8-(pyridin-2-yl)quinolin-7-ol as a platform for conjugated proton cranes: a DFT structural design

Anton Georgiev and Liudmil Antonov

		Singlet excited state						
Compound	Environment	S 1			S ₂			
		E*, kcal/mol	f	origin	E*, kcal/mol	f	origin	
	vacuum	26	0.08	mainly	27	0.0	mainly (HOMO	
4	toluene	27	0.13	HOMO-	30	0.0		
	acetonitrile	29	0.12	LUMO	34	0.0	2)-LUMO	
	vacuum	25	0.23	номо	36	0.0	mainly (HOMO	
5	toluene	20	0.33	HOMO-	32	0.0	mainly (HOMO-	
	acetonitrile	21	0.30	LUMO	32	0.0	2)-LUMO	
	vacuum	20	0.21	номо	30	0.0	mainly (HOMO	
6	toluene	19	0.29	HUMO	30	0.0		
	acetonitrile	21	0.26	LUMO	31	0.0	5)-LUMO	
	vacuum	22	0.28	mainly	32	0.08		
7	toluene	20	0.40	HOMO-	31	0.12	(LUMO:1)	
	acetonitrile	22	0.39	LUMO	33	0.10	(LUMO+1)	
	vacuum	33	0.17	HOMO- LUMO	38	0.0		
11	toluene	28	0.21	mainly	36	0.0	mixed	
	acetonitrile	26	0.17	HOMO- LUMO	35	0.0		
	vacuum	24	0.44	mainly	30	0.0		
12	toluene	18	0.57	HOMO-	28	0.0	mixed	
	acetonitrile	16	0.54	LUMO	26	0.0		

Table S1. Frank-Condon states (vertical transitions) of the E1K form of 4-7 and 11-12.

* relative energy in respect of the most stable optimized structure in S1 (Table 1 and Figures 1-2).

Table S2. Important structural parameters of the tautomers of **4-7** and **11-12** in ground and excited S1 (in brackets) state.

Compound	Environment	E1K	K1K	K2K	K2E				
rxh (X=O, N1′ or N10), in Å									
	W0.011100	0.963			1.009				
	vacuum	(0.965)	-	-	(1.010)				
Л	toluono	0.964			1.011				
7	toruerie	(0.967)	-	-	(1.010)				
	acotonitrilo	0.965			1.012				
	acetoIntille	(0.968)			(1.011)				
	vacuum	0.996	-	1.057	1.055				
	vacuum	(1.047)	(-)	(-)	(1.024)				
5	toluono	0.998	-	1.056	1.052				
5	toruerie	(1.059)	(-)	(-)	(1.024)				
	acotonitrila	0.999	-	1.056	1.043				
	acetoIIItIIIe	(1.076)	(1.013)	(1.029)	(1.024)				
6	vacuum	1.007	-	1.052	1.064				

		(1.068)	(-)	(1.054)	(1.027)
	toluono	1.009	-	1.049	1.062
	toruerie	(-)	(1.018)	(1.039)	(1.027)
	a cotonitrilo	1.009	1.080	1.046	1.056
	acetomitme	(-)	(1.023)	(1.031)	(1.027)
		0.993	-	1.060	1.049
	vacuum	(1.013)	()	0	(1.020)
7	toluono	0.995	-	1.059	1.045
7	toruerie	(1.015)	()	0	(1.021)
	acatonitrila	0.996	-	1.058	1.040
	acetoIntrie	(1.017)	(1.017)	(1.033)	(1.023)
		0.991	-	1.061	1.044
	vacuum	(-)	(-)	(-)	(1.022)
11	toluono	0.992	-	1.062	1.041
	toituelle	(-)	(-)	(-)	(1.026)
	acatonitrila	0.993	-	1.064	1.038
	acetoIntrie	(-)	(-)	(1.030)	(1.080)
10	Vacuum	0.993	-	1.065	1.049
	vacuum	(-)	(-)	(-)	(1.022)
	toluono	0.993	-	1.067	1.045
12	toittelle	(-)	(-)	(-)	(1.026)
	acotonitrilo	0.993	-	1.069	1.039
	acetomine	1.060	(-)	1.061	(1.046)

Table S3. Natural charges in vacuum in selected atoms in 4 and 5 in ground state* and excited state (in brackets).

