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Abstract: The junctionless field-effect transistor (JLFET) compact model using the model parameters
extracted from the LETI-UTSOI (version 2.1) model was proposed to perform circuit simulation
considering the electrical coupling between the stacked JLFETs of a monolithic 3D integrated circuit
(M3DIC) composed of JLFETs (M3DIC-JLFET). We validated the model by extracting the model
parameters and comparing the simulation results of the technology computer-aided design and the
Synopsys HSPICE circuit simulator. The performance of the M3DIC-JLFET was compared with that of
the M3DIC composed of MOSFETs (M3DIC-MOSFET). The performance of a fan-out-3 ring oscillator
with M3DIC-JLFET varied by less than 3% compared to that with M3DIC-MOSFET. The performances
of ring oscillators of M3DIC-JLFET and M3DIC-MOSFET were almost the same. We simulated the
performances of M3DICs such as an inverter, a NAND, a NOR, a 2 × 1 multiplexer, and a D flip-flop.
The overall performance of the M3DIC-MOSFET was slightly better than that of the M3DIC-JLFET.

Keywords: junctionless FET; JLFET; electrical coupling; circuit simulation; parameter extraction;
monolithic 3D integrated circuit (IC)

1. Introduction

Monolithic 3-dimensional integration (M3DI) refers to a 3D integration scheme of sequentially
manufacturing and stacking devices [1–3]. M3DI has been studied extensively as an alternative to
improve semiconductor performance in a region where the scale-down limit of a semiconductor
device is approaching. In memories (e.g., NAND flash and dynamic random-access memory) and
sensors (e.g., 3D heterogeneous integration), the sequential stacking M3DI method has already been
applied instead of the through-silicon via method [4–7]. In addition, studies have reported that the
performance of electrical coupling improves when the inter-layer dielectric (ILD) thickness of the
M3D complementary metal-oxide-semiconductor logic is less than 50 nm [8]. M3DI in terms of logic
has the potential to enhance chip performance, interconnect delay, device density, and frequency
bandwidth without requiring the further lateral scaling of the device [9]. Owing to the process
for device stacking sequentially on a single wafer, the previous and next tiers have significant
limitations in the process thermal budget for device quality [10]. Compared to the conventional
standard process, low-temperature processes using approximately 650 ◦C have been developed,
improving the performance of M3DI [11–13]. Currently, most M3DI devices have been researched
based on metal-oxide-semiconductor field-effect transistors (MOSFETs) that use Si, Ge, and III-V
materials [14–17]. For the majority of MOSFETs, a thermal budget is required for dopant activation
after the implantation process; however, there are physical limitations for using these as low-power
devices. For junctionless field-effect transistors (JLFETs), it is possible to use the MOSFET process as it

Micromachines 2020, 11, 887; doi:10.3390/mi11100887 www.mdpi.com/journal/micromachines

http://www.mdpi.com/journal/micromachines
http://www.mdpi.com
https://orcid.org/0000-0002-1266-6067
https://orcid.org/0000-0002-5128-6091
http://www.mdpi.com/2072-666X/11/10/887?type=check_update&version=1
http://dx.doi.org/10.3390/mi11100887
http://www.mdpi.com/journal/micromachines


Micromachines 2020, 11, 887 2 of 10

has a junctionless structure. This means that dopant activation is not required, unlike in MOSFETs.
JLFETs are advantageous for scale-down, surface mobility degradation, and short-channel effects [18].
A new circuit simulation model has been proposed in which the M3DIC composed of MOSFETs
(M3DIC-MOSFETs) reflect direct current (DC)/alternating current (AC) and transient inter-layer
electrical coupling [19]. However, owing to the absence of a JLFET compact model that considers
electrical coupling between the tiers for the circuit simulation of M3DI structures, an accurate circuit
simulation for M3DICs is not possible [20–23].

In this study, to extract the parameters of the model for the circuit simulation of the M3DIC-JLFET,
a structure of monolithic 3D inverter (M3DINV) with electrical coupling (thickness of ILD, TILD = 10 nm)
was constructed and simulated using technology computer-aided design (TCAD). To perform
circuit simulation considering the electrical coupling of M3DIC-JLFET, we propose the LETI-UTSOI
(version 2.1) model [24–26] of the fully-depleted silicon-on-insulator (FD-SOI) MOSFET structure as
an alternative to the JLFET compact model and extract the model parameters. The extracted model
parameters were verified and compared to the TCAD mixed-mode simulation results (Section 3).
Based on the model parameters extracted in Section 3, various logics were simulated, and the
performance was compared with that of M3DIC-MOSFETs (Section 4) [27]. Section 5 concludes
this study.

