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Abstract: Simple, rapid, and low-cost detection of DNA with specific sequence is crucial for molecular
diagnosis and therapy applications. In this research, the target DNA molecules are bonded to the
streptavidin-coated microbeads, after hybridizing with biotinylated probes. A nanopore with a
diameter significantly smaller than the microbeads is used to detect DNA molecules through the ionic
pulse signals. Because the DNA molecules attached on the microbead should dissociate from the
beads before completely passing through the pore, the signal duration time for the target DNA is two
orders of magnitude longer than free DNA. Moreover, the high local concentration of target DNA
molecules on the surface of microbeads leads to multiple DNA molecules translocating through the
pore simultaneously, which generates pulse signals with amplitude much larger than single free DNA
translocation events. Therefore, the DNA molecules with specific sequence can be easily identified by
a nanopore sensor assisted by microbeads according to the ionic pulse signals.
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1. Introduction

The sequence-specific detection of DNA or RNA targets plays an important role in molecular
diagnosis and therapy applications [1–4]. The commonly used polymerase chain reaction (PCR)-based
methodologies are considered as the “gold standards” for nucleic acid quantification [5,6]. However,
time-consuming and expensive amplification steps of this technique limit its application in clinic.
In recent years, some new PCR-free biosensors based on electrochemical [7–11] and optical [12–15]
technologies, which are capable of sensing individual molecules, have been developed for bioanalysis
and diagnosis [16]. One of the most effective and promising approach is nanopore based sensing due
to its high throughput and low-cost performance [17,18].

In 2001, Howorka et al. [1] first identified the target ssDNA by an engineered protein nanopore
sensor, which was built by attaching a ssDNA oligomer probe within the lumen of an α-HL pore. Gu’s
group [19] used a programmable oligonucleotide probe to hybridize to the target miRNAs. Due to
the limitation of the α-HL pore size, a probe-specific microRNA duplex passing through the pore will
generate a signature multi-level pulse signal which is different from the signal induced by the probe or
microRNA. Based on that methodology, peptide nucleic acid (PNA) [20–22] and locked nucleic acid
(LNA) [23] probes were also applied in genetic biomarker detection for enhancing the sensitivity and
selectivity. In addition, each kind of probe can be modified with a distinct barcode, so that multiple
targets can be simultaneously distinguished by specific ionic signals [24]. However, protein nanopores
still face the issues of limited membrane stability and difficulty in high throughput [25]. Instead,
the solid-state nanopore exhibits the advantages of robustness, durability, modifiable surface property
and tunable size. Dekker’s group [26] first utilized solid-state nanopores to distinguish single- and
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double-stranded nucleic acid molecules with their length longer than 10 kb. In 2010, Wanunu et al. [27]
quantified the concentration of miRNA-probe hybrids by using a 3 nm pore in a 7 nm thick silicon
nitride membrane. However, in their work, it requires an additional miRNA targets enrichment step
before nanopore sensor detection. Meller and co-authors [28,29] bonded PNA probes to dsDNA and
identified the specific internal sequences on dsDNA with sub-5 nm silicon nitride pores. Similarly,
a PNA–polyethylene glycol (PEG) complex [30], Cas9 [31] and streptavidin-labelled sequence motif [32]
were utilized to label target DNA and able to create additional blockade in ionic current. While those
research studies often require the diameter of pores small enough to precisely identify the characteristic
size change of target DNA hybridized with a probe.

An alternative approach to detect target oligonucleotide is selectively binding the targets to
probe-coated beads [33,34]. Ling’s group [35,36] used nanobeads to slow down the DNA translocation
and detected DNA hybridizations. Booth et al. [37] demonstrated a variable pressure method to
characterize the surface charge of nanobeads by nanopore resistive pulse sensing. In this way, they could
discriminate between the “probe” and “target” bound beads. Schmidt’s group [38,39] proposed to
sequence-specifically capture DNA by PNA probes conjugated beads, which leads to the neutral beads
become negatively charged. Then the target attached beads were able to be electrically driven to the
sensing zone of the nanopore and cause signature pulse signals. Additionally, PNA probes conjugated
beads have shown promise for the detection of microRNA [40], rRNA [41], and circular DNA [42]
targets with specific sequence. However, those detected pulse signals in most previous studies were
generated by the beads rather than the single target oligonucleotide.