Comm		E1K		K2K			K2E		
comp.	0	Nquin	$\mathbf{N}_{\mathbf{pyr}}$	0	Nquin	Npyr	0	Nquin	Npyr
4	-0.647	-0.406					-0.584	-0.488	
	(-0.584)	(-0.437)	-	-	-	-	(-0.532)	(-0.454)	-
E	-0.663	-0.439	-0.489	-0.632	-0.519	-0.486	-0.619	-0.492	-0.513
5	(-0.597)	(-0.431)	(-0.499)	(-0.48)**	(-0.36)**	(-0.53)**	(-0.569)	(-0.484)	(-0.470)
6	-0.665	-0.443	-0.525	-0.648	-0.520	-0.509	-0.628	-0.492	-0.546
	(-0.595)	(-0.450)	(-0.524)	(-0.574)	(-0.486)	(-0.512)	(-0.576)	(-0.488)	(-0.508)
7	-0.667	-0.438	-0.463	-0.645	-0.523	-0.464	-0.626	-0.494	-0.487
1	(-0.621)	(-0.480)	(-0.470)	(-)	(-)	(-)	(-0.596)	(-0.493)	(-0.444)
11	-0.656	-0.443	-0.470	-0.610	-0.515	-0.486	-0.605	-0.489	-0.497
11	(-)	(-)	(-)	(-)	(-)	(-)	(-0.557)	(-0.476)	(-0.452)
10	-0.653	-0.443	-0.483	-0.608	-0.512	-0.485	-0.607	-0.485	-0.509
12	(-)	(-)	(-)	(-)	(-)	(-)	(-0.558)	(-0.474)	(-0.462)

* The corresponding value for the nitrogen atom in pyridine is -0.41; ** data for **TS2**, because **K2K** spontaneously relaxes to it.

Table S4. Milliken atomic charges in vacuum in selected atoms in ground state*.

Comp	E1K			K2K			K2E			
	0	Nquin	$\mathbf{N}_{\mathbf{pyr}}$	0	Nquin	$\mathbf{N}_{\mathbf{pyr}}$	0	Nquin	$\mathbf{N}_{\mathbf{pyr}}$	
4	-0.33	-0.08	-	-	-	-	-0.38	-0.28	-	
5	-0.33	-0.16	-0.30	-0.44	-0.33	-0.22	-0.43	-0.21	-0.34	
6	-0.33	-0.17	-0.32	-0.46	-0.33	-0.23	-0.43	-0.21	-0.35	
7	-0.34	-0.16	-0.29	-0.45	-0.33	-0.17	-0.43	-0.22	-0.33	
11	-0.32	-0.17	-0.28	-0.42	-0.33	-0.22	-0.41	-0.21	-0.32	

Scheme S1. Ground state NBO charges of the different tautomers of 4-7 and of 11-12. The donor (in blue) – acceptor (in red) interactions in the molecular backbones are presented by summing the natural charges of the different parts in the molecules.

Figure S1. Comparison between the excited (S1) state energy landscapes (in relative energies in kcal/mol units) of of **5** obtained by CAM-B3LYP/TZVP (**a**) and M06-2X/TZVP (**b**, the same as in Figure 2b) in vacuum (green), toluene (red), acetonitrile (blue) and formamide (violet). The filled circles represent optimized structures.

Figure S2. Predicted absorption spectra (B3LYP/TZVP//M06-2X/TZVP) in toluene (red) and in acetonitrile (blue) of the different tautomers of **4-7** (**a**–**d**) and of **11-12** (**e**–**f**): **E1K** – solid line, **K2E** – dashes, **K2K** – dots, **K1K** (only in **6** in acetonitrile) – black dots. The spectra in formamide are practically identical to those in acetonitrile.

Figure S3. Ground state energy landscape (change of the relative energies in kcal/mol units) of **8-10** (**a–c**) and **13** (**d**) in vacuum (green), toluene (red), acetonitrile (blue) and formamide (violet). The filled circles represent optimized structures.