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Abstract: This study presents the doping of higher alkanes, namely, pentadecane (C15) and hexadecane
(C16), with ZnS:Mn nanoparticles to create new types of in-line optical fiber sensors with unique optical
properties. In this research, the phenomenon of light beam leakage out of the taper and its interaction
with the surrounding materials is described. The fabricated new materials are used as cladding
in a tapered optical fiber to make it possible to control the optical light beam. The manufactured
sensor shows high sensitivity and fast response to the change in the applied materials. Results are
presented for a wide optical range of 1200–1700 nm with the use of a supercontinuum source and
an optical spectrum analyzer, as well as for a single wavelength of 800 nm, corresponding to the
highest transmitted power. The results present a change in the optical property dependence on the
temperature in the cooling and heating process. For all materials, the measurements in a climatic
chamber are provided between 0 and 40 ◦C, corresponding to the phase change of the alkanes from
solid to liquid. The addition of nanoparticles to the volume of alkanes is equal to 1 wt%. To avoid a
conglomeration of nanoparticles, the anti-agglomeration material, Brij 78 P, is used.

Keywords: nanoparticles; optical fiber taper; fiber technology; sensors; higher alkanes; advancements
in fiber forming technologies; functional micro- and nanofibers for miniaturisation technologies

1. Introduction

In recent years, a rapid development in optical fiber technology has been observed [1].
Light propagation in a fiber is associated with the difference between the fiber structure, especially the
properties of the core and cladding materials, corresponding in most cases with their refractive indices
ncore and ncladding, and the core diameter. For all kinds of fibers, a fundamental requirement is to
protect the light inside the structure. The electromagnetic field of light waves propagating inside
the fiber can be derived from solving Maxwell’s equations with boundary conditions given by the
material structure [1–3]. Two methods of light propagation are currently possible. The first method is
based on Snell’s law, where the total internal reflection (TIR [3]) phenomenon is used. This method
of propagation is mostly used for standard fibers with a solid core and cladding, and with an mTIR
modified version for photonic crystal fibers with the structure of air holes representing the cladding
and solid core. The second method of light propagation involves the phenomenon of photonic bandgap
propagation [4], which is mostly used in a photonic crystal fibers with air hole cores.

Micromachines 2020, 11, 1006; doi:10.3390/mi11111006 www.mdpi.com/journal/micromachines

http://www.mdpi.com/journal/micromachines
http://www.mdpi.com
https://orcid.org/0000-0002-7497-4380
https://orcid.org/0000-0002-9071-2620
http://www.mdpi.com/2072-666X/11/11/1006?type=check_update&version=1
http://dx.doi.org/10.3390/mi11111006
http://www.mdpi.com/journal/micromachines


Micromachines 2020, 11, 1006 2 of 13

In standard fibers, the difference between the value of the refractive index of the core and cladding
determines the number of modes propagating in a fiber, known as the normalized frequency V, which is
equal to 2405. This parameter is described by [5]:

V = a
2π
λ

√
ncore2 − ncladding

2 (1)

Additionally, this parameter is dependent on the wavelength and the core diameter. To change the
propagation properties in both cases, it is necessary to change the refractive index or the core diameter.

A second method for changing the light propagation parameter is to modify the size of the fiber
core. It should be noted that the propagation of a light beam in fibers, especially in a standard one,
due to Snell’s law, is also connected with a reflection on the border of two materials from which the
core and cladding are formed. In such a propagation, part of the power passes from the core to the
cladding for a certain distance. This distance is known as the penetration depth of light from the core
to the cladding and can be described by [6–8]:

dp =
λ

2π
√

ncore2 sin2 θ− ncladding
2

(2)

where λ is the determined wavelength of the light, θ is the angle of the incident plane wave on the
core/cladding surface and ncore and ncladding are the core and cladding refractive indices, respectively.

