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Abstract: In this paper, an approach to determine the thermal impedance of a multi-chip silicon carbide
(SiC) power module is proposed, by fusing optical measurement and multi-physics simulations.
The tested power module consists of four parallel SiC metal-oxide semiconductor field-effect
transistors (MOSFETs) and four parallel SiC Schottky barrier diodes. This study mainly relies on
junction temperature measurements performed using fiber optic temperature sensors instead of
temperature-sensitive electrical parameters (TESPs). However, the fiber optics provide a relatively
slow response compared to other available TSEP measurement methods and cannot detect fast
responses. Therefore, the region corresponding to undetected signals is estimated via multi-physics
simulations of the power module. This method provides a compensated cooling curve. We analyze
the thermal resistance using network identification by deconvolution (NID). The estimated thermal
resistance is compared to that obtained via a conventional method, and the difference is 3.8%.
The proposed fusion method is accurate and reliable and does not require additional circuits
or calibrations.
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1. Introduction

Power modules with high power densities are increasingly in demand for various applications,
including electrified vehicles, transportations, and renewable energy systems [1–3]. The reliabilities
and performances of power modules are strongly dependent on the selection of switching devices.
Recently, wide-band-gap devices such as SiC and gallium nitride (GaN) devices have been actively
studied because of their potential to overcome the limitations of Si devices [4–6]. For high-power
applications, SiC metal-oxide semiconductor field-effect transistors (MOSFETs) are commonly used for
parallel operations [7,8]. In addition, they are often paired with anti-parallel diodes (Schottky barrier
diodes (SBDs)) to avoid potential reliability issues of the body diode [9,10].

It is expected that such parallel SiC power modules would encounter various thermal reliability
issues originating from their high power density. Common thermal reliability issues include thermal
stress, thermal fatigue, and wire bond lift-off caused by thermal expansion coefficient mismatches and
large temperature fluctuations [11–15]. Thus, thermal reliability analysis is crucial for parallel SiC
devices. One of the most commonly used parameters is thermal impedance.

The thermal impedance is composed of thermal resistance and thermal capacitance. The thermal
impedance can be derived from the junction temperature cooling curve. Thus, for an accurate thermal
impedance characterization, device junction temperature monitoring is essential. Junction temperatures
are primarily monitored by either measuring temperature-sensitive electrical parameters (TSEPs)
or employing additional temperature sensors [16–24]. Commercial equipment can automatically
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generate thermal impedance curves via TSEP measurement [25]. Various studies have been carried out
on measurements or estimations of the device junction temperature of a power module, as summarized
in Table 1.

Table 1. Junction temperature measurements and estimations.

Tj Measurement or
Estimation Method

TSEPs Integrated Sensor or External
Equipment

Forward voltage of body
diode [16,17]

Integrated Sensors [21–23] (resistive,
diode, piezoelectric sensors)

Gate threshold voltage [17] Infrared(IR) Camera
On-state voltage [18,19] Thermocouple
Switching time delay, turn-on
current transient [19,20] Fiber optic temperature sensor [24]

TSEPs are highly effective indicators that can be employed for the rapid monitoring of the junction
temperature [16–20]. The body diode of the MOSFET is used to estimate the junction temperature
via its forward voltage change [16,17]. The gate threshold voltage (Vgs) is also an effective parameter
because its reduction is linear with an increase or decrease in the junction temperature [17]. Numerous
studies related to drain-source saturation voltage (VOn) have been carried out. This requires specific
VOn measurement circuits. VOn can be used to estimate the real-time junction temperature after
calibrating VOn according to the junction temperature [18,19]. In addition, the switching time delay
linearly changes with the device junction temperature [19,20]. The switching method shows substantial
potential; however, it can be used to measure Tj only after a switching event. Thus, it is challenging to
continuously monitor the temperature changes.

It is also feasible to employ additional temperature sensors in Tj monitoring. One approach is to
integrate a temperature sensor into a power module, whereas another is to employ external equipment.
An SiC MOSFET also has an embedded temperature-sensing resistor or diode [21,22]. This monolithic
approach is advantageous in terms of directly and accurately measuring Tj. However, the fabrication
complexity and cost of such devices is high. Parallel devices require additional sensor-connection wires,
which complicates the module design. Miniature temperature sensors are another potential candidate.
In addition, negative-temperature-coefficient sensors or piezoelectric thermal-stress sensors [23]
have been reported. However, such sensors are not intended to individually monitor the temperature
of each device, and thus, further verification is required for multi-chip applications.