2. Structures

Figure 1 shows the schematics of an M3DINV composed of JLFET (M3DINV-JLFET). As shown in
Figure 1a, an M3DINV-JLFET consists of n-type and p-type JLFET transistors in the top and bottom
tiers, respectively. The doping of the JLFET’s source/drain, lightly-doped drain (LDD), and the channel
are 1020, 1020, and 1019 cm−3, respectively. The JLFET was simulated at the gate length (Lg), gate oxide
film (Tox), silicon thickness (Tsi), and ILD thickness (TILD) at 30, 1, 6 m, and 10 nm, respectively. The gate
oxide, ILD, and box were composed of SiO2.
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Figure 1. Schematics of two types of M3DINVs composed of JLFET structures: (a) 2D cross section;
(b) 3D structure of M3DINV.

In reference data simulation, a device simulator, ATLAS [28], by SILVACO was used. Table 1 shows
the models, methods, and work functions used in the TCAD simulation. The models used for the
device simulation were CVT, SRH, BGN, AUGER, and FERMI. The methods used for device simulation
were NEWTON and GUMMEL. The gate work functions of the n-type and p-type JLFETs were 5.06
and 4.41 eV, respectively.
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Table 1. Descriptions and dimensions of the models/parameters used in the TCAD simulation.

Models/Parameters Description Value/Unit

CVT
Lombardi model and complete mobility model
including the doping density N, temperature T,

and transverse electric field E//

–

SRH Shockley-Read-Hall recombination model –

BGN Band gap narrowing model –

AUGER Auger recombination model –

FERMI Fermi-Dirac carrier statistics –

NEWTON Newton method which solves a linearized version of
the entire nonlinear algebraic system –

GUMMEL GUMMEL method, which solves a sequence of
relatively small linear subproblems –

ΦN Gate work function of N-type JLFET 5.06 eV

ΦP Gate work function of P-type JLFET 4.41 eV

3. Parameter Extraction

Figure 2 shows the Simulation Program with Integrated Circuit Emphasis (SPICE) model parameter
extraction process used in this study. Through the process flow, model parameters were extracted
by comparing them with the reference data. First, parameter initialization was performed, and the
threshold voltage (Vt) roll-off and subthreshold swing (SS) degradation parameters were extracted. Next,
the mobility and series resistance parameters, velocity saturation, drain-induced barrier lowering (DIBL),
and channel length modulation (CLM) parameters were extracted. The process was repeated until the
parameters were completely extracted. When the DC parameter extraction was complete, the output
conductance parameters were extracted. Finally, the back gate effect parameters were extracted.
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Figure 2. SPICE model’s parameter extraction process flow.

Figure 3 shows the current-voltage characteristics with the TCAD and HSPICE simulation results
of the bottom p-type JLFET. Based on the driving voltage of the inverter, the gate voltage and the drain
voltage were verified up to 1 V. Figure 3a shows the drain current-gate voltage (Ipds−Vpgs) characteristics
at Vpds (−0.2, −0.6, and −1 V) and Vsub = 0 V. Figure 3b shows the Ipds−Vpds characteristics at Vpgs

(−0.2, −0.6, and −1 V) and Vsub = 0 V. The HSPICE results match the TCAD results within 10% error.
Figure 4 shows the current-voltage characteristics with the TCAD and HSPICE simulation results

of the top n-type JLFET. Figure 4a shows the drain current–gate voltage (Inds−Vngs) characteristics at
Vnds (0.2, 0.6, and 1 V) and Vpgs = 0 V. Figure 4b shows the Inds−Vnds characteristics at Vngs (0.2, 0.6,
and 1 V) and Vpgs = 0 V. The HSPICE results match the TCAD results within 10% error.

Figure 5a shows the Inds−Vngs characteristics at Vpgs (0, 0.5, and 1 V) and Vnds = 1 V. Figure 5b shows
the Inds−Vnds characteristics at Vngs (0.2, 0.6, and 1 V) and Vpgs = Vngs. The HSPICE results match the
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TCAD results within 10% error. This shows that the top n-type JLFET reflects the dependence on the
back-gate (gate of the p-type JLFET) bias well. When a voltage is applied to the gate of the bottom
p-type JLFET which can operate as a back-gate in M3DINV with a very thin ILD of TILD = 10 nm,
it affects the current of the top n-type JLFET by the threshold voltage shifts.Micromachines 2020, 11, x FOR PEER REVIEW 4 of 10 
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Figure 3. Current-voltage characteristics of the bottom p-type JLFET: (a) |Ipds|−Vpgs characteristics at
different values of Vpdss; (b) |Ipds|−Vpds characteristics at different values of Vpgss (squares and lines
denote the TCAD and HSPICE simulation results, respectively; W/L = 0.29/0.03 µm)
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Figure 4. Current-voltage characteristics of the top n-type JLFET: (a) Inds−Vngs characteristics at
different values of Vndss; (b) Inds−Vnds characteristics at different values of Vngss at Vpgs = 0 V
(squares and lines denote the TCAD and HSPICE simulation results, respectively; W/L = 0.2/0.03 µm).
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Figure 5. Current-voltage characteristics of the top n-type JLFET: (a) Inds−Vngs characteristics at different
values of Vpgss at Vnds = 0 V; (b) Inds−Vnds characteristics at different values of Vngs s at Vpgs = Vngs