This parameter depends on wavelength propagation in fibers, as well as on the angle of an incident
plane wave on the core and cladding border [8–10]. It is noteworthy that this parameter enables direct
access to the light and increases the sensitivity to external changes in the environment. In the presented
case, the applied alkanes with nanoparticles interact in a leaking light as double-clad materials that
change their phase state.

Theoretical and experimental investigation of changing core and cladding diameters, optical beam
parameters, as well as a refractive index profile along with the fiber show that with the reduction of
the diameter/dimensions of the core and the clading, the diameter of the propagating beam increases,
filling the entire taper structure and extending beyond it [11].

For both kinds of fibers, a technique known as tapering can be applied for changing the core and
cladding diameters [6–11]. Tapering technology uses a relatively easy technique to fill the air holes and
provides the possibility of the continuous monitoring of changes of the light propagation through the
fiber during element manufacturing, i.e., a diameter of taper region control.

The above description of light propagation in different fibers shows its wide range of applications.
The telecommunication application of fibers is widely described in the literature [12]. Nowadays,
significant interest is directed to optical fiber sensors [12,13] due to their small dimensions, low weight,
rapid response, and the possibility of operating in different environments. Their construction is divided
into several groups. One of the groups is based on an interferometry measurement that enables very
precise measurements [13] but requires an advanced system of acquisition and causes an increase in
dimensions. Some sensors use fibers as elements that deliver light to the measurement places and
their light beam is output from the fiber and interacts with a measurement factor [14]. The final part of
sensors uses the change of light amplitude as an interaction of the external parameters of the fiber [14].
The accuracy and sensitivity of such sensors are strictly connected with the influence of the detected
factors on light propagation. For these reasons, in many detectors, additional materials are introduced
as media that multiply the signal level, which influences the light beam. In all the above mentioned
cases, the main advantage is that the light measures the change of the surrounding environment
without changing the material and geometrical properties of the investigated material.

In addition, in recent years, nanoparticles have become a significant topic of interest. Unique results
for light interaction with matter can be observed in semiconducting nanoparticles. They possess
interesting optical, electronic, chemical, and electrochemical properties that are useful for a
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wide variety of applications, including optoelectronics [15,16], catalysis [17,18] and sensing [19].
Among II-VI semiconducting nanoparticles, manganese-doped zinc sulfide (ZnS:Mn) nanocrystals
have been substantially studied due to their unique properties and their diverse applications,
including photovoltaics [20,21] and transparent nanocomposites [22]. Zinc sulfide is a large band-gap
energy (3.6 eV) semiconductor that is well known for its photoluminescence, electroluminescence,
and thermoluminescence. ZnS:Mn and its orange emission have been known since the early days of
luminescence research because of its high quantum efficiency at room temperature. ZnS:Mn is non-toxic,
chemically more stable, and technologically better than many other semiconducting materials based
on toxic elements, such as CdSe and CdS [23,24].

In this study, threshold temperature sensors based on the use of additional materials, namely,
alkanes with a nanoparticle admixture that influence light propagation in a biconical fiber taper,
are presented.

2. Materials and Methods

2.1. Materials

In the research, a standard optical fiber (SMF28e) was used and built as two concentrically
arranged materials to form the structure of core and cladding (Figure 1).
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Figure 1. Propagation of light in an optical fiber taper [25,26].

Table 1 presents the main parameters of the used fiber in the future technological process. As can
be seen, the refractive index of the core is slightly higher than the refractive index of the cladding.
Some part of the energy leaks to the cladding as an evanescence field (Figure 1) within a distance of up
to several dozen nm [10], known as the penetration depth. In such a structure, there are no possibilities
to directly interact with the light propagating inside the core due to the much larger dimensions of the
thickness of the fiber cladding.

Table 1. Parameters of applied standard telecommunication fiber.

Parameter [Units] Core Cladding Mode Field

Diameter [µm] 8.2 125 10.98

Refractive index [a.u.] 1.4548 1.443 –

One of the methods used to obtain a decreasing diameter of the core and the cladding is a process
in which part of the fiber is heated to the melting point and is then stretched out. This technique is
called the tapering technique. Due to the wide description of tapers in literature, hence, it will not be
presented in this paper [7,10].

