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Abstract: In the present work, an analytical approximate solution of mixed electroosmotic/pressure
driven flow of viscoelastic fluids between a parallel plates microchannel is reported. Inserting the
Oldroyd, Jaumann, or both time derivatives into the Maxwell model, important differences in the
velocity profiles were found. The presence of the shear and normal stresses is only close to the wall.
This model can be used as a tool to understand the flow behavior of low viscosity fluids, as most
of them experiment on translation, deformation and rotation of the flow. For practical applications,
the volumetric flow rate can be controlled with two parameters, namely the gradient pressure and
the electrokinetic parameter, once the fluid has been rheologically characterized.

Keywords: electroosmotic; pressure driven flow; viscoelastic fluid; oldroyd derivate;
jaumann derivate; microchannel

1. Introduction

Microfluidics deals with the behavior, precise control and manipulation of fluids that are
geometrically constrained to a small, typically sub-millimeter scale. It is a multidisciplinary
field intersecting engineering, physics, chemistry, microtechnology and biotechnology [1]. In this
regard, microfluidic devices, microscale laboratories on a microchip (lab-on-a-chip, LOC) and
micro-electro-mechanical-systems (MEMS) have become important due to their wide applications
and the rapid development of the micro- and nano-technology. Important applications are found
in thermo/mechanical (heating/cooling systems, pumping, design, control, saving material and
energy), chemical (mixing, separation and homogeneous/heterogeneous reactions), biomedical
(collection, dispensing, detection, mixing and species separation) and pharmaceutical (drug delivery)
industries. In this context, the role of electrokinetic phenomena in the tasks of microfluidic devices
has grown over the years; the first experimental and theoretical developments on electrokinetic
transport phenomena are attributed to Reuss (1809), Helmholtz (1879) and Smoluchowski (1903) [2].
The four key electrokinetic phenomena are streaming potential, electroosmotic flow, electrophoresis
and sedimentation of charged suspensions (for details, see [2–5]). The electrokinetic transport combines
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two driving mechanisms, electrophoresis and electro-osmosis; the first one refers to the motion of
a charged particles in a fluid under the influence of an electric field, and the second one refers to
the movement of a volume of an aqueous solution adjacent to a solid charged surface when an
external electric field is applied tangentially along the surface [1,2,4,5]. Therefore, it is fundamental to
understand the electrokinetic phenomena involved in these microfluidic devices [1,6].

In recent decades, scientific researchers from all areas have focused on the important aspects
of microfluidics such as the hydrodynamic behavior of electroosmotic flows of Newtonian [7–11]
and non-Newtonian fluids [12–17], different geometries [18–29], high/low zeta potentials [17,30–35],
the Joule heating effect [7,14,29,30,36] and numerical simulations [7,17,18,31,37].

Many of these studies assume Newtonian fluids with constant viscosity; however, in microfluidics
devices, the substances to be analyzed are usually non-Newtonian such as biofluids (saliva, blood,
proteins and DNA), colloidal suspensions or polymers [6,17]. To characterize the hydrodynamics,
it requires starting from the Cauchy momentum equation instead of the Navier–Stokes equation,
together with a constitutive equation that describes the dependence of the viscosity with the strain
rate. The constitutive equations used in electroosmotic flow (EOF) can be grouped into three
categories: inelastic, viscoelastic and kinetic models [17,38–40]. Inelastic models include the power
law, Herschel–Bulkley, and Bingham. Viscoelastic models include the upper-convected Maxwell
(UCM), Oldroyd-B, Carreau, second-grade fluid, third-grade fluid, Burgers and Phan–Thien–Tanner
(PTT). The kinetic models include the finitely extensible dumbbells with a Peterlin approximation
of the spring force (FENE-P). An exhaustive review of the non-Newtonian effects on electrokinetics
carried out until 2013 is summarized in [17]. About the viscoelastic models, an analytical solution for
one-dimensional electroosmotic flow between oscillating micro-parallel plates of viscoelastic fluids
represented by a single-mode generalized Maxwell model, used to understand the flow characteristics,
was presented by Liu et al. [41]. Analytical solutions for the oscillatory shear flow using the
multi-mode upper-convected Maxwell model driven by electroosmotic forcing with asymmetric
wall zeta potentials, to investigate the influence of the relevant dimensionless parameters on the
normalized velocity profiles when imposing an externally potential field, was presented by Sadek
and Pinho [28]. The transient electroosmotic flow through with the Maxwell fluid model in a slit
microchannel with asymmetric zeta potentials was studied by Escandón et al. [42]. The transient
electroosmotic flows of Maxwell fluids in a micro-parallel channel and a microtube was presented by
Li et al. [43]. In addition, the transient electroosmotic flow of generalized Maxwell fluids with fractional
derivative in a straight pipe with circular cross-section was investigated by Wang et al. [44]. On the
other hand, results concerning the transient electroosmotic flow driven by AC electric fields were
obtained by Jian et al. [45] and Liu et al. [41], who obtained an analytical solution of the time-periodic
electroosmotic flow for the generalized Maxwell fluids through a rectangular microchannel under
the Debye–Hückel approximation. The start-up from the rest of the electroosmotic flow of Maxwell
fluids in a rectangular microchannel with asymmetric high zeta potentials at the walls was studied by
Jiménez et al. [46]. An analytical solution of the unsteady electroosmotic flow of Oldroyd-B fluid in a
capillary analyzing the relaxation and retardation times was presented by Zhao et al. [47]. The flow
pattern of electroosmotic flow in a porous microchannel with a second-grade viscoelastic fluid under
alternating electric field was studied by Misra and Chandra [34]. Analytical and numerical solutions
of an electroosmotic flow with a third-grade fluid between micro-parallel plates, to analyze the
influence of the principal parameters on the velocity profile, were presented by Akgul and Pakdemirli
[37]. The steady-state of a conjugate heat transfer process in an electroosmotic and fully developed
laminar flow with a Phan–Thien–Tanner fluid, including Joule heating effects, was solved numerically
and asymptotically by Escandón et al. [26]. A non-linear solution of a viscoelastic fluid under the
combined influence of electrokinetic and pressure forces using the Debye–Hückel approximation was
properly coupled by Afonso et al. [23]. A simple method to find the volumetric flow rate for various
viscoelastic (UCM and PTT) electroosmotic flows through microchannels was presented by Park and
Lee [24]. The numerical solution of the thermal transport of the steady electroosmotic flow in a slit
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microchannel, which considers constant wall heat fluxes, Joule heating, conjugate heat transfer and
temperature-dependent properties, was investigated by Sadeghi et al. [48]. The steady electroosmotic
flow considered asymmetric wall zeta potentials for the simplified PTT and FENE-P models was
studied by Afonso et al. [49]; this work was extended by Dhinakaran et al. [25], inserting the full
Gordon–Schowalter convective derivative in the PTT to analyze the critical shear rate and Deborah
number for the onset of fluid instabilities. The two-dimensional numerical simulations for electrokinetic
flow through a microchannel using the Carreau model was performed by Zimmerman et al. [50].

