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Abstract: Flexoelectric materials have played an increasingly vital role in nanoscale sensors, actuators,
and energy harvesters due to their scaling effects. In this paper, the nonlocal effects on flexoelectric
nanosensors are considered in order to investigate the coupling responses of beam structures.
This nonlocal elasticity theory involves the nonlocal stress, which captures the effects of nonlocal and
long-range interactions, as well as the strain gradient stress. Based on the electric Gibbs free energy,
the governing equations and related boundary conditions are deduced via the generalized variational
principle for flexoelectric nanobeams subjected to several typical external loads. The closed-form
expressions of the deflection and induced electric potential (voltage) values of flexoelectric sensors
are obtained. The numerical results show that the nonlocal effects have a considerable influence on
the induced electric potential of flexoelectric sensors subjected to general transverse forces. Moreover,
the induced electric potential values of flexoelectric sensors calculated by the nonlocal model may be
smaller or larger than those calculated by the classical model, depending on the category of applied
loads. The present research indicates that nonlocal effects should be considered in order to understand
or design basic nano-electromechanical components subjected to various external loads.
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1. Introduction

The nanoscale cantilever beam has been widely utilized as a basic element in nano-electromechanical
systems, such as nanoactuators, nanosensors, and nano energy harvesters. At the nanoscale, the mechanical
and electrical properties of nanostructures have significant differences from their bulk structures,
which are size effects. In a few decades, flexoelectric, nonlocal, coupled stress, and strain gradient
theories have been developed to capture the size effects for cases where the classical theories cannot
describe the real electromechanical responses of the nanostructures.

Flexoelectricity, which is related to the electromechanical coupling between the polarization and
the strain gradient, exists in a wide variety of dielectric materials and may lead to strong size-dependent
properties at the nanoscale [1–3]. Recently, several experiments, theories, and applications related to
the flexoelectric effect for dielectric materials, such as ferroelectric thin films, polymers, liquid crystals,
and living membranes, have been published [4–6]. Based on previous work [7,8], Majdoub et al. [9]
extended the static continuum theory to obtain the equations of motion and further discussed the
electromechanical coupling responses of the nanobeams subjected to the strain gradient. Their results
showed that the effective bending stiffness and effective piezoelectricity have a significant size effect due
to flexoelectricity at the nanoscale. Furthermore, Shen and Hu [5] also established a more comprehensive
theoretical framework using a variational principle for dielectrics by incorporating the flexoelectricity,
electrostatic force, and surface effect. For flexoelectricity in membranes, Mohammadi et al. [10] developed a
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linear general framework of a homogenization problem, which can be used to analyze living membranes or
liquid crystals. The effective elastic, dielectric, and flexoelectric properties of heterogeneous membranes were
estimated in their paper. Employing these theories, the static and dynamic electromechanical responses
of flexoelectric nanostructures and flexoelectric energy harvesters have been investigated [11–18].
Zhou et al. [15] investigated the electromechanical responses of flexoelectric beams with three different
electrical boundary conditions, in which the induced electric potential was discussed in detail.
We found that the maximum output electric potential is dependent on the aspect ratios of the beam
and independent of the flexoelectric coefficients. Taking the strain gradient elastic effect into account,
Lu et al. [19] gave an electromechanical coupling analysis of a bilayer flexoelectric nanobeam. In their
study, the sharp gradient of the electric field existed near the beam surfaces due to the flexoelectric
effect. Later, Su et al. [20] also investigated the influence of the piezoelectric effect on electromechanical
coupling responses of a bilayer piezo-flexoelectric nanobeam due to the strain gradient elasticity. In that
paper, the piezoelectric effect played a leading role in the induced large-scale electric potential, while the
flexoelectric and strain gradient elastic effects dominated the induced electric potential at the nanoscale.
Based on the general modified strain gradient theory, Chu et al. [21] established a mathematical
framework to analyze bending and vibration responses of functionally graded piezo-flexoelectric
nanobeams. The authors verified that the variation of the polarization density field along the thickness
direction is fully dependent on the functionally graded model. Considering the flexoelectric effect,
Xiang et al. [22] presented an exact elasticity solution for a functionally graded beam subjected to
electromechanical loads. Recently, Wang et al. [6] published a new review of flexoelectricity in solids,
in which they systematically discussed recent progress in both theoretical and experimental research in
terms of flexoelectric effects.