The obtained structure can be described as a structure in which the light propagates in a dielectric
structure (taper waist) corresponding to the fiber core and the air surrounding becomes the cladding.
The difference in refractive indices between the core and the cladding in a standard fiber is ~1%
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(see Table 1). For a structure with surrounding air (refractive index of ~1003), the value is ~45%
(assuming the average value of the collapse coverage made the structures 1.45). In such arrangements,
there exists an opportunity to replace air with various materials. Such works have been widely used to
build sensors, filters, amplifiers [27–35].

As base materials that act as double cladding, higher alkanes, such as n-pentadecane (C15) and
n-hexadecane (C16), have been applied. Table 2 shows the main parameters of these alkanes [36,37].

Table 2. Chemical parameters of n-pentadecane and n-hexadecane [36,37].

Alkane Formula Molecular
Mass

Melting
Point

Boiling
Point

Flash
Point Density Refractive

Index

Refractive
Index at
20.4 ◦C

n-
Pentadecane CH3(CH2)13CH3 212.42 9–10 ◦C 269–270 ◦C 132 ◦C

(269 ◦F) 0.769 1.4320 1.4317

n-
Hexadecane CH3(CH2)14CH3 226.45 18 ◦C 287 ◦C 135 ◦C

(275 ◦F) 0.773 1.4345 1.4344

The presented chemical properties of the used materials were checked in our laboratories at
a temperature of 20.4 ◦C using a Hanna Instruments HI 968000 (Woonsocket, RI, USA) electronic
refractometer in the range of 1.3330–1.5040 nD20, with a control material standard water used for the
measurement of the refractive index equal to 1.3329.

These materials are very well known and have been described widely [38–40]. As seen from
Table 2, the refractive indices are close to those of the standard cladding of the fiber.

It should be mentioned that higher alkanes change their transparency for light together with
phase change in a melting point [41,42]. Analyzing the state of RI in a solid stated, the extinction ratio
is high, which also causes that the real part of RI of alkanes is higher than RI of fibers which influences
the light attenuation.

The innovation in this study is an admixture of the mentioned alkanes with nanoparticles of
ZnS:Mn + DBSA + CYS, which means that nanoparticles consist of the material ZnS: Mn (zinc sulfide:
manganese) and have a combination of dodecylbenzenesulfonic acid (DBSA) and 2-mercaptoethylamine
hydrochloride (cysteaminium chloride, cys determination) on the surface. Images of the used
nanoparticles are presented in Figure 2. Figure 3 shows the particle size distribution of the
ZnS:Mn nanoparticles.
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The size of the ZnS:Mn nanoparticles dispersed in THF (Tetrahydrofuran) was determined by
DLS (dynamic light scattering). Figure 4 shows the resulting distribution, with a hydrodynamic radius
of ~6 nm. According to the Scherrer equation, the calculated crystallite size of the particles is three
times smaller than the diameter, as determined by dynamic light scattering. This can be explained by
the intensity weighted indication of the particle diameter and the organic shell around the particle,
leading to higher values for the particle diameters. Additionally, it has to be considered that crystal
imperfections contribute to additional line broadening in X-ray diffraction.
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The materials for the synthesis of the ZnS:Mn nanoparticles were used without additional
purifications. Manganese (II) acetate tetrahydrate (~99%), zinc (II) acetate dehydrate (~98%),
and tetratrahydrofuran (~99%) were purchased from Sigma Aldrich. Cysteamine chloride (~97%)
and 4-dodecylbenzenesulphonic acid (~90%) were purchased from Merck and Fluka, respectively.
Sodium sulfide hydrate (~60%) was pursed from Riedel-de Haan. The synthesis procedure for the
ZnS:Mn nanoparticles is patented [27]. The ZnS:Mn nanoparticles were stabilised by cysteaminium
chloride and 4-dodecylbenzylsulphonic acid were used in our previous work as an element of hybrid
photovoltaic devices [20]. In a typical synthesis, 10.3 mmol of zinc (II) acetate dehydrate, 1.95 mmol
of manganese (II) acetate tetrahydrate, and 7.40 mmol of cysteamine hydrochloride were dissolved
in 125 mL of distilled water (solution I) under stirring for ~15 min. Simultaneously, 7.4 mmol
4-dodecylbenzenesulphonic acid was dissolved in 2 mL of tetrahydrofuran (solution II) and 5.80 mmol
of sodium sulfide was dissolved in 50 mL of water (solution III), respectively. Solution I was placed
in a 250 mL three-neck flask. Solution II was very slowly injected under stirring into solution I.
To precipitate the ZnS:Mn QDs, the aqueous solution of sodium sulfide (solution III) was slowly added
dropwise under stirring into the reaction mixture inside the round-bottom flask. Finally, the turbid
dispersion was refluxed at 85 ◦C under stirring for 3.5 h. The precipitated nanoparticles were collected
by centrifugation at 10,000 rpm for 15 min. Finally, the white powder of the ZnS:Mn nanoparticles was
dried in a vacuum oven at 60 ◦C for 24 h.
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From our measurements and observations, the most important information was that the
agglomeration of nanoparticles occurs very often. This problem was resolved through the use
of a special material known as polyethylene glycol monooctadecyl ether, Brij 78 P, with its parameters
presented in Table 3 [28].