As seen in the previous paragraph, the viscoelastic models have been widely used to predict the
electroosmotic flow behavior of fluids with non-Newtonian viscosity and elastic stresses. In this context
and to extend the different physical interpretations of this kind of fluids flow, it is important to highlight
that, in some of these models, the incorporation of the time derivative of the stress tensor can be done
in two ways. One form is called the Oldroyd contravariant derivative (also called the codeformational
derivative), which gives their components, in fixed coordinates, of the time derivative as observed
in a coordinate system which translates and deforms with the flow field. Another time derivative is
the Jaumann derivative (also called corotational derivative), which gives their components, in fixed
coordinates, of the time derivative as observed in a coordinate system which translates and rotates with
the local rotation [38,40]. The former is one of the most used in the electroosmotic flows [23,28,47,49,51].

In addition to the vast number of theoretical studies on electroosmotic flows presented above,
the scientific community has carried out experimental investigations with non-Newtonian fluids.
Song et al. [52] presented the first experimental study of the electrokinetic instability in viscoelastic
fluid flow with conductivity gradients for mixing applications. Ko et al. [53] performed an experimental
study of fluid elasticity and shear thinning on the electroosmotic flow of four types of polymer solutions
in insulator-based dielectrophoresis, i.e., in a constriction microchannel, as an emerging technique to
manipulate a variety of particles. In another work, Mukherjee et al. [54] investigated the electroosmotic
flow of two immiscible viscoelastic fluids in a parallel flat plates microchannel, in their analysis
the effect of a depletion layer is incorporated near the walls. To assess the theoretical predictions,
the authors performed experiments on electro-osmosis using aqueous solutions of polyacrylamide.
Their analysis reveals that neglecting the existence of a depletion layer results in grossly incorrect
predictions of the transport of complex fluids. Pimenta and Alves [55] investigated the electroosmotic
flow of viscoelastic fluids in cross-slot and flow-focusing microdevices, with especial focus on the onset
of elastic instabilities. The experimental and numerical results suggest that the large stresses developed
inside the electric double layer, together with the streamline curvature around the geometry corners,
play a fundamental role in the onset and the dynamics of the observed electro-elastic instabilities.
Bello et al. [56] and Olivares et al. [57] carried out a theoretical and experimental investigation for
the electroosmotic mobility of polymeric solutions of methyl cellulose and carboxymethyl cellulose,
respectively, with the behavior of a power law fluids. For their part, Huang et al. [58] conducted
experiments on the electroosmotic driven flow using current monitoring and microscopy fluorescence
methods and developed a theoretical model by coupling a generalized Smoluchowski approach with
the power law constitutive model. Here, the fluid sample used in the experiment is a polyethylene
oxide aqueous solution with several concentrations. The results show an enhancement of the
electroosmotic velocity due to the shear thinning effect. Many other experimental works about
electrokinetics of non-Newtonian fluids are included in the comprehensive review reported by Zhao
and Yang [17], as well as in the dissertation carried out by Lu [59], indicating the need to establish
solid experimental setups to validate the theoretical investigations in the current scientific literature.
In this context, Berli [60], Boyko et al. [61] and Mei and Qian [62] realized theoretical investigations
about the electrokinetic pumping of power law and viscoelastic fluids; here, they emphasized that
the understanding and predictions of electroosmotic flows with non-Newtonian fluids are of practical
importance for the experimental design as well as the operation of various micro/nanofluidic devices.

