8-(pyridin-2-yl)quinolin-7-ol as a platform for conjugated proton cranes: a DFT structural design

Anton Georgiev and Liudmil Antonov

Table S1. Frank-Condon states (vertical transitions) of the E1K form of 4-7 and 11-12.

Compound	Environment	Singlet excited state					
		S1			S_{2}		
		$\begin{gathered} \mathrm{E}^{*}, \\ \mathrm{kcal} / \mathrm{mol} \end{gathered}$	f	origin	$\begin{gathered} \mathrm{E}^{*}, \\ \mathrm{kcal} / \mathrm{mol} \end{gathered}$	f	origin
4	vacuum	26	0.08	mainly HOMOLUMO	27	mainly (HOMO- 2)-LUMO	mainly (HOMO- 2)-LUMO
	toluene	27	0.13		30		
	acetonitrile	29	0.12		34		
5	vacuum	25	0.23	HOMO- LUMO	36	0.0	mainly (HOMO- 2)-LUMO
	toluene	20	0.33		32	0.0	
	acetonitrile	21	0.30		32	0.0	
6	vacuum	20	0.21	HOMO- LUMO	30	0.0	mainly (HOMO- 3)-LUMO
	toluene	19	0.29		30	0.0	
	acetonitrile	21	0.26		31	0.0	
7	vacuum	22	0.28	mainly HOMO- LUMO	32	0.08	mainly HOMO- (LUMO+1)
	toluene	20	0.40		31	0.12	
	acetonitrile	22	0.39		33	0.10	
11	vacuum	33	0.17	HOMO- LUMO	38	0.0	mixed
	toluene	28	0.21	mainly HOMOLUMO	36	0.0	
	acetonitrile	26	0.17		35	0.0	
12	vacuum	24	0.44	mainly	30	0.0	mixed
	toluene	18	0.57	HOMO-	28	0.0	
	acetonitrile	16	0.54	LUMO	26	0.0	

* relative energy in respect of the most stable optimized structure in S_{1} (Table 1 and Figures 1-2).

Table S2. Important structural parameters of the tautomers of 4-7 and 11-12 in ground and excited S_{1} (in brackets) state.

Compound	Environment	E1K	K1K	K2K	K2E
$\mathrm{r}_{\times \mathrm{H}}\left(\mathrm{X}=\mathrm{O}, \mathrm{N}^{\prime}{ }^{\prime}\right.$ or $\left.\mathrm{N}_{10}\right)$, in \AA					
4	vacuum	$\begin{gathered} \hline 0.963 \\ (0.965) \\ \hline \end{gathered}$	-	-	$\begin{gathered} \hline 1.009 \\ (1.010) \\ \hline \end{gathered}$
	toluene	$\begin{gathered} 0.964 \\ (0.967) \\ \hline \end{gathered}$	-	-	$\begin{gathered} \hline 1.011 \\ (1.010) \\ \hline \end{gathered}$
	acetonitrile	$\begin{gathered} \hline 0.965 \\ (0.968) \\ \hline \end{gathered}$	-	-	$\begin{gathered} \hline 1.012 \\ (1.011) \\ \hline \end{gathered}$
5	vacuum	$\begin{gathered} \hline 0.996 \\ (1.047) \\ \hline \end{gathered}$	$(-)$	$\begin{gathered} 1.057 \\ (-) \\ \hline \end{gathered}$	$\begin{gathered} \hline 1.055 \\ (1.024) \\ \hline \end{gathered}$
	toluene	$\begin{gathered} 0.998 \\ (1.059) \\ \hline \end{gathered}$	$(-)$	$\begin{gathered} 1.056 \\ (-) \\ \hline \end{gathered}$	$\begin{gathered} 1.052 \\ (1.024) \\ \hline \end{gathered}$
	acetonitrile	$\begin{gathered} \hline 0.999 \\ (1.076) \\ \hline \end{gathered}$	(1.013)	$\begin{gathered} \hline 1.056 \\ (1.029) \\ \hline \end{gathered}$	$\begin{gathered} \hline 1.043 \\ (1.024) \\ \hline \end{gathered}$
6	vacuum	1.007	-	1.052	1.064