Table 3. Chemical parameters of applied anti-agglomeration material Brij 78 P [29,30].

Formula Molecular Mass Melting Point Solubility

C58H118O24 1199.57 ~56–60 ◦C At 20 ◦C in methanol, chloroform and ethanol

By applying the Brij 78 P material, the optical and chemical-physical parameters, especially the
refractive index and melting temperature, for the used higher alkane materials in the propagated wave
were maintained, as was the response for the influences on optical propagation of light inside of the
created structure.

Table 4 presents the cumulative refractive indices of the mixtures of alkanes with Brij 78 P (0.5 wt%)
and nanoparticles (1 wt%).

Table 4. Refractive indices of investigated mixtures at 20.4 ◦C.

C15 C15 with Brij C15 with Brij and
Nanoparticles C16 C16 with Brij C16 with Brij and

Nanoparticles

1.4317 1.4319 1.4319 1.4344 1.4346 1.4346

2.2. Technology

In this section, the technology of threshold sensor manufacturing based on a biconical optical
fiber taper covered in higher alkanes with nanoparticles is presented. For the manufacturing of the
biconical optical fiber tapers, the author’s arrangements named FOTET II (Fiber Optic Taper Element
Technology) were used [34], as presented in Figure 4.

A detailed description of the manufacturing process are included in the previous articles,
hence, it will not be presented in this paper [11,34]. Prepared tapers used for presented
threshold sensors are characterized by low losses below α = 0.2 dB in a whole investigated range,
elongation L = 20.20 ± 0.05 mm and diameter of the taper waist ϕ = 14.50 ± 0.50 µm.

In the next step, due to the mechanical properties of the prepared taper, the protection tube was
used with a schematic and cross-section presented in Figure 5a,b, respectively, and a sample image in
Figure 5c.
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Measurements were performed for 1550 nm. The choice of this value was dictated by a used
optical fiber with the cut off for 1260 nm—a single mode works in a third telecommunication range.
Additionally, for this wavelength, all the available measurement equipment possesses the best quality
and sensitivity. Furthermore, all provided works are focused on implementation for industrial use.
Measurements were provided in stages. The first one was used for spectral analysis and therefore
was equipped with a wide range diode type SLED from Excalos (Schlieren, Switzerland) with a range
of 1550 nm ± 100 nm and an OSA-AQ6375 optical spectrum analyzer (Yokogawa, Tokyo, Japan).
The second measurement system was designed to measure the hysteresis of the temperature change
time response. An S3FC1550 single-mode laser source for 1550 nm from Thorlabs (Newton, NJ, USA)
was used and a PM100D detector from Thorlabs with a S140C photodiode power sensor was applied.
All temperature changes and their stabilization were provided by a climatic chamber VCL7010 from
Votche Ltd., (Balingen, Germany).