To the best authors’ knowledge, there are no studies in electroosmotic flows that simultaneously
use the codeformational and corotational time derivatives in electroosmotic flows. Therefore,
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the objective of this research is to contribute to understanding the behavior of mixed
electroosmotic/pressure driven flow of viscoelastic fluids between a parallel flat plates microchannel,
based on the deformation and rotation that the material element experiences under flow. An analytical
approximate solution for the velocity profile and flow rate using a regular perturbation scheme for
small values of the viscoelastic parameter is obtained. The prediction of the flow field obtained
in this work contributes to new findings that have not been reported previously, representing an
important benchmark that will help in the design and control of experiments with viscoelastic fluids
in microchannels.

2. Problem Formulation

2.1. Physical Model Description

The electroosmotic flow of an incompressible viscoelastic fluid in a microchannel formed by two
parallel flat plates of height 2H and length L is considered. The origin of the rectangular coordinates
system is placed at the x-symmetry axis of the microchannel and y-axis points out in the transverse
direction, which is normal to the surface of the microchannel, as shown in Figure 1. The driving
electroosmotic forces are provided by a constant electric field Ex in the axial direction between the
inlet and outlet of microchannel. A buffer solution of symmetrical electrolyte (z:z) is considered, at the
channel walls constant zeta potentials are imposed. In the system, a high concentration of electric
charges in the Debye length, κ−1, inside of the electrical double layer (EDL) is presented.

Ex
y

x

L

k
-1

k
-1

2H

Flow

Figure 1. Schematic sketch of electroosmotic flow between two parallel flat plates.

To solve the problem, the following assumptions are considered:

• The flow is laminar and fully developed, V = (u(y), 0, 0).
• The fluid is incompressible.
• The fluid properties are constant. The temperature change of the fluid is less than 10 K [12] and

throughout the flow domain, the temperature is uniform.
• The electrical double layers, do not overlap H > κ−1.
• The electrolyte is symmetric, z+ : z−.
• For the Poisson–Boltzmann solution, the electric potential in the vicinity of the wall is, ζ ≤ 25 mV;

therefore, the Debye–Hückel linearization can be used.

2.2. Governing and Constitutive Equations

The electroosmotic flow is governed by the continuity equation for an incompressible fluid,

∇ · V = 0, (1)

and by the Cauchy momentum equation
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ρ
DV
Dt

= −∇ ·Π + ρeE, (2)

The D
Dt represents the material derivative, ρ, V , ∇·, Π, ρe and E are the fluid density, the velocity

vector, the divergence operator, the total stress tensor, the electric charge density and the electric field
vector, respectively. The total stress tensor is given by

Π = pI + τ, (3)

where p, I and τ are the pressure, the unit tensor and the extra stress tensor, respectively. According to
the theory of electrostatics [2], the ρe is governed by the Poisson equation

ε∇2Φ = −ρe, (4)

where ε is the fluid dielectric permittivity and Φ is the total electric potential. To define the extra stress
tensor, the viscoelastic Maxwell model used is

τ+ λ
Dτ

Dt
= η0D, (5)

where λ, η0 and D = ∇V + (∇V)T are the fluid relaxation time, the zero-shear-rate viscosity and the
rate of deformation tensor, respectively.

In this work, two time derivatives are used, the Oldroyd contravariant derivative,
∇
τ , also called

codeformational derivative [38–40]

∇
τ =

∂

∂t
τ + V · ∇τ −

[
(∇V)T · τ + τ · (∇V)

]
, (6)

and the Jaumann derivative,
◦
τ, also called the corotational derivative [38–40] as follows

◦
τ =

∂

∂t
τ + V · ∇τ − 1

2

[
(W)T · τ + τ · (W)

]
, (7)

where W is the vorticity tensor.
To establish the level of deformation/rotation that the fluid experiments with the flow,

a configurational convective derivative,
�
τ, that contains both the Oldroyd and Jaumann time

derivatives is proposed

�
τ =

∂

∂t
τ + V · ∇τ − 1

2

[
(W)T · τ + τ · (W)

]
+ (1− α) (

1
2

D · τ+ 1
2

τ · D), (8)

where α is the configurational parameter, which considers the level of deformation and rotation of the
experimental fluid.

2.3. Poisson–Boltzmann Equation

The total electric potential for a long microchannel at any location in the system is given by a linear
superposition of the applied external electric potential and the potential in the EDL, as Φ (x, y) ≡ Φ =

ψ (y) + φ (x), where ψ(y) is the electric potential distribution within the EDL and φ(x) = φ0 − xEx is
the external electric potential on the x− direction, φ0 is the electric potential at the inlet of the channel
(x = 0) and Ex is the external electric field [2]. Due to the external electric field is independent of the
position and constant along the axial direction the Poisson–Boltzmann equation is

d2ψ

dy2 = −ρe

ε
. (9)
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Here, the electric charge density is given by ρe = −2zen0sinh(zeψ/kBT) where z is the valence
of the ions, e is the electron charge, n0 is the ionic density, kB is the Boltzmann constant and T is the
absolute fluid temperature, respectively. Using the Debye–Hückel linearization, Equation (9) becomes

d2ψ

dy2 = κ2ψ, (10)

where κ2 = (2n0z2e2/εkBT) is the Debye–Hückel parameter, related with the Debye length κ−1 or
EDL thickness [2]. The solution of Equation (10) requires the corresponding boundary conditions,
zeta potential at the wall, ψ(y=H) = ζ and at the symmetry plane/axis (dψ/dy) |y=0= 0, yielding

ψ = ζ
cosh (κy)
cosh (κH)