Temperature-sensing equipment includes thermocouples, IR cameras, and fiber optic temperature
sensors. The thermocouple has the advantages of direct measurement and low price. However,
the thermocouple has a slow response and its contact may lead to an additional thermal dissipation
path. Thus, it is usually used to verify the thermal resistance with regard to insulation problems.
The IR camera provides the temperature distribution in addition to the junction temperature. However,
for precise measurement, it is necessary to remove silicone gels filling the power module. A black
powder spray is commonly required to avoid reflection problems. Fiber optic temperature sensors
represent another option to precisely detect the junction temperature of a target device and its
temperature change [24]. However, fiber optics are relatively slow with respect to TSEPs.

As explained above, the currently available Tj sensing methods have several limitations. This study
proposes a new method for fusing Tj sensing and its estimation. The primary method uses fiber
optics because of the high precision and electrical insulation. The optics cannot detect fast responses
because of their low speed. The undetected regions are compensated via an estimation based on
multi-physics simulations of the power module. The analysis consists of three steps: (1) electrical
analysis, (2) steady-state thermal analysis, and (3) transient thermal analysis. After the transient curve is
derived using the two methods (fiber optic measurement and simulation-based estimation), the thermal
impedance is extracted using network identification by deconvolution (NID), which is a typical thermal
impedance extraction method [26,27]. This method yields the thermal resistance, which is compared
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to Rth calibrated using a traditional thermal resistance measurement method. The concept of the
proposed method is explained in Section 2. Further, Section 3 describes the experimental results
obtained based on the fiber optic and conventional methods and multi-physics simulation results.
Section 4 presents the validation of the extracted thermal impedance in comparison to the conventional
result. The conclusions are presented in Section 5.

2. Motivation and Proposed Approach

Figure 1 compares the junction temperatures measured by fiber optics and derived from TSEPs.
The green and red lines are the Tj values measured by the fiber optics for a SiC diode and MOSFET,
respectively. During the Tj measurement, either the MOSFET or diode is cooled after applying and
removing the load current of 100 A. This process simultaneously heats the MOSFET body diode and
its anti-parallel diode and changes their electrical parameters. The forward voltage (Vf) of the diode is
monitored as its TSEP and plotted by the blue line in Figure 1a. The TSEP of the MOSFET is derived
from the relationship between the drain–source current (Ids) and voltage (Vds) under low current
(below 100mA), which is expressed by the blue line in Figure 1b.
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Figure 1. Junction temperature curve during device cooling after heating by a load current of 100 A.
Measured junction temperatures of a silicon carbide (SiC) metal-oxide semiconductor field-effect
transistors (MOSFET) and SiC diode, compared to (a) a temperature-sensitive electrical parameters
(TSEP) of the diode forward voltage (Vf) and (b) TSEPs of the MOSFET (drain–source current (Ids)
and voltage (Vds)).

When the junction temperature is measured in the diode mode using the forward voltage,
the junction temperature of the MOSFET is not accurately estimated. The current flows simultaneously
between the body diode and SBD, which has a smaller resistance. This leads to an unbalanced
current flow. In addition, the cooling performance is different owing to the thickness and chip area
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of each device, which is discussed in detail in the experimental section. The junction temperature
is not accurately measured. The saturation temperature is different from the fiber optic measured
temperature, as shown in Figure 1a.

For the measurement of Von with Vgs = 15 V, the measured voltage is unstable in this power
module. As shown in Figure 1b, the temperature cooling curve exhibits noise during the cooling.
The use of this parameter is challenging in estimating Tj in multi-chip applications; thus, complex
circuits are required.

Contrary to the temperature curve of the TSEP, the temperature measured by the fiber optics is
stable and saturated to the ambient temperature (cold plate). The TSEP (Vf or Vds) is also saturated,
but not to room temperature. Therefore, we set the junction temperature measured by the fiber optics
as the actual temperature. However, the temperature measured between 0 and 1 ms (undetected
region) is unreliable because the sampling frequency of the fiber optic data acquisition (DAQ) is 1 kHz.

In this study, the two methods are fused to address the measurement accuracy and slow response
issues. The procedure is illustrated in Figure 2. First, we measure the junction temperature via the fiber
optics. The temperature measured by the fiber optics is the actual temperature of the SiC MOSFET.
Second, the multi-physics finite-element method (FEM) is applied to compensate for the undetected
region for the equivalent response time of the TSEP. Third, the thermal resistance is extracted based on
the compensated curve and validation is carried out using the conventional method.
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Figure 2. (a) Image of the fiber optics on the SiC MOSFET. (b) Conceptual image of the undetected
region compensated for by the FEM. (c) Schematic of the conventional measurement for validation.
The graph in (c) shows the structure functions obtained by the TSEP and proposed methods (A: structure
function based on the TSEP; B: structure function based on the proposed method with thermal grease;
C: structure function based on the proposed method without thermal grease).
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3. Experiment and Estimation by FEM Simulations

