the VRFB
respectively corresponds to the positive and negative active power of the grid-tied inverter. With the
independent control function of positive and negative reactive power regulation, a four-quadrant
P-Q control is achieved by the grid-tied inverter. In this simulation case, the battery voltage = 150 V,
a charging and discharging current command of ±30 A (equivalent to ±4.5 kW) and a ±2 kVAR
reactive power command is arranged. Figure 17 shows the schematic diagram of PCS operating in
the 1st and 3rd quadrants. Figures 18–22 show a set of complete simulation results. As shown in
Figure 18a, the three interleaved inductor currents are regulated evenly while the DC bus voltage is
stably controlled at its rated value of 400 V. It can be clearly seen from Figures 19 and 20, with the
proposed direct current control scheme, the cross interference between active and reactive power of
the grid-tied inverter is negligible. Figures 21 and 22 show the tracking performance of the designed
reactive power, charging and discharging controllers.
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Figure 18. Waveforms of (a) interleaved buck-boost converter: DC bus voltage (top), interleaved inductor
currents (mid), battery current (bottom) and (b) grid-tied inverter: DC bus voltage (top), grid three-phase
voltages and a-phase current (mid), grid a-phase voltage and three-phase currents (bottom).
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Figure 19. The detailed view of Figure 18b: (a) near t1; (b) near t2.
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Figure 20. The detailed view of Figure 18b: (a) near t5; (b) near t6.
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Figure 21. Waveforms of control commands and feedbacks: (a) three interleaved inductor currents;
(b) reactive power (top), DC bus voltage (bottom).
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Figure 22. Waveforms of control commands and feedbacks: qd-axis inductor currents. 
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Figure 22. Waveforms of control commands and feedbacks: qd-axis inductor currents.

With the same operating condition as described previously, Figure 23 depicts a schematic diagram
of PCS operating in the 2nd and 4th P-Q quadrants. Figures 24–28 show a set of complete simulation
results. In this case, with the same charging/discharging command, the current waveforms of
interleaved buck-boost converter are identical to those shown in Figure 18a, so they are not shown in
this case. As shown in Figure 24, during the charging and discharging operation of the battery the
DC bus voltage is stably controlled at its rated value of 400 V with the designed voltage controller.
It can be clearly seen from Figures 25 and 26, with the proposed control scheme, the cross interference
between active and reactive power of the grid-tied inverter is negligible. Figures 27 and 28 verify the
tracking performance of the designed reactive power, charging and discharging controllers working at
different operating points.
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Figure 24. Waveforms of DC bus voltage (top), grid three-phase voltages and a-phase current (mid),
grid a-phase voltage and three-phase currents (bottom).
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Figure 25. The detailed view of Figure 23: (a) near t1; (b) near t2.
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Figure 26. The detailed view of Figure 23: (a) near t5; (b) near t6.
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Figure 27. Waveforms of control commands and feedbacks: (a) three interleaved inductor currents;
(b) reactive power (top), DC bus voltage (bottom).
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5. Hardware Implementation and Test Results

To further verify the performance of the proposed VRFB PCS, a 5 kVA hardware experimental
platform using SiC MOSFET is built according to the system specifications listed in Table 1 and the
operating scenarios of the test cases are identical to that used in the simulated cases presented in
the previous section. Figure 29 shows a photo of the constructed SiC-based VRFB PCS hardware
system and the experimental platform, including (1) auxiliary power, (2) oscilloscope, (3) SiC-based
grid-tie three-phase inverter, (4) SiC-based interleaved DC-DC buck-boost converter, (5) current probe,
and (6) voltage probes. Figure 30 shows the test result of ramp-up procedure of the PCS hardware
system. Figures 31–34 show a set of experimental results of the proposed PCS operating in the 1st
and 3rd quadrants. As can be seen in Figures 31–34, the measured waveforms are very close to those
obtained from simulation studies presented in the previous section. This has verified the feasibility
and effectiveness of the proposed control schemes.
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Figure 29. Photo of the constructed VRFB PCS hardware and the experimental platform.
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To fully verify the performance of the proposed SiC-based hardware system and control scheme,
Figure 35 show a second set of experimental results, in which the proposed PCS is operating in the 2nd
and 4th quadrants. As can be seen in Figures 35–37, satisfactory performances of the proposed PCS
grid-tied inverter and the interleaved buck-boost converter are achieved.
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The efficiency test results of the proposed 5 kVA, SiC-based PCS’s grid-connected three-phase
inverter and the 5 kW, 3-channel interleaved buck-boost converter are shown in Figure 38a,b respectively.
The highest efficiency of the grid-tied three-phase inverter and 3-channel interleaved buck-boost
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converter system is measured as 94.1% at 80% system rated power and 96.3% at 60% system rated
power, respectively.Micromachines 2020, 11, x 21 of 23 
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Figure 38. The efficiency analysis of the PCS: (a) grid-tied inverter, (b) interleaved buck-boost converter.

6. Conclusions

It has been well accepted that the economic benefits of distributed power generation and
micro-grids are multifaceted. For power users, the economic benefits lie in efficient use of energy,
environmental protection, and reliable customized electrical energy services, while optimizing resource
allocation and providing highly efficient energy management with operational flexibility are the main
factors for achieving the economic benefits of micro-grids. However, with the addition of renewable
power generations and various types of micro-grids in the power systems the complexity in system
control and operation is significantly increased and certain compensating devices, e.g., ESSs integrated
with advanced PCSs are urgently needed to be proposed and verified for feasibility. In this regard,
this paper has proposed a SiC-based multifunctional PCS for the VRFB. In this study, it has been found
that SiC switching devices with their excellent thermal and voltage capability can meet the requirement
of a cost-effective design of grid-tied inverter system, in which the pulse width modulation technique
can be used to reduce the hardware cost of PCS while improving system reliability. In this paper,
the consideration of circuit topology and the detailed design steps of related controllers of the proposed
SiC-based VRFB PCS have been fully addressed. The highest efficiency of the constructed SiC-based
grid-tied three-phase inverter and 3-channel interleaved buck-boost converter system is measured to
be 94.1% and 96.3% respectively. With the proposed PCS control schemes, four-quadrant control of
active and reactive power and fast charging and discharging control of the VRFB have been achieved.
Both simulation studies and experimental tests on a 5 kVA hardware prototype have verified the
feasibility and overall performance of the proposed SiC-based VEFB PCS. It is worth noting that with
the decoupled active and reactive power control capability and fast current command tracking feature
the proposed VRFB PCS is expected to perform multiple system compensating functions, e.g., real-time
support for renewable power generation, voltage and frequency support for micro-grids, and power
quality improvement for power distribution systems.
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