, (11)

and therefore ρe for low surface potential is given by the combination of Equations (9)–(11), obtaining

ρe = −εκ2ψ = −εκ2ζ
cosh (κy)
cosh (κH)

. (12)

2.4. Constitutive Equation

The symmetric extra stress tensor τ of the polymer solution is assumed. The extra stress tensor
for the codeformational derivative can be obtained by inserting Equation (6) into Equation (5), and the
normal τxx, τyy, τzz and shear τxy stresses can be expressed as

τxx = 2λτyx
∂u
∂y

, (13)

τyy = 0, (14)

τzz = 0 (15)

and

τxy = η0
∂u
∂y

, (16)

where u is the fluid axial velocity. For the corotational derivative, the extra stress tensor can be obtained
by inserting Equation (7) into Equation (5), which reduce to

τxy +
1
2

λ

[
∂u
∂y
(
τxx − τyy

)]
= η0

∂u
∂y

, (17)

and the normal and shear stresses can be expressed as

τxx = λ

(
∂u
∂y

)
τxy, (18)

τxx = −τyy, (19)

τzz = 0 (20)

and



Micromachines 2020, 11, 986 7 of 21

τxy =
η0

∂u
∂y[

1 + λ2
(

∂u
∂y

)2
] . (21)

On the other hand, the extra stress tensor for configurational convective derivative can be obtained
by inserting Equation (8) into Equation (5), which reduce to

τxy +
1
2

λ

{
∂u
∂y
(
τxx − τyy

)
− (1− α)

[
∂u
∂y
(
τxx + τyy

)]}
= η0

∂u
∂y

, (22)

and the normal and shear stresses can be expressed as

τxx = λ
∂u
∂y

τyx (2− α) , (23)

τyy = −λ
∂u
∂y

τxy (α) , (24)

τzz = 0 (25)

and

τxy =
η0

∂u
∂y[

1 + λ2
(

∂u
∂y

)2
(2α− α2)

] . (26)

The principal advantage of the global model represented by Equation (22) is that it is possible to
work with viscoelastic fluids using the codeformational (α = 0), corotational (α = 1) or the mixture of
both (0 ≤ α ≤ 1) time derivatives. The normal and shear stresses, the first normal stress difference N1

and the first normal stress coefficient Ψ1 of the Maxwell model using the different time derivatives are
summarized in Table 1, where γ̇ = ∂u

∂y is the shear rate. It is important to mention that an adequate
constitutive equation for viscoelastic fluids can predict the rheological properties presented in Table 1.
These properties can be determined experimentally by rheometric measurements to adjust the model
for a specific fluid.

Table 1. Principal variables of the Maxwell model using different time derivatives.

Variables Oldroyd Jaumann Configurational (Mixed)

τxx 2λη0γ̇2 λη0γ̇2

1+λ2γ̇2
λη0γ̇2(2−α)

1+λ2γ̇2(2α−α2)

τyy 0 − λη0γ̇2

1+λ2γ̇2 − λη0γ̇2α
1+λ2γ̇2(2α−α2)

τxy η0γ̇
η0γ̇

1+λ2γ̇2
η0γ̇

1+λ2γ̇2(2α−α2)

N1 = τxx − τyy 2λη0γ̇2 2λη0γ̇2

1+λ2γ̇2
2λη0γ̇2

1+λ2γ̇2(2α−α2)

Ψ1 =
N1
γ̇2 2λη0

2λη0
1+λ2γ̇2

2λη0
1+λ2γ̇2(2α−α2)

2.5. Cauchy Momentum Equation

According to the assumptions presented in Section 2.1, the conservation momentum equation is
given by

∂

∂y
τxy =

dp
dx
− ρeEx, (27)
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where dp/dx ≡ p,x. Inserting Equation (12) into Equation (27) and upon integration respect to y,

τxy = p,x y + εκζEx
sinh (κy)
cosh (κH)

+ c, (28)

where c is an integration constant. Introducing Equation (26) into Equation (28), a nonlinear differential
equation is obtained

∂u
∂y[

1 + λ2
(

∂u
∂y

)2
(2α− α2)

] =
1
η0

(
p,x y + εκζEx

sinh (κy)
cosh (κH)

+ c
)

. (29)

The corresponding boundary conditions for Equation (29) are the no-slip boundary condition
at the channel walls and the symmetry boundary condition at the centerline of the microchannel,
respectively, as

u (y = H) = 0 (30)

and
∂u
∂y

∣∣∣∣
(y=0)

= 0. (31)

2.6. Dimensionless Equations

To obtain the dimensionless set of Equations (29)–(31), the following scale factors are used:
ū = u/ush, ȳ = y/H, τ̄xx = τxx H/η0ush, τ̄yy = τyy H/η0ush and τ̄xy = τxy H/η0ush. First, the following
expression is yielded:

∂ū
∂ȳ[

1 + De2
sh

(
∂ū
∂ȳ

)2
(2α− α2)

] = Γȳ− κ̄
sinh (κ̄ȳ)
cosh (κ̄)

+ C, (32)

where ush = −εζEx/η0 is the characteristic Helmholtz–Smoluchowski electroosmotic velocity;
Desh = λush/H is the Deborah number based on ush and Γ = −(H2/εζ)(p,x /Ex), which represents the
ratio of pressure to electroosmotic driving forces; and κ̄ = H/κ−1 is the ratio between the microchannel
half-height to the Debye length or electrokinetic parameter.