3.1. Junction Temperature Measurement

The SiC MOSFET power module (SPX300GB120C2S6-2, Semipowerex) is used to validate the
proposed method. The module is a 1200 V 300 A half-bridge inverter with four parallel SiC MOSFETs
and four parallel SBDs. The direct bonded copper (DBC) is composed of copper and alumina substrate.
To heat the SiC MOSFET, the load current is applied using a power source (Mentor Graphics). The power
source has a function to measure the drain-source voltage. The power dissipation of the SiC MOSFET
is calculated using the measured current load and drain-source voltage. The junction temperature
is monitored by an fiber optic sensor (manufactured by OPSENS) with a resolution of 0.05 ◦C and
temperature measurement range of −40 to 250 ◦C. The fiber optic sensor has low nonlinearity and
electrical insulation, and thus is suitable for power device applications. In addition, the junction
temperature can be measured even with the gels on the power module. The temperature distribution
in the devices can be accurately measured through multi-point sensing. The flexible temperature
sensor wire is guided by a customized aluminum fixture with an aluminum tube guide. The sensor tip
is touched on the SiC MOSFET to measure the junction temperature. The measured signal is recorded
by the signal conditioner, which provides a sampling rate of 1 kHz. The measurement system setup is
shown in Figure 3, and its specifications and equipment used are listed in Table 2.

Table 2. Experiment equipment.

Test Equipment Specifications and Main Functions

Thermal optics Temperature range: −40 to 250 ◦C, resolution: 0.05 ◦C
Signal conditioner Sampling rate: 1 kHz

Power source Power supply current: ~1500 A
Customized jig Aluminum profile and aluminum tube for guiding the fiber optics
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Figure 3. Experimental setup: fiber optic sensor, signal conditioner, power supply, and power module.

The measurement of the junction temperature cooling curve is carried out according to the
following test sequence. When the setup is established as shown in Figure 3, a load current of 120 A
is applied by the power source to heat the SiC MOSFET with Vgs = 15 V. After applying the load
current, the MOSFETs are heated until the junction temperature is sufficiently saturated. The saturation
criterion is that dTj/dt should reach 0.05 ◦C/s. The power dissipation is calculated by measuring
Vds (grease on: 1.08 V; without grease: 1.19 V) and Ids (with grease, without grease, 120 A) using a
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power source. After the power is turned off, the junction temperature is measured until the MOSFET
is cooled. The cooling is continued to ambient temperature (initial temperature of the cold plate).
The measured temperature is recorded and monitored in real time using a signal conditioner (DAQ).
The measurement results will be described in Section 4.3.

3.2. Finite Element Method (FEM) Simulation

To compensate for the undetected region, a multi-physics simulation is carried out with modeling
based on the module specification sheet. ANSYS, a commercial FEM software package, is used for the
multi-physics simulations. An electrical–thermal multi-physics analysis in three steps is carried out.
Using the ANSYS Q3D 3D extractor, the volumetric power loss is calculated for the specific power loss
of the wires. In the second step, device power dissipation including the generated volumetric heat
arising on wires from the first step simulation is imported to perform steady-state thermal analysis.
In step 3, the saturated temperature in the steady-state thermal simulation is applied to the transient
thermal simulation as the initial value. Through these steps, a cooling curve is obtained.

The material properties used in the electrical analysis (wire: aluminum, DBC top: copper) are
obtained from a library in ANSYS Q3D. The boundary condition is configured for current flow (120 A)
from the source to the sink, as shown in Figure 4. The volumetric power loss of the wire bonding on
each device to the copper pattern (M1,M2 to DBC pattern 2 and M3,M4 to DBC pattern4) and copper
pattern to copper pattern (DBC pattern 1 to 3, DBC pattern 2 to 4) where current flows in Figure 6 is
calculated. The total volumetric power loss on the wire bonding is 1.55 W. These simulation results are
the initial values of the steady-state thermal analysis (step 2).
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The material properties of the power module used in the steady-state thermal analysis (step 2)
are shown in Table 3. The mesh of each component is generated differently. The device, wire, solder,
and DBC top copper are generated with a fine mesh. The other component mesh is relatively coarse to
reduce the computation time. For the heating source, the results of step 1 are set in wires as the initial
values. The measured heat source (total power loss: 129.6 W (with grease), 142.8 W (without grease))
is applied to the four parallel MOSFETs. The steady-state thermal simulation results are shown in
Figure 5. Figure 5 shows the temperature distributions obtained with and without thermal grease,
respectively. The maximum temperatures are 66.3 and 98.2 ◦C, respectively. The temperatures of the
sensing point are 66.1 and 97.5 ◦C, respectively. The simulation results have errors about 1%. They are
tuned to match the saturated temperatures corresponding to the experiment and FEM simulation.
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Table 3. Material Properties in the finite-element method (FEM) simulation [28–30].