		(1.068)	(-)	(1.054)	(1.027)
	toluene	$\begin{gathered} 1.009 \\ (-) \\ \hline \end{gathered}$	(1.018)	$\begin{gathered} 1.049 \\ (1.039) \\ \hline \end{gathered}$	$\begin{gathered} 1.062 \\ (1.027) \end{gathered}$
	acetonitrile	$\begin{gathered} 1.009 \\ (-) \\ \hline \end{gathered}$	$\begin{gathered} 1.080 \\ (1.023) \\ \hline \end{gathered}$	$\begin{gathered} 1.046 \\ (1.031) \\ \hline \end{gathered}$	$\begin{gathered} 1.056 \\ (1.027) \\ \hline \end{gathered}$
7	vacuum	$\begin{gathered} \hline 0.993 \\ (1.013) \end{gathered}$	$\begin{aligned} & - \\ & () \end{aligned}$	$\begin{gathered} 1.060 \\ () \end{gathered}$	$\begin{gathered} \hline 1.049 \\ (1.020) \end{gathered}$
	toluene	$\begin{gathered} 0.995 \\ (1.015) \end{gathered}$	()	$\begin{gathered} 1.059 \\ () \\ \hline \end{gathered}$	$\begin{gathered} 1.045 \\ (1.021) \end{gathered}$
	acetonitrile	$\begin{gathered} \hline 0.996 \\ (1.017) \\ \hline \end{gathered}$	(1.017)	$\begin{gathered} \hline 1.058 \\ (1.033) \\ \hline \end{gathered}$	$\begin{gathered} 1.040 \\ (1.023) \\ \hline \end{gathered}$
11	vacuum	$\begin{gathered} 0.991 \\ (-) \\ \hline \end{gathered}$	$(-)$	$\begin{gathered} 1.061 \\ (-) \\ \hline \end{gathered}$	$\begin{gathered} \hline 1.044 \\ (1.022) \\ \hline \end{gathered}$
	toluene	$\begin{gathered} 0.992 \\ (-) \\ \hline \end{gathered}$	$(-)$	$\begin{gathered} 1.062 \\ (-) \\ \hline \end{gathered}$	$\begin{gathered} 1.041 \\ (1.026) \end{gathered}$
	acetonitrile	$\begin{gathered} 0.993 \\ (-) \\ \hline \end{gathered}$	$(-)$	$\begin{gathered} \hline 1.064 \\ (1.030) \\ \hline \end{gathered}$	$\begin{gathered} \hline 1.038 \\ (1.080) \\ \hline \end{gathered}$
12	vacuum	$\begin{gathered} 0.993 \\ (-) \\ \hline \end{gathered}$	$(-)$	$\begin{gathered} 1.065 \\ (-) \\ \hline \end{gathered}$	$\begin{gathered} \hline 1.049 \\ (1.022) \\ \hline \end{gathered}$
	toluene	$\begin{gathered} 0.993 \\ (-) \\ \hline \end{gathered}$	$(-)$	$\begin{gathered} 1.067 \\ (-) \\ \hline \end{gathered}$	$\begin{gathered} \hline 1.045 \\ (1.026) \\ \hline \end{gathered}$
	acetonitrile	$\begin{aligned} & 0.993 \\ & 1.060 \end{aligned}$	$(-)$	$\begin{aligned} & 1.069 \\ & 1.061 \end{aligned}$	$\begin{gathered} 1.039 \\ (1.046) \\ \hline \end{gathered}$

Table S3. Natural charges in vacuum in selected atoms in 4 and 5 in ground state* and excited state (in brackets).