Secondly, the dimensionless boundary conditions are obtained, respectively, as

ū (ȳ = 1) = 0 (33)

and
∂ū
∂ȳ

∣∣∣∣
(ȳ=0)

= 0. (34)

In Equation (32), De2
sh is replaced by the parameter ε, A = − κ̄ sinh(κ̄ȳ)

cosh(κ̄) and C is a dimensionless
integration constant. Therefore, Equation (32) can be rewritten as

∂ū
∂ȳ

=

[
1 + ε

(
∂ū
∂ȳ

)2 (
2α− α2

)]
(Γȳ + A + C) . (35)

2.7. Approximate Solution

To determine the solution of the electroosmotic flow, Equations (33)–(35) are solved by asymptotic
technique. Firstly, the perturbation parameter is identified, in this case the Deborah number is replace
by ε. The solution is restricted to small values of ε (low viscoelastic fluids); in the limit ε → 0,
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the Newtonian solution is obtained. Equation (35) is solved applied a regular perturbation method for
small values of ε. For this purpose, the following expansions are suggested [40]

ū = ū0 + εū1 + ..., (36)

A = A0 + εA1 + ... (37)

and
C = C0 + εC1 + ..., (38)

with the use of Equations (36)–(38), Equation (35) describes the mixed electroosmotic/pressure driven
flow presented in the last section take the form

∂ū
∂ȳ

+ ε
∂ū1

∂ȳ
+ ... =

[
1 + ε

(
∂ū0

∂ȳ
+ ε

∂ū1

∂ȳ
+ ...

)2
(2α− α2)

]
[ȳΓ + A0 + εA1 + ... + C0 + εC1 + ...] (39)

and the boundary conditions in Equations (33) and (34)

ū0 + εū1 + ... = 0 (40)

and
∂ū0

∂ȳ
+ ε

∂ū1

∂ȳ
+ ... = 0 (41)

for the terms of zeroth power (ε0), Equation (39) reduces to

∂ū0

∂ȳ
= ȳΓ + A0 + C0, (42)

and the corresponding boundary conditions from Equations (40) and (41) yield

ū0 = 0 (43)

and
∂ū0

∂ȳ
= 0. (44)

Integrating in the axial direction the Equation (42) and applying the boundary conditions in
Equations (43) and (44), the dimensionless velocity profile for the mixed electroosmotic/pressure
driven flows of Newtonian fluids is obtained as

ū0 =
1
2

Γ
(

ȳ2 − 1
)
+ 1− cosh (κ̄ȳ)

cosh (κ̄)
(45)

For terms of first power (ε), Equation (39) reduces to

∂ū1

∂ȳ
= A1 + C1 +

(
∂ū0

∂ȳ

)2 (
2α− α2

)
(ȳΓ + A0 + C0) , (46)

and the corresponding boundary conditions from Equations (40) and (41) yield

ū1 = 0 (47)

and
∂ū1

∂ȳ
= 0, (48)
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from Equations (46)–(48), the solution for the velocity component u1 is obtained

ū1 = −
(

cosh (κ̄ȳ)
cosh (κ̄)

− 1
)

+
1
4
(2α− α2)Γ3

(
ȳ4 − 1

)
− 3(2α− α2)Γ2

(
ȳ2 cosh (κ̄ȳ)

cosh (κ̄)
− 1
)

+ 6(2α− α2)
Γ2

κ̄

(
ȳ

sinh (κ̄ȳ)
cosh (κ̄)

− sinh (κ̄)

cosh (κ̄)

)
− 6(2α− α2)

Γ2

κ̄2

(
cosh (κ̄ȳ)
cosh (κ̄)

− 1
)

+
3
4

(
2α− α2

)
Γκ̄

(
ȳ

sinh(2κ̄ȳ)
cosh2 (κ̄)

− sinh(2κ̄)

cosh2 (κ̄)

)

− 3
8
(2α− α2)Γ

(
cosh (2κ̄ȳ)
cosh2 (κ̄)

− cosh (2κ̄)

cosh2 (κ̄)

)

− 3
4
(2α− α2)Γκ̄2

(
ȳ2

cosh2 (κ̄)
− 1

cosh2 (κ̄)

)

− 1
3
(2α− α2)κ̄2

(
cosh3 (κ̄ȳ)
cosh3 (κ̄)

− 1

)

+ (2α− α2)κ̄2

(
cosh (κ̄ȳ)
cosh3 (κ̄)

− 1
cosh2 (κ̄)

)
. (49)

The resulting velocity profile from Equation (36), and by considering the zeroth and first order for
the perturbation parameter ε in the approximate solution, is the following

ū =
1
2

Γ
(

ȳ2 − 1
)
+ 1− cosh (κ̄ȳ)

cosh (κ̄)

− ε

(
cosh (κ̄ȳ)
cosh (κ̄)

− 1
)

+
ε

4
(2α− α2)Γ3

(
ȳ4 − 1

)
− 3ε(2α− α2)Γ2

(
ȳ2 cosh (κ̄ȳ)

cosh (κ̄)
− 1
)

+ 6ε(2α− α2)
Γ2

κ̄

(
ȳ

sinh (κ̄ȳ)
cosh (κ̄)

− sinh (κ̄)

cosh (κ̄)

)
− 6ε(2α− α2)