In recent years, the nonlocal elastic field theory proposed by Eringen [23], which outlines the
stress–strain relation at a point dependent on the strains of all points, has been considered for flexoelectric
nanostructures. The nonlocal elasticity theory, which is common in nanostructures, can reasonably
explicate the size effects of the static and dynamic behavior of nanobeams and nanoplates [24–27].
Taking the shear deformation into account, Li et al. [28] investigated the free vibration of the functionally
graded Timoshenko beams with the nonlocal strain gradient effects. Their results showed that the
vibration frequencies generally increase as the nonlocal parameters decrease. Based on the original
elasticity model of nonlocal theory, without any additional assumptions, Li et al. [29] analyzed the
bending of a nano-cantilever beam subjected to various mechanical loads. They found that whether the
equivalent stiffness of the beam is weakened or strengthened depends on the competitive relation of the
different external loads. Within the framework of the nonlocal elasticity theory, Ebrahimi and Barati [30]
studied the vibration characteristics of the flexoelectric nanobeam considering the surface effect. Further,
Barati [31] investigated the nonlinear vibration characteristics of flexoelectric nanobeams under the
magnetic field due to the nonlocal and surface effects. In their paper, the closed-form nonlinear
frequency of the flexoelectric nanobeam was obtained. Masoumi et al. [32] analyzed the flexoelectric
effect on wave dispersion characteristics of piezoelectric nanobeams based on the nonlocal strain
gradient theory. The static and dynamic mechanical behavior of flexoelectric nanobeams is significantly
influenced by the nonlocal effect. The nonlocal effect causes the beam to be stiffer or softer, depending on
the mechanical boundary conditions and category of applied mechanical loads. It is not clear how
the coupling of flexoelectric and nonlocal effects acts on the electromechanical responses of sensors.
However, to our knowledge, none of the previous papers on flexoelectric sensors covering surface
electrodes has considered the nonlocal effect. Therefore, it is beneficial to analyze the induced electric
potential of flexoelectric sensors, which are subjected to various mechanical loads, incorporating the
nonlocal effect.

In this paper, the objective is to deal with the nonlocal effect on the induced electric potential
of flexoelectric sensors subjected to various mechanical loads. Introducing the nonlocal elasticity
theory into the linear piezo-flexoelectric model, the equilibrium equations of nanosensors and the
corresponding general mechanical boundary conditions are derived using the generalized variational
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method. The influences of structural sizes, nonlocal parameters, and types of external loads on the
normalized deflection and induced electric potential are presented graphically and discussed.

2. Nonlocal Elasticity Theory of Flexoelectric Materials

Taking the nonlocal elasticity theory into account, the linear piezo-flexoelectric theory is employed
to analyze the electromechanical coupling responses of flexoelectric nanostructures. In the nonlocal
elasticity model, which contains a wide range interaction, the stress at a point is a function of the
strains of all neighboring points [28,33]. Hence, the stress and electric displacement tensors can be
expressed as [28,30,31,33]: (

1− (e0a)2
∇

2
)
σi j = ci jklεkl − eki jEk (1)(

1− (e0a)2
∇

2
)
σi jk = −µli jkEl + gi jklmnεlm,n (2)