3. Results and Discussion

The measurements were divided into a few steps, which clearly show the influence of materials
that create the taper cladding with different admixtures. The first step provides the manufacturing of
an optical fiber adiabatic taper with low insertion losses below 0.2 dB in the whole range. A taper
secured in a glass tube was measured in the climatic chamber for a SLED light source, as well as the
polarization parameters (Figure 6).
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Figure 6. Setup for measurement of optical fiber devices.

C15 and C16 were investigated in the temperature range corresponding to the two-phase
state—solid and liquid. For the solid phase in both cases, optical transmission in the fiber sensor was
very low. This is connected with the value of the refractive index in the solid state and, as well as with
the properties of materials, they are not transparent, which causes strong scattering of light by kinds
of microstructures within the solid state of all power from the optical fiber taper. At the transition
temperature, sharp increases in power are observed and the power is maintained in the liquid state.
The additional material Brij 78 P was applied to provide non-agglomeration of the nanoparticles.
Figure 7 shows the hysteresis of power change for both pure materials and for those with the admixture
of Brij 78 P.
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Figure 7. Hysteresis of power change for a pure material and with the Brij admixture for the example
of C15 materials.

As can be observed, there exists a hysteresis in the cooling and heating process. In all cases, it can
be observed that the transmission of light in the heating process is slower than in the cooling one.
Additionally, the difference in temperature in which full power is being observed to the temperature it
starts to see light transmission is changed from 3 to 8 ◦C. For the cooling process, the change of power
exhibits a step change from maximum to zero. The hysteresis relates to the volume of the materials
used. The heating process starts from the outer edge and spreads to the optical taper materials. A full
switching range can be observed over 5 ◦C (from 10 to 15 ◦C), which is connected with the uneven
process of melting materials. In the change of power during the cooling process, levels can be described
as a step change. The change from the liquid state to the solid state is 1 ◦C (8–7 ◦C). This phase
transition is much faster than in the heating process.

In all cases, Brij 78 P does not influence significantly the heating process, as well as the cooling
one, so it can be accepted that there is no change of the base material properties. The next part of the
investigation relates to the admixture of nanoparticles from ZnS:Mn to both materials.

Figure 8 shows the hysteresis of the power change for a 1550 nm laser (S3FC1550 from Thorlabs)
for C15 materials with Brij and with ZnS:Mn is presented.
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changes for a 1550 nm light beam.

For both C15 and C16, the hysteresis of a phase change from solid to liquid, and vice versa, can be
observed. C15 in the heating process has a much longer time of full change of the physical state.
For C16, the time of a physical state complete change is similar for the heating and cooling process.
An admixture of nanoparticles for both alkanes changes the temperature of phase transition from solid
to liquid one: C15 from 20 to 25 ◦C and C16 from 22 to 24 ◦C. This is related to the heating capacity of
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the used nanoparticles. Furthermore, for the C15 material, a reduction in the phase change from solid
to liquid from 10 to 5 ◦C can be observed. For the C15 alkane with nanoparticles in a heating process,
the maximum value very slowly reaches 40 ◦C.

These results were confirmed for a wide-range diode. Figures 9 and 10 for C15 and Figures 11 and 12
for C16 present the changes of power in a wide range for the heating and cooling processes, respectively.
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Figure 12. Cooling process in C16 (a) and with an admixture of NPs (b) for SLED 1400–1700 nm.