Material
Material Properties

Density [kg/m3] Thermal Conductivity [W/m·K] Specific Heat [J/kg·K]

Silicon Carbide 3210 370 750
SAC Solder 7400 50 150

Alumina 3950 25 730
Copper 8850 400 385
AlSiC 3010 200 741

Aluminum 2700 238 880
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A thermal transient simulation is carried out in step 3. The material properties are listed in Table 3.
The initial value of the transient simulation is used for the initial temperature before the cooling.
The thermal transient analysis is carried out with the heat transfer coefficient corresponding to the
bottom of the power module case. Heating source is not applied, except for the initial temperature
distribution in step 2. These simulation results are then employed to compensate for the undetected
region, as described in Section 4.1.

4. Thermal Impedance Extraction and Validation

4.1. Cooling Curve Compensation

Figure 6 compares the junction temperatures measured by the fiber optics with and without
thermal grease, as described in Section 3.1. The green and red lines are the Tj values measured by the
fiber optics for the SiC MOSFET. The blue dotted line indicates and distinguishes the measured and
undetected regions. The compensated region is the compensated junction temperature obtained using
the multi-physics simulation results presented in Section 3.2. The thermal transient simulation data
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was filled to the measured data. It is fitted to the equivalent response time with the TSEP. After the
compensated data are interpolated, as shown in Figure 6, the thermal resistance is extracted using
NID (Section 4.3).
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4.2. Conventional Method (Reference)

The thermal resistance can be calculated using Equation (1) based on the measured power
dissipation and temperature difference of junction to case

Rth =
T j − Tcase

Power dissipation
(1)

The thermal resistance can be obtained by dividing the difference between the device junction
temperature and case temperature on the bottom of the aluminum silicon carbide (AlSiC) base plate by
the power dissipation of the MOSFETs. The experimental setup with AQG-324 standard [31] is shown
in Figure 7. The junction temperature measurement setup is the same as that in Section 3 with an
added aluminum jig with a hole at the bottom. The MOSFETs are heated with a load current of 100 A
until the difference between Tj and Tcase is saturated.
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an added aluminum jig with a hole at the bottom. The MOSFETs are heated with a load current of 
100 A until the difference between Tj and Tcase is saturated. 

 
Figure 7. Experimental setup for the conventional method. Figure 7. Experimental setup for the conventional method.
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The results of repeated experiments are shown in Figure 8. The measured power dissipation is
89 W, while the thermal resistance is calculated to be 0.211 K/W.
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4.3. Comparison Thermal Resistance

The cumulative structure function is composed of the accumulated thermal resistance and
thermal capacitance. In the cumulative structure function, the X axis represents the accumulated
thermal resistance (Rth), while the Y axis represents the accumulated thermal capacitance (Cth).
These parameters start from the heating point (device junction) and cumulate to the partial thermal
resistance and capacitance for the heat flow path.

The cumulative structure function is calculated using a commercial software provided from
the T3ster Master from Mentor Graphics. The compensated temperature cooling curve in Figure 6
is imported to the software and analyzed to extract the structure function of the proposed method,
as displayed in Figure 9. The extracted junction-to-case thermal resistance (Rth j-case: 0.219 [K/W])
is from the device junction to the base plate. The red line is the structure function extracted based on
the temperature curve measured with thermal grease, while the green line is that without thermal
grease. The blue circle where the separation starts corresponds to Rth j-case the junction to the case.
A comparison of the proposed and conventional methods shows an error of 3.8%.
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5. Conclusions

In this paper, we proposed a thermal impedance characterization method based on optical
measurements assisted by a multi-physics simulation for a multi-chip SiC MOSFET power module.
Fiber optics was used to accurately measure the junction temperature cooling curve. The region that
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was not detected owing to the relatively slow response of the fiber optic sensor to the TSEP was
estimated via the multi-physics simulation. After compensation by the simulation result, the cooling
curve was extracted to obtain the thermal resistance and thermal capacitance via the NID method.
The results were validated using the conventional measurement method, and the error was within
3.8%. In addition to the high accuracy, the proposed method has the following advantages: (1) simple
measurement without employing complex calibrations, (2) measurement availability without removing
the silicone gel of the power module, and (3) not requiring additional circuits or additional device pin
structures. Thus, this method could be an attractive solution for measuring the thermal impedance in
applications entailing multi-chip SiC power modules with anti-parallel diodes.
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