Di = κi jE j + ei jkε jk + µi jklε jk,l (3)

where σi j and σi jk are the normal stress tensor and higher-order stress tensor of nonlocal theory
and Di is the electric displacement vector; e0a is the nonlocal parameter, which is dependent on the
special material and internal characteristic scale; ci jkl and κi j are the fourth-rank elastic modulus and
the second-rank dielectric constant, respectively; ei jk is the third-rank piezoelectric tensor; µi jkl is
the fourth-rank flexoelectric tensor; gi jklmn is the sixth-rank strain gradient elastic tensor, which is
dependent on the strain gradient elastic theory; εi j is the strain tensor, Ei is the electric field vector,
and ε jk,l is the strain gradient tensor; ∇ is the Laplacian operator. Here, the Kleinert and Gauge
theory [34] is used. For isotropic materials, the expression of gi jklmn is [19,20]:

gi jklmn = c1111l21δi jδknδlm + c1212l22
(
4δilδ jkδmnδkn − 4δinδ jkδmnδkl

+δi jδknδlmδil − δi jδknδlm
) (4)

where δi j = 1(i = j), δi j = 0(i , j) is the Dirac delta function and l1, l2 are two material scale parameters
with length dimensions.

The total electrical enthalpy of flexoelectric solids can then be written as [14,15]:

Π =
y

Gdv−
{

tiuids−
{

rivids +
{

$φds (5)

where G is the Gibbs free energy density; ti and ui are the traction and displacement on the surface,
respectively; ri and vi are the higher-order traction and normal derivative of displacement on the surface,
respectively; $ and φ are the surface charge density and electric potential, respectively. In general,
ri = σi jkn jnk and vi = ui, jn j, where n j is the outward unit normal vector on the surface [5,15].

3. Theoretical Formulation of Flexoelectric Sensors with the Nonlocal Effect

In this paper, a cantilever beam, in which h, b, and L are the thickness, width, and length,
respectively, is depicted in Figure 1. The beam is mechanically fixed at the left end and loaded by
distributed lateral forces q(x1), with a concentrated force at the right end. In a Cartesian coordination
system, the x1-axis is coincident with the neutral surface and the x3-axis runs along the thickness
direction of the beam. The bottom surface electrode undergoes a change of electric potential as a result
of mechanical deformation and the top electrode is grounded.
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Figure 1. A cantilever beam model of the flexoelectric sensor subjected to external loads.

As the beam is slender (h � L), the Bernoulli–Euler beam assumption is used to model the
flexoelectric sensor. The strain and strain gradient fields at any point can be taken as follows [14,15,20]:

ε11 = −x3
d2w
dx2

1

, ε11,3 = −
d2w
dx2

1

, ε11,1 = −x3
d3w
dx3

1

(6)

where w is the displacement in the x3 direction, while the displacement in the x2 direction is set to
zero, as in plane strain elasticity. In the present Bernoulli–Euler beam model, the strain gradient ε11,1 is
very small compared to the strain gradient ε11,3 and may be neglected for a slender beam. The electric
field in a slender beam is predominant in the thickness direction, while the electric field component
in the length direction (E1) is negligible [14,15,30,31]. For the slender beam, the general constitutive
equations (Equations (1)–(3)) can be further simplifies as:

[
1− (e0a)2 d2

dx2
1

]
σ11 = c11ε11 − e311E3[

1− (e0a)2 d2

dx2
1

]
σ113 = −µ13E3 + g13ε11,3

D3 = κ33E3 + e311ε11 + µ13ε11,3

(7)

where the subscripts of the material property tensors are contracted for simplicity [19], i.e., c11 = c1111,
µ13 = µ3113, g13 = g113113. The electric potential Φ(x1, x3) in the beams shown in Figure 1 is related to
the electric field by E3 = −∂Φ/∂x3. In the absence of free body charges, Gauss’s law of electrostatics
requires D3,3 = 0. In Figure 1, Φ(x3 = h/2) = 0 and Φ(x3 = −h/2) = φ(x1) are on the top and bottom
surfaces of the flexoelectric beam, respectively; φ(x1) is the induced electric potential due to the
flexoelectric effect. Solving Gauss’s equation, the electric field can be expressed as [15,20]:

E3 = −
e311

κ33
ε11 +

φ(x1)

h
(8)

For the flexoelectric beam with the nonlocal effect, the virtual general electric Gibbs free energy
δG can be expressed as [14,28,33]:

δG =
∫

V(σ11δε11 + σ113δε11,3 −D3δE3)dV

= −
∫

V

[
σ11δ

(
x3

d2w
dx2

1

)
+ σ113δ

(
d2w
dx2

1

)
+ D3δ

(
e311
κ33

x3
d2w
dx2

1
+

φ(x1)
h

)]
dV

(9)

where V is volume of the beam. The following stress resultant and electric displacement resultant
are considered:

M =

∫
A

x3σ11dA, P =

∫
A
σ113dA, D =

∫
A

D3dA, D =

∫
A

x3D3dA (10)
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where A = bh is the area of the cross-section. Substituting Equations (6) and (8) into the third item of
Equation (7), the electric displacement can be rewritten as:

D3 =
κ33

h
φ(x1) − µ13

d2w
dx2

1

(11)

The above electric displacement is constant along the thickness direction of the beam, so D = 0.
The virtual work of external electromechanical loads δW can be expressed as:

δW =

∫
L
[q(x1)δw− b$δφ]dL + Fδw (12)

According to the generalized variational principle, we get δΠ = 0 for the mechanical and
electrostatic equilibrium of the flexoelectric actuators and sensors due to the arbitrariness of δw and δφ:

δw :
d2M
dx2

1

+
d2P
dx2

1

+ q(x1) = 0 (13)

δφ : D−$b = 0 (14)

The corresponding electromechanical coupling boundary conditions can be given by: w or dM
dx1

+ dP
dx1

dw
dx1

or M + P
(15)

Integrating both sides of the first and second items of Equation (7) along the thickness of the beam,
the constitutive equation can be rewritten as:

[
1− (e0a)2 d2

dx2
1

]
M = −GP

d2w
dx2

1[
1− (e0a)2 d2

dx2
1

]
P = −µ13bφ(x1) − g13A d2w

dx2
1

(16)

where GP = bh3

12

(
c11 +

e2
311
κ33

)
is the effective bending rigidity of the piezoelectric nanobeam without

considering the flexoelectricity [15]. Applying Equations (13) and (16), the stress resultant can be obtained:

M + P = −GS
d2w
dx2

1

− µ13bφ(x1) − (e0a)2q(x1) (17)

where GS = GP + g13A is the effective bending rigidity of the piezoelectric beam with the strain
gradient elasticity [20]. Using Equation (17), we obtain:

d2

dx2
1

(M + P) = −GS
d4w
dx4

1

− µ13b
d2φ(x1)

dx2
1

− (e0a)2 d2q(x1)

dx2
1

(18)

Substituting Equation (18) into Equation (13), the mechanical equilibrium of the flexoelectric beam
with the nonlocal effect can be rewritten as:

GS
d4w
dx4

1

+ µ13b
d2φ(x1)

dx2
1

+ (e0a)2 d2q(x1)

dx2
1

− q(x1) = 0 (19)

Equation (19) can describe the electromechanical responses of flexoelectric beams with different
electrical boundary conditions. We have discussed these electrical boundary conditions in detail [15].
The Open Circuit(OC) condition: A beam without surface electrodes operates under an open circuit,
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in which the surface electric potential is dependent on x1. The Closed Circuit with Fixed voltage(CCF)
condition: A beam with surface electrodes is subjected to an external voltage, such as an actuator.
The Open Circuit with Induced electric potential(OCI) condition: A beam with surface electrodes
operates under an open circuit, in which the surface electric potential is induced by the mechanical
deformation, such as a sensor or an energy harvester.