(squares and lines denote the TCAD and HSPICE simulation results, respectively; W/L = 0.2/0.03 µm).
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Figure 6 shows the transconductance-voltage characteristics of the p-type and n-type JLFET.
Figure 6a shows the transconductance-gate voltage (gm−Vpgs) characteristics of the bottom p-type
JLFET at Vpds (−0.2, −0.6, and −1 V). Figure 6b shows the transconductance-gate voltage (gm−Vngs)
characteristics of the top n-type JLFET at Vpds (=0.2, 0.6, and 1 V). We observed a minor mismatch at
high gate source voltage values. However, the HSPICE simulation results matched the TCAD results
overall within 10% error.
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Figure 6. Transconductance-voltage characteristics at different values of Vdss: (a) the p-type JLFET;
and (b) the n-type JLFET (the squares and lines denote the TCAD and HSPICE simulation results,
respectively).

Figure 7 compares the capacitance-voltage characteristics of the p-type and n-type JLFET. Figure 7a
shows the gate capacitance-gate voltage (Cpgpg−Vpgs) characteristics of the bottom p-type JLFET at Vpds

(−0.2, −0.6, and−1 V). Figure 6b shows the gate capacitance-gate voltage (Cngng−Vngs) characteristics of
the top n-type JLFET at Vpds (0.2, 0.6, and 1 V). The HSPICE simulation results match the TCAD results.
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Figure 7. (a) Gate capacitance (Cpgpg) of the bottom p-type JLFET at different values of Vpdss; (b) gate
capacitance (Cngng) of the top n-type JLFET at different values of Vnds s and Vpgs s = 0 V (symbols and
lines denote the TCAD and HSPICE simulation results, respectively).

Following the model parameter extraction process flow, we extracted the parameters of the bottom
p-type and top n-type JLFET using the LETI-UTSOI model, as shown in Table 2.

Figure 8a shows an equivalent circuit of the M3DINV composed of the top n-type and bottom
p-type JLFETs in series. The LETI-UTSOI model was applied to both the JLFETs. The input voltage
(VIN = Vpg = Vng) of M3DINV was applied to the gates of the n-type and p-type JLFETs. The driving
voltage (VDD) was applied to the source of the p-type JLFET, and the source of the n-type JLFET was
connected to the ground. The output voltage (VOUT = Vpd = Vnd) was the drain voltage of the n-type
and p-type JLFET. Figure 8b compares the voltage transfer characteristics (VTC) on the M3DINV-JLFET,
as shown in Figure 8a. The HSPICE simulation results match the TCAD results overall within 10% error.
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Table 2. Summary of the extracted parameters of the LETI-UTSOI model for the bottom p-type and top
n-type JLFET.

Parameter Unit Description Value

P-Type N-Type

DLQ m Effective channel length offset
for C−V (capacitance −voltage) 2 × 10−8 1 × 10−8

VBFO V Geometry-independent flat-band voltage 0.29 −0.28

CICO – Geometry-independent part of substrate bias
dependence factor of interface coupling 0.65 3

PSCEL – Length dependence of
short channel effect above threshold 0.5 0.1

CFL V−1 Length dependence of DIBL (Drain-Induced
Barrier Lowering) parameter 2.7 2

UO m2/V/s Zero-field mobility 6.5 × 10−3 1.75 × 10−2

MUEO m/V Mobility reduction coefficient 1 1

THEMUO – Mobility reduction exponent 1.22 1.8

RSGO – Gate-bias dependence of RS (Resistance) 2 1

THESATO V−1 Geometry-independent Velocity
saturation parameter 1.8 2.7

THESATBO V−1 Substrate bias dependence of
velocity saturation 0.1 0.28

FETAO – Effective field parameter 0 −3

AXO – Geometry-independent of linear/saturation
transition factor 1.6 1.6

ALPL1 – Length dependence of CLM pre-factor ALP 0.0005 0.00001

VPO V CLM logarithm dependence factor 0.04 0.04

CFRW F Outer fringe capacitance 2 × 10−16 2 × 10−16
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Figure 8. (a) Equivalent circuit of M3DINV-JLFET; (b) VTC of M3DINV-JLFET; VSS = 0 V and VDD = 1 V
(the symbols and lines denote the TCAD mixed-mode and HSPICE simulation results, respectively;
VIN = Vpg = Vng, VOUT = Vpd = Vnd, and Vsub = VDD).
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Figure 9 shows the transient response of the M3DINV-JLFET. Black squares (and solid lines) and
red circles (and dot lines) denote the input voltages VIN and the output voltages VOUT of the M3DINV,
respectively. Load capacitance CL = 1 fF was used. The HSPICE simulation results match the TCAD
results overall within 10% error.
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Figure 9. Transient response of the M3DINV-JLFET (symbols and lines denote the TCAD mixed-mode
and HSPICE simulation results, respectively; load capacitance CL = 1 fF).