In this paper, the target DNA was hybridized with the biotinylated probe and then bonded to
the streptavidin-coated microbeads. We directly detected the target DNA molecules attached on
microbeads and free DNA molecules by using nanopores with diameters significantly smaller than the
microbeads. In addition, we sought to investigate the effects of the microbeads on DNA transport
behaviors and identified the target DNA molecules based on ionic pulse signals.

2. Materials and Methods

The nanopore fabrication process is shown in Figure 1a. Two 100 nm thick low-stress silicon nitride
membranes were deposited on both sides of the <100> silicon substrate by low pressure chemical
vapor deposition (LPCVD). A 720 µm × 720 µm square release window was patterned on the backside
of a silicon nitride membrane by photolithography and reactive ion etching (RIE). After that, the silicon
substrate was etched using tetramethylammonium hydroxide (TMAH) solution with a mass fraction of
25% to expose a 160 µm × 160 µm, free-standing silicon nitride membrane. Then, a region with a size
of 500 nm × 500 nm at the center of the silicon nitride membrane was milled by focused ion beams (FIB)
to reduce the thickness to 20 nm. Nanopores were eventually drilled on the milled region by the FIB.

A nanopore chip was treated in oxygen plasma for 30 s on both sides, and then assembled into
a polymethylmethacrylate (PMMA) flow cell, as shown in Figure 1b. Two Ag/AgCl electrodes were
connected to a patch clamp amplifier (Axon CNS 700B, Molecular Devices LLC, San Jose, CA, USA)
and, respectively, inserted into two chambers of the flow cell, which were fulfilled with degassed and
filtered 1 M KCl solution (buffered with 10 mM Tris-HCl and 1 mM Ethylene Diamine Tetraacetic Acid
(EDTA) to pH 8). The DNA sample was added into the cis chamber, where it was electrically grounded.
Positive or negative potentials were applied to the trans chamber. Current traces were measured at
250 kHz with a 10 kHz low-pass filter. All nanopore sensing experiments were taken inside a dark
Faraday cage.

Streptavidin-coated polystyrene beads with a 1.5 µm diameter were obtained from Sigma-Aldrich
(Shanghai, China). λ-DNAs (48.5 kbp) were purchased from Takara BIO Inc. (Shiga, Japan) DNA
probes were purchased from Sangon Biotech (Shanghai, China) Co., Ltd. The probe with the sequence
P-5’ -GGGCGGCGACCTT-3’ -B was phosphorylated (P) at the 5’ end and biotinylated (B) at the 3’ end.
As shown in Figure 1c, the probe could be hybridized to the cos site of the λ-DNA using the standard
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hybridization protocol [43]. Finally, the DNA-probe complexes were mixed with streptavidin-coated
polystyrene beads and incubated at room temperature for 3 h.
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Figure 1. Schematic illustrations of (a) the nanopore fabrication process, (b) the nanopore-based
detection setup and (c) the process of DNA selectively binding to the microbead.

3. Results and Discussion

We fabricated two nanopores in 20 nm thickness SiN membranes. Figure 2a presents the
current–voltage curves for nanopores with 1 M KCl solution. The pore diameter dpore could be
calculated by [44]:

G = σ

 4l
πd2

pore
+

1
dpore

−1

(1)

where G is the ionic conductance of a cylindrical nanopore, σ is the bulk electrolytic conductivity
(for 1M KCl, σ = 11.18 S/m, at 25 ◦C), l refers to the length of a nanopore. The calculated nanopore
diameters by Equation (1) are 25 nm and 35 nm, respectively. Figure 2b,c present the scanning electron
microscope (SEM) images of these two nanpores. From the SEM images, diameters of nanopores were
measured at approximately 26 nm and 36 nm. Considering measurement errors, we think measured
diameter is consistent with the calculated value.