In the present case, the flexoelectric sensors would be considered. We note that the top and
bottom surfaces of the flexoelectric beam are covered with electrodes perfectly, meaning the electric
potential φ(x1) is independent on x1. For flexoelectric sensors or actuators, since φ is independent

of x1 in Equation (14), we obtain
∫

L(D−$b)dA = 0 [15]. Moreover,
∫ L

0 $bdx1 = 0 should be satisfied
(no supply of charges to the electrodes) on the surfaces of sensors. Therefore, the induced electric
potential can be obtained from Equation (11) as:

φ =
µ13h
κ33L

dw
dx1
|
L
0 (20)

The induced electric potential as a result of mechanical deformation due to the flexoelectric effect
is proportional to the deviation between two rotational angles at the ends. Applying Equations (15),
(17), (19), and (20), the nonlocal equilibrium equation and the corresponding general mechanical
boundary conditions for the cantilever beams can be expressed as:

0 < x1 < L : GS
d4w
dx4

1
+ (e0a)2 d2q(x1)

dx2
1
− q(x1) = 0

x1 = 0 : w = dw
dx1

= 0

x1 = L : GS
d3w
dx3

1
+ (e0a)2 dq(x1)

dx1
= −F; GS

d2w
dx2

1
+

µ2
13A
κ33L

dw
dx1

+ (e0a)2q(x1) = 0

(21)

Equation (21) can be easily simplified into equations of the nonlocal strain gradient theory for
elastic materials [28,29] by setting µ13 = κ33 = e311 = 0 in GS, and can also be obtained using the
classical piezo-flexoelectric bending equations by setting the nonlocal parameter e0a as zero.

4. Numerical Results and Discussion

In order to assess nonlocal and flexoelectric effects, we discuss bending beams subjected to
distributed loads and a concentrated force. In this simulation, the material is BaTiO3 and the
corresponding material parameters are c11 = 131 GPa, κ33 = 12.56 nC/(V·m), e311 = −4.4 C/m2,
µ13 =10−6 C/m, and g13 = c11l2. Here, the internal material length scale parameter l = 1.92 nm [19].
The slenderness ratio of the cantilever flexoelectric sensor is fixed to L/h = 20 and the width b = h,
unless otherwise stated.

4.1. Subjected to Uniformly Distributed Loads and a Concentrated Force

Solving the general nonlocal equilibrium and boundary conditions (Equation (21)), the deflection
w of the cantilever beam with uniformly distributed loads q0 and a concentrated force F can be obtained as:

w =
q0
GS

(
x4

1
24 −

x3
1L
6 +

x2
1L2

4

)
−

F
6GS

(
x3

1 − 3x2
1L

)
−

α+6τ2

12GS(1+α)
q0x2

1L2

−
α

4GS(1+α)
Fx2

1L
(22)

where τ = e0a/L is the dimensionless scaling effect factor accounting for the nonlocal effect [26–28]
and α =

(
µ2

13A
)
/(κ33GS). It can be seen from Equation (22) that the bending beam with nonlocal and

flexoelectric effects undergoes a smaller deflection than a beam without these effects subjected to the
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same loads. Substituting Equation (22) into Equation (20), the induced electric potential of cantilever
beams with q0 and F can be expressed as:

φ =
µ13hL
2κ33

1
GS(1 + α)

[
1− 6τ2

3
q0L + F

]
(23)

Equation (23) shows that the induced electric potential is entirely dependent on the nonlocal effect
when only uniformly distributed loads exist. No nonlocal effect arises for the induced electric potential
of flexoelectric sensors subjected to a concentrated force only.