4. Circuit Simulation and Discussion

Table 3 shows the power consumption and performance of a fan-out-3 (FO3) ring oscillator built
using M3DINV-JLFETs. The M3DINV-JLFETs were compared with the M3DINV-MOSFETs. The power
consumption, frequency, and delay per stage of the ring oscillators with 3, 19, and 101 stages of the
M3DINV-JLFETs varied less than 3% from those of the M3DINV-MOSFETs. However, the performances
of the M3DINV-MOSFET and M3DINV-JLFET were approximately the same.

Table 3. Fanout-3 (FO3) ring oscillator performance using M3DINV models (MOSFET and JLFET).

Stages Power [µW] Frequency [GHz] Delay Per Stage [ps]

MOSFET JLFET MOSFET JLFET MOSFET JLFET

3 281 275 (−2.13%) 18.7 18.18 (−2.78%) 9.04 9.165 (1.38%)
19 279 277 (−0.71%) 2.88 2.86 (−0.69%) 9.16 9.18 (0.2%)

101 281 283 (0.71%) 0.52 0.52 (0%) 9.28 9.35 (0.7%)

Table 4 summarizes the performance comparison of M3DIC-JLFETs and M3DIC-MOSFETs.
M3DICs such as the INV, NAND, NOR, 2 × 1 multiplexer (MUX) [29], D flip-flop (D-FF) [30], and 6T
SRAM [31] were simulated. Their performances were compared in terms of their average static
power, average dynamic power, and average delay. The static power of M3DINV-JLFETs increased
approximately 600% more than the power of the M3DIC-MOSFETs. Electrical coupling by the gate
of the bottom transistor increases the leakage current of the top transistor, resulting in an increase
in static power. M3DIC-JLFETs have more leakage current changes due to electrical coupling than
M3DIC-MOSFETs. The dynamic power of M3DINV-JLFETs increased approximately 34.5% more than
the power of M3DIC-MOSFETs. The average propagation delay of the M3DINV-JLFETs increased
approximately 17.5% compared to that of M3DIC-MOSFETs. Because the load cap of M3DIC-JLFETs is
larger than that of the M3DIC-MOSFETs due to the electric coupling, the dynamic power and delay of
the M3DIC-JLFETs are larger than those of the M3DIC-MOSFETs.
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Table 4. Performance comparison of the M3DIC-MOSFETs and M3DIC-JLFETs.

Performances
M3DIC-MOSFET [27] M3DIC-JLFET

INV NAND NOR MUX D-FF SRAM INV NAND NOR MUX D-FF SRAM

Average static
power [nW] 4.89 9.84 6.23 11.8 15.4 4.3 10.6

(116.7%)
78

(692%)
54.5

(774%)
104.7
(787%)

123.2
(700%)

20.3
(372%)

Average dynamic
power [µW] 9.85 21.1 16.6 37.7 41.9 20 16.5

(67.5%)
29.3

(38.8%)
20.7

(24.6%)
46.6

(23.6%)
47.8

(14%)
28.2

(41%)

Average delay [ps] 4.17 4.61 5.65 4.41 10.25 8.1 4.65
(11.5%)

6.1
(32.3%)

7.31
(29.3%)

4.72
(7%)

11.9
(16%)

8.85
(9.25%)

5. Conclusions

In this study, we propose to use the LETI-UTSOI (version 2.1) model as an alternative to the
JLFET compact model to perform circuit simulation considering the electrical coupling of M3DIC-
JLFET. Comparing the simulation results of TCAD and HSPICE, the parameters of the proposed model
were extracted and the DC, AC, and transient response characteristics were verified. Although the
LETI-UTSOI model of the FD-SOI MOSFET structure is used as an alternative to the JLFET compact
model, it was confirmed that circuit simulation considering electrical coupling between vertically
stacked JLFETs is possible. Because of the various circuit simulations, the overall performance of the
M3DIC-MOSFETs was slightly higher than that of the M3DIC-JLFETs. However, considering the ease
of processing, miniaturization, and advantages of M3DI, the applicability of M3DIC-JLFET is higher.
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