Γ2

κ̄2

(
cosh (κ̄ȳ)
cosh (κ̄)

− 1
)

+
3ε

4

(
2α− α2

)
Γκ̄

(
ȳ

sinh(2κ̄ȳ)
cosh2 (κ̄)

− sinh(2κ̄)

cosh2 (κ̄)

)

− 3ε

8
(2α− α2)Γ

(
cosh (2κ̄ȳ)
cosh2 (κ̄)

− cosh (2κ̄)

cosh2 (κ̄)

)

− 3ε

4
(2α− α2)Γκ̄2

(
ȳ2

cosh2 (κ̄)
− 1

cosh2 (κ̄)

)

− ε

3
(2α− α2)κ̄2

(
cosh3 (κ̄ȳ)
cosh3 (κ̄)

− 1

)

+ ε(2α− α2)κ̄2

(
cosh (κ̄ȳ)
cosh3 (κ̄)

− 1
cosh2 (κ̄)

)
. (50)
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The dimensionless flow rate Q̄ can be determined from integration of the velocity profile of
Equation (50). The velocity profile can be simplified due to the electric double layer being much
smaller than the microchannel half-height (10 ≤ κ̄ ≤ 100), cosh (κ̄) � 1, and therefore tanh (κ̄) ≈ 1;
the dimensionless flow rate becomes

Q̄ = 2
∫ 1

0
ūdȳ = 2− 2

3
Γ− 2

κ̄

− 2ε

(
1
κ̄
− 1
)

− 2
5

ε(2α− α2)Γ3 − 6ε(2α− α2)Γ2
(

1
κ̄
− 2

κ̄2 +
2
κ̄3 − 1

)
+ 12ε(2α− α2)Γ2

(
1
κ̄2 −

1
κ̄3 −

1
κ̄

)
− 12ε(2α− α2)Γ2

(
1
κ̄3 −

1
κ̄2

)
+

3
2

ε
(

2α− α2
)

Γ

(
1
2

cosh (2κ̄)

cosh2 (κ̄)
− 1

4κ̄

sinh (2κ̄)

cosh2 (κ̄)
− κ̄

sinh (2κ̄)

cosh2 (κ̄)

)

− 3
4

ε(2α− α2)Γ

(
1

2κ̄

sinh (2κ̄)

cosh2 (κ̄)
− cosh (2κ̄)

cosh2 (κ̄)

)

+ ε(2α− α2)Γ
κ̄2

cosh2 (κ̄)
− 2

3
ε(2α− α2)

(
κ̄

cosh2 (κ̄)
− κ̄2

)

− 2
9

ε(2α− α2)κ̄ + 2ε(2α− α2)

(
κ̄

cosh2 (κ̄)
− κ̄2

cosh2 (κ̄)

)
. (51)

3. Results and Discussion

Different time derivatives into the Maxwell model for an electroosmotic flow in a parallel plates
microchannel are analyzed. The dimensionless parameters used to validate the approximate solution in
Equation (50) were obtained by a suitable combination of the following parameters: 0.1 ≤ H ≤ 10 µm,
1 ≤ κ−1 ≤ 300 nm, Ex ∼ 104 Vm −1, ζ ≤ 25 mV, 7×10−10 ≤ ε ≤ 10−9 CV−1m−1, 10−4 ≤ η0 ≤ 10−2

kgm−1s−1.
Equation (45) describes the axial velocity of an electrolyte solution by two contributions,

the first one due to an imposed pressure gradient with a characteristic parabolic velocity profile
(called Poiseuille flow) and the second one due to an imposed electrical field usually called
electroosmotic flow with a characteristic fairly flat velocity profile (called plug flow). Figure 2 shows
the comparison of the velocity profiles of an electroosmotic flow obtained in this work and those
carried out by Masliyah and Bhattacharjee [2] using the same value of the electrokinetic parameter
κ̄ = 50. To compare the results, the parameters Γ = 0, De2

sh = 0, α = 0 were selected, where the
pressure gradient and the viscoelasticity effects are neglected. Therefore, the classical plug-like profile
for both models is exhibited; here, an excellent agreement between the approximate solution and the
exact solution is obtained.

The electrokinetic parameter κ̄ is defined as the ratio of the microchannel half-height to the
Debye length and considering the assumption that H > κ−1. It means that the size of the EDL or
region of excess charge is relatively small. The effect of the electrokinetic parameter κ̄ on the velocity
profile for a purely electroosmotic flow with Γ = 0 and De2

sh = 0 is shown in Figure 3: lower κ̄ for
Poiseuille-like and higher κ for plug-like flow. The same behavior was reported by Afonso et al. [23].
Dutta et al. [63] reported a typical example for a 0.1 mM buffer solution in a channel with κ̄ = 100
and ζ = 25 mV and determined the Debye length in the order of 30 nm for a channel height 6 µm;
for 1 mM concentration the Debye length becomes 10 nm for a channel height of 2 µm. According to
Debye–Hückel approximation, the minimum of κ̄ ∼= 10, while lower values are not compatible.
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Figure 2. Comparison of the analytical solution and the approximate solution (present work) for an
electroosmotic flow.
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Figure 3. Effect of the electrokinetic parameter on the velocity profile with Γ = 0 and De2
sh = 0.