Comp.	E1K								
	\mathbf{O}	$\mathbf{N}_{\text {quin }}$	$\mathbf{N}_{\text {pyr }}$	\mathbf{O}	$\mathbf{N}_{\text {quin }}$	$\mathbf{N}_{\text {pyr }}$	\mathbf{O}	$\mathbf{N}_{\text {quin }}$	$\mathbf{N}_{\text {pyr }}$
$\mathbf{4} \mathbf{4}$	-0.647	-0.406	-	-	-	-	-0.584	-0.488	-
	(-0.584)	(-0.437)				(-0.532)	(-0.454)		
$\mathbf{5} 5$	-0.663	-0.439	-0.489	-0.632	-0.519	-0.486	-0.619	-0.492	-0.513
	(-0.597)	(-0.431)	(-0.499)	$(-0.48)^{* *}$	$(-0.36)^{* *}$	$(-0.53)^{* *}$	(-0.569)	(-0.484)	(-0.470)
$\mathbf{6}$	-0.665	-0.443	-0.525	-0.648	-0.520	-0.509	-0.628	-0.492	-0.546
	(-0.595)	(-0.450)	(-0.524)	(-0.574)	(-0.486)	(-0.512)	(-0.576)	(-0.488)	(-0.508)
$\mathbf{7}$	-0.667	-0.438	-0.463	-0.645	-0.523	-0.464	-0.626	-0.494	-0.487
	(-0.621)	(-0.480)	(-0.470)	$(-)$	$(-)$	$(-)$	(-0.596)	(-0.493)	(-0.444)
$\mathbf{1 1}$	-0.656	-0.443	-0.470	-0.610	-0.515	-0.486	-0.605	-0.489	-0.497
	$(-)$	$(-)$	$(-)$	$(-)$	$(-)$	$(-)$	(-0.557)	(-0.476)	(-0.452)
$\mathbf{1 2}$	-0.653	-0.443	-0.483	-0.608	-0.512	-0.485	-0.607	-0.485	-0.509
	$(-)$	$(-)$	$(-)$	$(-)$	$(-)$	$(-)$	(-0.558)	(-0.474)	(-0.462)

* The corresponding value for the nitrogen atom in pyridine is -0.41 ; $^{* *}$ data for TS2, because K2K spontaneously relaxes to it.

Table S4. Milliken atomic charges in vacuum in selected atoms in ground state*.

Comp.	E1K			K2K			K2E		
	O	$\mathbf{N}_{\text {quin }}$	$\mathbf{N}_{\text {pyr }}$	O	$\mathrm{N}_{\text {quin }}$	$\mathrm{N}_{\mathrm{pyr}}$	O	$\mathbf{N}_{\text {quin }}$	$\mathbf{N}_{\text {pyr }}$
4	-0.33	-0.08	-	-	-	-	-0.38	-0.28	-
5	-0.33	-0.16	-0.30	-0.44	-0.33	-0.22	-0.43	-0.21	-0.34
6	-0.33	-0.17	-0.32	-0.46	-0.33	-0.23	-0.43	-0.21	-0.35
7	-0.34	-0.16	-0.29	-0.45	-0.33	-0.17	-0.43	-0.22	-0.33
11	-0.32	-0.17	-0.28	-0.42	-0.33	-0.22	-0.41	-0.21	-0.32

12	-0.32	-0.17	-0.29	-0.42	-0.32	-0.23	-0.42	-0.20	-0.34
		$*$							

* The corresponding value for the nitrogen atom in pyridine is -0.13 .

E1K

K2E

CS2,

K2K

+0.025
E1K

E1K

does notexist
K1K

-0.509
K2K

$+0.073$
K2E

K2E

Scheme S1. Ground state NBO charges of the different tautomers of 4-7 and of 11-12. The donor (in blue) acceptor (in red) interactions in the molecular backbones are presented by summing the natural charges of the different parts in the molecules.

Figure S1. Comparison between the excited (S_{1}) state energy landscapes (in relative energies in $\mathrm{kcal} / \mathrm{mol}$ units) of of 5 obtained by CAM-B3LYP/TZVP (a) and M06-2X/TZVP (b, the same as in Figure 2 b) in vacuum (green), toluene (red), acetonitrile (blue) and formamide (violet). The filled circles represent optimized structures.

Figure S2. Predicted absorption spectra (B3LYP/TZVP//M06-2X/TZVP) in toluene (red) and in acetonitrile (blue) of the different tautomers of 4-7 (a-d) and of 11-12 (e-f): E1K - solid line, K2E dashes, K2K - dots, K1K (only in $\mathbf{6}$ in acetonitrile) - black dots. The spectra in formamide are practically identical to those in acetonitrile.

Figure S3. Ground state energy landscape (change of the relative energies in $\mathrm{kcal} / \mathrm{mol}$ units) of 8-10 (a-c) and 13 (d) in vacuum (green), toluene (red), acetonitrile (blue) and formamide (violet). The filled circles represent optimized structures.