In this paper, if probe could hybridize with target DNA molecules due to the matched sequence,
the DNA–probe complexes would link to the microbeads through the streptavidin–biotin bond.
Otherwise, the test sample is composed of microbeads with probes attached and the mismatched DNA
molecules. Figure 2d,e are the SEM images of polystyrene beads before and after incubating with
DNA–probe complexes. Filaments around the microbead shown in Figure 2e confirm that DNA–probe
complexes have successfully bonded to the microbead.

We first detected λ-DNA molecules using a 35 nm diameter nanopore in 1M KCl solution under
800 mV bias voltage. As shown in Figure 3a, a number of signature pulse signals were generated in
the trans-pore ionic current, which means free λ-DNA molecules can be driven through the pore by
electrophoretic force. After finishing free the λ-DNA detection experiment, the chambers were washed
by deionized water three times and the ionic current monitored for about 10 min to make sure no DNA
remained in the chamber. Then a control experiment was performed on the microbeads with a probe
attached. We did not observe any pulse signal during a 30-min measurement. On one hand, the bead
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is too large to enter the pore. On the other hand, for the small sized nanopore, electric field force
hardly drags the beads to block the pore mouth. Therefore, for the DNA with mismatched sequence,
the probe attached microbeads in the test sample will not generate pulse signals.
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(d) ionic current trace measured under reversed the bias voltage.

When we detected DNA–bead conjugates by using the same pore, a large amount of pulse signals
appeared in the current trace as shown in Figure 3c. We speculated that there are two possibilities
which cause the appearance of pulse signals. The first one is that DNA entered in the pore, and then
was pulled out of the pore due to the thermal motion of the microbead. The second one is that DNA
passed through the pore after being released from the microbead. To explore the motion of DNA,
we reversed the bias voltage to −800 mV after recording thousands of pulse signals. As shown in
Figure 3d, several pulse signals appeared in ionic current, which means some released DNA molecules
were recaptured into the pore from the trans side. It confirms DNA molecules successfully dissociated
from the microbeads and transported through the pore, because DNA–bead conjugates were only
added into the cis chamber. Furthermore, the link between λ-DNA and the biotin molecule is a covalent
bond. In addition, streptavidin is also covalently bonded to the polystyrene microbead. The rupture
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force of the covalent bond is approximately 2–10 nN [45]. On the other hand, the streptavidin–biotin
bond is a noncovalent bond, which is the weakest link in DNA–bead conjugates. Merlel et al. [46]
indicated the breakage strength of the streptavidin–biotin bond ranges from 5 to 170 pN depending
on the loading rate. The electrical force on a λ-DNA molecule in the nanopore can be calculated as
F = qeff∆V/a, where qeff is the effective charge of a DNA base pair, ∆V is the applied voltage across
the nanopore, a refers to the distance between two base pairs [47]. In our experimental condition,
the estimated electrical force on the DNA is about 192 pN at 800 mV, which is also larger than the
streptavidin–biotin bond strength.