In Figure 2, the normalized deflection w(x1)/w0(L) for the cantilever beam is illustrated by the
different nonlocal parameters subjected to q0 only, in which w0(L) = q0L4/8GS is the deflection at the
free end without the nonlocal and flexoelectric effects. The flexoelectric and nonlocal effects cause the
sensor to stiffen. By increasing the nonlocal parameter τ, the deflection decreases, which means that
the nonlocal effect causes the beam to stiffen with the uniformly distributed loads. This result could
also be found from Equation (22). Comparing the results in Figure 2a,b, it can be seen that the bending
beam has a larger stiffness for the larger thickness with a large nonlocal parameter τ. Obviously,
the flexoelectric effect could increase the effective stiffness of the flexoelectric sensors shown in Figure 2.
The results from Majdoub et al. [9] also showed that the normalized Young’s modulus of lead zirconate
titanate (PZT) beams increases as the thickness of the beams decreases due to the flexoelectric effect.
The normalized deflection of PZT-5H beams with the flexoelectric effect is also smaller than that
without the flexoelectric effect [14]. Abdollahi et al. [35] found the enhanced size-dependent elasticity
due to the flexoelectric effect by applying the smooth mesh-free basis functions in a Galerkin method.
In their paper, the normalized stiffness of the flexoelectric cantilever beams of BaTiO3 under the OCI
condition increased as the normalized thickness decreased.
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The boundary condition in Equation (21) indicates that nonlocal and flexoelectric effects act as a
concentrated bending moment at the free end, which would change the shape of the deflection curve,
especially near the free end. Hence, Figure 3 is presented to investigate the normalized deflection
w(L)/w0(L) at the free end of sensors versus the normalized thickness h/h0 for the different nonlocal

parameters, in which h0 =
√

12µ2
13/

(
c11κ33 + e2

311

)
denotes an intrinsic thickness for the maximum

induced electric potential of flexoelectric beams [15]. When τ = 0, the result is identical to the results
of flexoelectric sensors [20]. It can also be observed that the normalized deflections at the free end
decrease as the nonlocal parameter increases, then decrease rapidly to the same value (as h→ 0)
with the decrease of the beam-normalized thickness for τ = 0.1, 0.3. When τ = 0.4, the variation of
the normalized deflection is almost independent of h/h0. However, when τ = 0.5, the normalized
deflection at the free end increases from zero to approach the same value (as h→ 0) as the normalized
thickness decreases.
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The induced electric potential, which is very important for sensors and energy harvesters, has a
significant scaling effect. A maximum value exists for the intrinsic thickness h0 in flexoelectric sensors
without the nonlocal effect [15,20]. Figure 4 plots the normalized induced electric potential φ/φ0

(φ0 = q0L2/
[
A

√
12

(
c11κ33 + e2

311

)]
is the maximum amplitude of the induced electric potential of

flexoelectric sensors [15]) of the nonlocal model as a function of the normalized sensor thickness
subjected to q0 only. Kwon et al. [36] theoretically verified that the normalized charge output of the
flexo-piezoelectric multilayered structure of barium strontium titanate (BST) increases as the thickness
decreases under force input conditions. The induced electric potential due to the nonlocal effect
decreases because the rotational angles at the free end decrease, as shown in Figure 2. It is observable
from Equation (23) that when τ2 > 1/6, the induced electric potential due to the flexoelectric effect
changes the direction in the sensors, as shown in Figure 4. It is interesting that no nonlocal effect arises
for the intrinsic thickness h0, in which there exists a maximum induced electric potential.

From Equation (23), it can be clearly found that neglecting the nonlocal effect causes the induced
electric potential to disappear as F/(q0L) = −1/3. Figure 5 illustrates the normalized induced electric
potential φ/φ1, where φ1 is the induced electric potential of flexoelectric sensors subjected to q0

and F without the nonlocal effect, as a function of the nonlocal parameter. It is observable from
Figure 5 that the combination of q0L and F have a great influence on the induced electric potential of
the flexoelectric sensors due to the nonlocal effect. When F/(q0L) > −1/3, the normalized induced
electric potential decreases and could change the sign by increasing the nonlocal parameter. However,
when F/(q0L) < −1/3, the normalized induced electric potential would increase with the increase of
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the nonlocal parameter. For given materials with the nonlocal effect, the category F/(q0L) < −1/3
should be chosen to obtain better electric responses.
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4.2. Subjected to Sinusoidal Distributed Loads and a Concentrated Force

When the uniformly distributed load q0 has been considered, the expression of d2q(x1)/dx2
1 = 0

should be satisfied in Equation (21). Here, a concentrated force F at the free end and transverse
distributed loads q = q0 sin(nπx1/L) are applied on the nano-cantilever beams, where n = 1, 2, 3, . . ..
Applying Equation (21) with F and q, the bending equation can be given by:

d4w
dx4

1

− λ sin
(nπx1

L

)
= 0 (24)
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where λ = q0
(
π2n2τ2 + 1