In Figure 4, the dimensionless velocity profiles for the purely electroosmotic flow (Γ = 0) varying
the configurational parameter α are shown; no significant changes between the Newtonian model
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with α = 0 and De2
sh = 0 and the codeformational model with α = 0 and De2

sh = 0.05 are appreciated.
On the other hand, by increasing α, the corotational model is taking into account increasing almost
eight times the velocity magnitude for α = 1. It is important to mention that the corotational derivative
considers only rotation of the material element with the flow field, which is possible close to the wall
where the velocity gradient exists. This situation is possible for shear thinning fluids, which experience
less resistant to flow. This behavior with viscoelastic fluids is presented when the polymer chains
organize to flow and the energy required is less.

0 1 2 3 4 5 6 7 8
0.0

0.2

0.4

0.6

0.8

1.0

 

 

y

u

 De2

sh
=0.05

 De2
sh

=0.05

 De2
sh

=0.05

 Newtonian fluid,  De2
sh

Figure 4. Effect of the codeformational (α = 0), mixture (α = 0.5) and corotational (α = 1) derivatives
on the velocity profile with κ = 20, Γ = 0, De2

sh = 0.05.

In Figure 5, the influence of the pressure gradient on the dimensionless velocity of viscoelastic
fluids with De2

sh = 0.025 and κ̄ = 20 is shown; Γ represents the ratio of pressure to electroosmotic
driving forces and the electrokinetic parameter that for this cases are equally important. Depending on
the direction of the gradient pressure, concave and convex Poiseuille velocity profiles are obtained;
the shapes of these profiles were reported by Afonso et al. [23] when α = 0 for a Newtonian fluid.
The three cases have the same behavior: from codeformational derivative to corotational derivative,
an important increment of the velocity magnitude is obtained. Most of the viscoelastic fluids
deform and rotate under flow and the value of the configurational parameter has to be determined
experimentally for specific viscoelastic fluid. For mixed electroosmotic and pressure driving flow,
the resulting velocity profile is the superimposed effect of both electroosmotic and pressure gradient
flow phenomena. It is important to note that negative and positive velocities are presented in the
channel, depending on Γ > 0 or Γ < 0, respectively. When Γ is opposite to the flow, the highest velocity
is close to the wall.

In Figure 6, the effect of the electrokinetic parameter κ̄ on the dimensionless velocity of viscoelastic
fluids with De2

sh = 0.0025 and Γ = 1 is presented; by increasing κ̄ the velocity profile changes from
Poiseuille to Plug flow, which is the same behavior analyzed and presented in Figures 2 and 3.
This behavior is better appreciated when α = 0 (the inset figure), which is very similar to the
Newtonian case, where close to the wall the velocity becomes flatter for larger κ̄. The velocity
magnitude increases considerably with the following combination of parameters; the viscoelasticity
of the fluid, high electrokinetic parameter (κ̄ = 100) and α 6= 0. Afonso et al. [23] obtained analytical
solutions for the flow of viscoelastic fluids using the PTT model, They mentioned that the κ̄ effects on
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the velocity profile is restricted to a narrow region, the effective EDL thickness: higher values of κ̄ lead
to thinner EDL and consequently higher velocity gradients.

0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0 De2sh=0.025

y

u

 
 
 

Figure 5. Effect of the pressure gradient (Γ = 1, 0,−1) on the velocity profile with κ = 20 and
De2

sh = 0.025 for the codeformational (α = 0), mixture (α = 0.5) and corotational (α = 1) models.

De2
sh=0.0025

y

u

 Newtonian fluid
 
 
 

y

u

Figure 6. Effect of the electrokinetic parameter (κ = 20, 50, 100) with De2
sh = 0.0025 and Γ = 1 for the

codeformational (α = 0), mixture (α = 0.5) and corotational (α = 1) models.
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The internal micro-structure of viscoelastic fluids interact in a complex process with electric
fields and surfaces, leading either to adsorption or wall-depletion, as described in [51,57]. In Figure 7,
the effect of the viscoelasticity on the dimensionless velocity with κ̄ = 20 and Γ = 1 is exhibited.
When the De2

sh increases, the velocity plateau also increases significantly; the same results were
reported by Afonso et al. [23] using the simplified PTT model. Ferras et al. [51] analyzed the effects
of the solvent to polymer viscosity ratio and viscoelasticity using the simplified Phan–Thien–Tanner
model with linear stress coefficient function; in their work, the Debye–Hückel approximation and
the electrokinetic parameter of (κ = 20) were used. They reported that increasing the viscoelasticity
leads to an increase of the dimensionless velocity, which is more intense for intermediate values of
viscosity ratio (Newtonian viscosity/(Newtonian viscosity + polymer viscosity)). They also concluded
that the viscoelastic parameter quantifies not only the elasticity via the normal stresses, but measures
the shear-thinning of the viscosity that directly affects the velocity profile as well. An increase of
the maximum velocity can be observed by increasing the ratio of the viscosities as well as the fluid
shear-thinning. In this context, the configurational parameter α of the present work performs the same
function as the viscosity ratio together with the fluid viscoelasticity.

y

u

 De2sh=0
 De2sh=0.0025
 De2sh=0.005
  De2sh=0.025

y

u

Figure 7. Influence of the viscoelasticity on the velocity profile with κ = 20 and Γ = 1, for the
codeformational (α = 0), mixture (α = 0.5) and corotational (α = 1) models.