In order to further analyze the pulse signals generated by DNA–bead conjugates, we plotted the
signal scatter diagram of duration time td versus current amplitude ∆I in Figure 4a. It is obvious that
DNA–bead conjugates and free λ-DNA can be easily identified according to the duration time of pulse
signals. As shown in Figure 4b, the mean duration time of free λ-DNA translocation events is about
0.22 ± 0.01 ms. While the mean duration time of signals for DNA–bead conjugates is 30.69 ± 0.72 ms
(Figure 4c), which is more than two orders of magnitude longer than the free DNA translocation time.
It can be mainly attributed to two factors. Firstly, there is a survival time of the streptavidin–biotin
bond breakage, which depends on the loading rate [46]. Secondly, the breakage process will slow
down the velocity of DNA molecules as well.
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Figure 4d,e present the current amplitude histograms with the fit of Gaussian distribution.
There are two peaks in the ∆I histogram of free λ-DNA. It is well known that the pulse amplitude
refers to the effective blocked area during DNA transportation through the pore. The first blockade
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current value peak is interpreted as a single DNA molecule in the nanopore in a linear configuration.
In addition, the second peak corresponds to the translocation events of a folded DNA molecule or two
parallel DNAs [48]. Interestingly, the amplitude of most pulse signals for DNA-bead conjugates is
larger than the first peak value in Figure 4d. According to the recapture events shown in Figure 3d,
we speculated that the signals for DNA–bead conjugates were generated by DNA–probe hybrids
releasing from the microbead and passing through the pore. However, the amplitude of pulse signals
in Figure 3d, which corresponds to the released DNA–probe hybrids recaptured by nanopore, is nearly
same as the amplitude of pulse signals for free λ-DNA molecules in Figure 3a. It indicates that the
biotinylated probe barely influences the amplitude of pulse signals. In addition, the biotin is a small
molecule (MW 244.3), which will not lead to a large difference of characteristic size between the
DNA–biotinylated probe hybrid and λ-DNA. To further exclude the influence of the biotinylated probe,
we also detected free DNA–biotinylated probe hybrids by using a 25 nm diameter nanopore. As shown
in Figure 4f, the amplitude of signals for free DNA–probe hybrids is only a little bit larger than that
for free λ-DNA molecules, but still much smaller than that for DNA-bead conjugates. It confirms
that the biotinylated probe is not the main reason for the large amplitude of pulse signals generated
by DNA–bead conjugates. Furthermore, it should be noted that the slight enhancement of signal
amplitude for the 25 nm diameter nanopore is due to the decrease in pore size [44]. For small sized
pores, the pore resistance dominates the total resistance which is the sum of pore resistance and access
resistance. So, the presence of DNA in the smaller sized pore has a relatively larger effect on the
ionic current.

Kobayashi et al. [49] imaged DNA–streptavidin complex formation in solution by using a
high-speed atomic force microscope. They observed that one streptavidin could bind up to three DNA
strands, which leads to an extremely high local concentration of λ-DNAs on the surface of microbeads.
According to our previous work [50], the probability of co-translocation events increases with the
concentration of DNA molecules. We think the signals with such high amplitude were generated by
multiple DNA molecules being transported through the pore simultaneously.

Therefore, target DNA molecules, which are selectively bonded to the microbeads, can be
easily identified by the ionic pulse signals. In addition, we also tried to use the probe containing
three mismatched base pairs to detect λ-DNAs. In that case, λ-DNAs could not hybridize with
noncomplementary probes, or bond to the microbeads. The amplitude and duration time of ionic
pulse signals for the noncomplementary sample are almost the same as free λ-DNAs. It validates the
specificity on our methodology.

4. Conclusions

We proposed a nanopore-based sensing platform assisted by microbeads to identify DNA
molecules with a specific sequence. The target DNA molecules were successfully linked to the
microbead through a streptavidin–biotin bond. Ionic pulse signals detected by nanopore exhibit totally
different translocation behaviors between DNA molecules attached on microbeads and free DNA
molecules. Experimental results verified that DNA molecules could be pulled away from the microbeads
and driven through the pore by 800-mV bias voltage. This process takes 30.69 ± 0.72 ms, which is
two orders of magnitude longer than free DNA translocation time. Furthermore, DNA molecules
attached on the microbeads are more likely to enter into the pore simultaneously, due to the high
local concentration. Therefore, according to the difference of pulse signal distribution, DNA-bead
conjugates and free DNA molecules can be easily discriminated. The simplicity and sensitivity of the
method indicates its alluring prospect in a variety of biomedical applications.
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