)
/GS. By solving Equation (24) with the general mechanical boundary

conditions in Equation (21), the expression of the deflection is obtained as:

w = λ
( L

nπ

)4
sin(nπx1/L) +

C3

6
x3

1 +
C2

2
x2

1 + C1x1 (25)

where:

C1 = −λ
( L

nπ

)3
, C3 =

[ q0L
nπ (−1)n

− F
]

GS
, C2 =

−C3L− α
[C3

2 L2 + C1
(
1− (−1)n

)]
1 + α

(26)

The rotational angle at the free end can be written as:

dw
dx1

∣∣∣∣∣L = C1
(
1− (−1)n

)
+

C3

2
L2 + C2L (27)

When n is an even number, the rotational angle expressed in Equation (27) is independent of the
nonlocal parameter τ. This means that the nonlocal effect has no influence on the induced electric
potential as n = 2, 4, 6, . . .. Figure 6 plots the relationship between the normalized deflection and
the nonlocal parameter with and without the flexoelectric effect, in which n = 2. In Figure 6, we can
observe that the ratio of the concentrated force and distributed loads determines the normalized
deflection as being higher or lower than that of the classical model. At these two kinds of loads,
the bending deformations of cantilever beams without the flexoelectric effect have different directions,
as described in Equation (30) of the literature [29]. However, the effective mechanical moment induced
by the converse flexoelectric effect has the same direction in the bending deformation of the flexoelectric
sensors [15,20,35]. Hence, the flexoelectric effect would further strengthen (F/(q0L) = 1) or weaken
(F/(q0L) = 0.1), as in the bending stiffness of flexoelectric sensors involving the nonlocal effect.
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By taking n = 1, the nonlocal effect has a significant influence on the induced electric potential
shown in Equation (27). Figure 7 is presented to investigate the nonlocal effect on variation of the
normalized induced electric potential with respect to F/(q0L). When F/(q0L) < −0.1, the induced
electric potential is always strengthened and increases with the increase of the nonlocal parameter
and the ratio of F/(q0L), shown in Figure 7a. From Figure 7b, we can also observe that the induced
electric potential is weakened by some ratios of F/(q0L) and decreases with the increase of the nonlocal
parameter with some ratios of F/(q0L). However, the induced electric potential with the nonlocal effect
would change the direction along the thickness of the sensors when the ratio of F/(q0L) approaches –0.1.
This result indicates that the sign of the induced electric potential is fully dependent on the nonlocal
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effect and the category and nature of the external loads, which would be helpful in understanding
or designing nanosensors in which the beam structures act as the basic elements. For given loads
such as F/(q0L) < −0.1, materials with large nonlocal parameters could be used to design better
sensors. As F/(q0L) > −0.1, materials with large nonlocal parameters can be used only when F/(q0L)
approaches −0.1. Otherwise, materials with small nonlocal parameters are better options.
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5. Conclusions

Flexoelectric sensors were investigated in the present paper considering the nonlocal effect.
The governing equations and corresponding boundary conditions were developed based on the generalized
variational principle of the flexoelectric nanobeams. Further, the expression of the induced electric potential,
which is fully dependent on the rotational angles at the ends, was obtained. The numerical examples
revealed that the induced electric potential of the flexoelectric sensors has a significant nonlocal
effect with distributed loads only or with a combination of distributed loads and a concentrated
force. Specifically, the nonlocal effect affects the induced electric potential of flexoelectric sensors with
some combinations of external mechanical loads. Hence, the optimal induced electric potential of
flexoelectric sensors can be obtained by choosing appropriate structural sizes, material parameters,
and external mechanical loads. The results show that the electromechanical responses of flexoelectric
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sensors are sensitive to the nonlocal effect, which cannot be ignored. The present research could, thus,
inspire theoretical and experimental work on new flexoelectric structures at the nanoscale.
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