In a wide range, the measurement for a single wavelength was confirmed. The presented devices
can work for different wavelengths with the same level of temperature detection. Nanoparticles of
ZnS:Mn introduce a new kind of nucleating agent, which absorbs some part of the temperature
energy (with a higher heat capacity than alkanes) and allows for shifting of the phase state. Moreover,
the nanoparticles do not interact with the light propagated inside the taper’s structure but change the
properties of the cladding materials.

For checking the influence of the applied nanoparticles for light parameters, the polarization
properties have been checked. As a source, the Santec TLC 210 laser was used for a wavelength
of 1550 nm, which corresponds to the telecommunication range and for polarization parameters,
the polarimeter PAX from Thorlabs with measurement head for IR wavelength was used. Figure 13
shows the change of ellipticity for the C15 and C16 alkanes depending on the temperature change.
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Figure 13. Fluctuation of ellipticity for C15 (a) and C16 (b) for pure and with NP mixture at 15–40 ◦C
for all microdevices.

As can be observed for C15, the addition of NPs does not change the polarization properties,
especially ellipticity. Nanoparticles cause a situation where there is no change of the heating and
cooling value in ellipticity. For C15 with and without the admixture, the change of ellipticity and
azimuth is negligible.

For C16 at a lower temperature (below 20 ◦C), the pure material and the admixture of NP in the
heating process do not propagate power that is confirmed by the results—ellipticity and, especially,
azimuth are the only measurement on random noise as there is no light. In the cooling process for
both types of materials to 15 ◦C, the state of polarization is maintained. This is strictly connected with
the material properties and the value of hysteresis (for cooling process temperature in which power
disappears is below 15 ◦C).

Figure 14 shows the change of azimuth for the C15 and C16 alkanes depending on the
temperature change.
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As can be noticed in a stabilized temperature value of azimuth for both alkanes and their mixtures
light power does not change its value. For C15, the value of azimuth does not change during the
temperature change. For C16, in the heating process, the value of azimuth increases. In this case,
the admixture of nanoparticles reduces this phenomenon.

All observed fluctuation refers only to the climatic chamber properties. For all materials, the value
of ellipticity is ±5◦.

4. Conclusions

In the study, the influence of the admixture of ZnS:Mn nanoparticles to n-pentadecane (C15) and
n-hexadecane (C16) has been presented. As can be noticed, the nanoparticles shift the temperature
of the change phase state from state to liquid for 3 ◦C for both alkanes. For the cooling process,
it can be observed that the temperature shifts by ~3 ◦C for C16 to a higher temperature, and for C15,
the temperature stays at the same point. These shifts can be a result of the higher heat capacity of
the mixture with nanoparticles compare to the pure material. It is noteworthy that it works for a
wide spectral range of the propagated light. It is possible to obtain a threshold temperature sensor by
admixing NP possess different materials properties. As can be noticed nanoparticles do not introduce
a significant change of polarization parameters. For C15, the ellipticity with the NP admixture shows
that it changes only in a very small range of less than 1% for the cooling and heating process, for pure
material observed the change is over 5%. As can be observed for both alkanes and mixtures with
NP, the azimuth stays at the same level independently to temperature and in this case forms a stable
polarizer in a wide range. Furthermore, it should be mentioned that in C16 with nanoparticles,
we observe standard or pure effects of temperature influence on an SOP parameter of light which is not
observed for the second alkane with the nanoparticle, especially in a heating process. The admixture
of nanoparticles reduces the change of azimuth in this process to about 10◦ from 40◦ for a pure one.
For C15 with and without nanoparticles, azimuth stays at the same level. For all measurements, there is
no visible fluctuation of polarization parameters during the investigation, which makes the noise ratio
of these microdevices negligible.

In all cases, the presented solution can be used as a temperature sensor/detector in difficult to
reach places. Additionally, by a special admixture of nanoparticles, it is possible to create sensors that
give a signal that the temperature is exceeded above the allowable enabled to react and avoid the
damage of equipment or infrastructure. All the proposed solutions are compact, in line, and there is a
possibility of using different kinds of lasers.
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