The normal and shear stress profiles as a function of the transversal position for two values of
De2

sh are shown in Figure 8a,b, respectively. In the channel central region, the shear and normal stresses
are practically zero; the presence of both stresses is only close to the wall, being higher for lower De2

sh
for α 6= 0. Ferras et al. [51] found the same behavior using the simplified Phan–Thien–Tanner model
with a linear stress coefficient function for the polymer contribution plus a Newtonian solvent. For the
codeformational time derivative (α = 0), both the shear and normal stresses are higher with increasing
viscoelasticity. For the codeformational time derivative (α = 0), both the shear and normal stresses
are higher with increasing viscoelasticity. Afonso et al. [23] reported that the normal stresses increase
linearly with the Deborah number regardless of κ̄.

Finally, the dimensionless volumetric flow rate as a function of the electrokinetic parameter,
for two viscoelastic fluids with De2

sh = 0.0025 and De2
sh = 0.025, is presented in Figure 9. The flow rate

increases almost linearly with κ̄; the viscoelastic effect increases considerably the flow rate. The flow
rate depends on both κ̄ and the viscoelasticity; with these two parameters, the flow rate can be
controlled. Characteristics of electroosmotic flows of non-Newtonian fluids of viscoelastic have been
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investigated theoretically [17,23,25,37,49,51]; these investigations unanimously revealed a common
feature that the flow pattern as well as volumetric flow rate of electroosmosis is significantly affected
due to the existence of fluid viscoelasticity [17].
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Figure 8. Dimensionless (a) normal and (b) shear stresses as a function of the position for the
codeformational (α = 0), mixture (α = 0.5) and corotational (α = 1) models, for De2

sh = 0.0025
and 0.05.
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Figure 9. The volumetric flow rate as a function of the electrokinetic parameter for the codeformational
(α = 0), mixture (α = 0.5) and corotational (α = 1) models, for De2

sh = 0.0025 and 0.025.
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4. Conclusions

In this work, an analytical approximate solution of mixed electroosmotic pressure driven flows of
viscoelastic fluids between parallel plates was obtained. The Oldroyd and Jaumann time derivatives in
the Maxwell model were used. The most important findings of this research work are:

• The model was compared and validated with results published in the specialized literature.
• The approximate solution is only valid for low viscoelastic fluids.
• The approximate solution adequately captures the physics of the problem; it can be adjusted with

experimental data of a specific viscoelastic fluid.
• The electrokinetic parameter changes the velocity profile, lower κ̄ for Poiseuille-like and higher κ

for plug-like flow, as is reported by other models.
• Higher values of κ̄ lead to thinner EDL and consequently higher velocity gradients.
• The direction of gradient pressure modifies the velocity profile to concave or convex, as reported

in the literature.
• An increment of the viscoelasticity fluid generates an increase of the velocity and the flow rate.
• The presence of the shear and normal stresses is only close to the wall.
• The configurational parameter α performs the same function as the viscosity ratio used in other

models; this parameter directly affects the velocity field magnitude.
• For practical applications, the volumetric flow rate can be controlled with two parameters,

namely the gradient pressure and the electrokinetic parameter, once the fluid has been
rheologically characterized.

This model can be used as a tool to understand the flow behavior of low viscoelastic fluids,
which translate, deform and rotate under flow. There are theoretical investigations and models in
microfluidics that require establishing solid experimental setups to validate and improve them.
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Nomenclature

Desh Deborah number
e electron charge, 1.602 x 10−19 C
Ex external electric field, Vm−1

H microchannel half-height, m
kB Boltzmann constant, 1.381 x 10−23 JK−1

L microchannel length, m
n0 ionic density, m−3

N1 first normal stress difference, kgm−1s−2

p pressure, kgm−1s−2

t time, s
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T absolute temperature, K
u axial velocity, ms−1

ush Helmholtz-Smoluchowski electroosmotic velocity, ms−1

x axial coordinate, m
y transverse coordinate, m
z valence of the ions
Q̄ dimensionless flow rate
ū dimensionless fluid axial velocity
ȳ dimensionless transverse coordinate

Tensors and vectors
D rate of deformation tensor, s−1

E electric field vector, Vm−1

I unit tensor
V velocity vector, ms−1

W vorticity tensor
τ extra stress tensor, kgm−1s−2

Π total stress tensor, kgm−1s−2

Φ total electric potential, V

Greek symbols
α configurational parameter
χ dimensionless axial coordinate
η0 zero-shear-rate viscosity, kgm−1s−1

Γ ratio of pressure to electroosmotic driving forces
κ−1 Debye length, m
κ2 Debye–Hückel parameter, m−2

λ relaxation time, s
φ external electric potential, V
ψ electric potential, V
Ψ1 first normal stress coefficient, kgm−1s−2

ρ fluid density, kgm−3

ρe electric charge density, Cm−3

τii normal stresses, kgm−1s−2

τxy shear stress, kgm−1s−2

ε dielectric permittivity, CV−1m−1

ζ zeta potential in the shear plane of the electric double layer, V
γ̇ shear rate, s−1

κ̄ ratio of the microchannel half-height to the Debye length
τ̄xx, τ̄yy dimensionless normal stresses
τ̄xy dimensionless shear stress

Mathematical
∇ codeformational time derivative
◦ corotational time derivative
� configurational time derivative

Subscripts
sh refers to Helmholtz-Smoluchowski
x refers to the axial coordinate
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0 indicates reference conditions
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