Figures and Tables

Circuit Simulation Considering Electrical Coupling 3 in Monolithic 3D Logics with Junctionless FETs

Fig. 1(a)

Fig. 1(b)

Fig. 3(a)

Fig. 3(b)

Fig. 4(a)

Top Transistor Ids-Vds

Fig. 4(b)

Top Transistor Ids-Vds (at Vds=1V and Vbg=0V, 0.5V, 1V)

Fig. 5(a)

Top Transistor Ids-Vds

Fig. 5(b)

Bottom Origin Gm

Fig. 6(a)

Fig. 6(b)

Bottom Origin Gm

Fig. 7(a)

Fig. 7(b)

Fig. 8(a)

3DIC Inverter VTC

Fig. 8(b)

INV Transient

Table 1. Description and dimensions of models/parameters used in TCAD simulation

Models/Parameters	Description	Value/Unit		
	Lombardi model and complete mobility model including			
CVT	doping density N, temperature T, and transverse electric	-		
	field E//.			
SRH	Shockley-Read-Hall recombination model	-		
BGN	Band gap narrowing model	_		
AUGER	Auger recombination model	-		
FERMI	Fermi–Dirac carrier statistics	_		
NEWTON	Newton method which solves a linearized version of the	-		
	entire nonlinear algebraic system			
GUMMEL	GUMMEL method, which solves a sequence of relatively	_		
	small linear subproblems			
ΦN	Gate work function of N-type JLFET	5.06 eV		
ФР	Gate work function of P-type JLFET	4.41 eV		

Table 2. Summary of the extracted parameters of the LETI-UTSOI modelfor the bottom P-type and top N-type JLFET.

-

Parameter			VALUE		
	Unit	DESCRIPTION	Р- ТҮРЕ	N-TYPE	
DLQ	m	Effective channel length offset for CV	2e ⁻⁸	1e ⁻⁸	
VBFO	V	Geometry-independent flat-band voltage	0.29	-0.28	
CICO	-	Geometry-independent part of substrate bias dependence factor of in terface coupling	0.65	3	
PSCEL	-	Length dependence of short channel effect above threshold	0.5	0.1	
CFL	V ⁻¹	Length dependence of DIBL parameter	2.7	2	
UO	m²/V/ s	Zero-field mobility	6.5e ⁻³	1.75e ⁻²	
MUEO	m/V	Mobility reduction coefficient	1	1	
THEMUO	-	Mobility reduction exponent	1.22	1.8	
RSGO	-	Gate-bias dependence of RS	2	1	
THESATO	V-1	Geometry-independent Velocity saturation parameter	1.8	2.7	
THESATBO	V-1	Substrate bias dependence of velocity saturation	0.1	0.28	
FETAO	-	Effective field parameter	0	-3	
ΑΧΟ	-	Geometry-independent of linear/ saturation transition factor	1.6	1.6	
ALPL1	-	Length dependence of CLM pre-factor ALP	0.0005	0.00001	
VPO	V	CLM logarithm dependence factor	0.04	0.04	
CFRW	F	Outer fringe capacitance	2e ⁻¹⁶	2e ⁻¹⁶	

Stages —	POWER	POWER [MW]		CY [GHz]	DELAY PER STAGE [PS]		
	MOSFET	JLFET	MOSFET	JLFET	MOSFET	JLFET	
3	281	275 (-2.13%)	18.7	18.18 (-2.78%)	9.04	9.165 (1.38%)	
19	279	277 (-0.71%)	2.88	2.86 (-0.69%)	9.16	9.18 (0.2%)	
101	281	283 (0.71%)	0.52	0.52 (0%)	9.28	9.35 (0.7%)	

Table 3. FO3 ring oscillator performance Using M3DINVmodels (MOSFET and JLFET).

	MOSFET					JLFET				
Performances	INV	NAND	NOR	MUX	D-FF	INV	NAND	NOR	MUX	D-FF
Static power [nW]	4.89	1.63	2.41	4.21	17.4	10.6 (116.7%)	1.67 (2.45%)	3.12 (29.4%)	7.5 (78.1%)	27.9 (60.3%)
Dynamic power [µW]	9.85	13.9	13.8	22.6	41.9	16.5 (67.5%)	14.2 (2.15%)	14.3 (3.62%)	26.5 (17.2%)	47.8 (14%)
Average delay [ps]	4.17	5.45	5.22	2.3	10.25	4.65 (11.5%)	6.62 (21.4%)	5.29 (1.34%)	2.74 (19.1%)	11.9 (16%)
Static power [nW]	4.89	1.63	2.41	4.21	17.4	10.6 (116.7%)	1.67 (2.45%)	3.12 (29.4%)	7.5 (78.1%)	27.9 (60.3%)

Table 4. Performance comparison of MOSFET and JLFET M3D logics