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Abstract: A novel decoupled XY compliant micro-positioning stage, based on a bridge-type
amplification mechanism and parallelogram mechanisms, is designed in this paper. Analytical
models of the bridge-type amplification mechanism and parallelogram mechanisms are developed by
Castigliano’s second theorem and a Beam constrained model. The amplification ratio, input stiffness,
and output stiffness of the stage are further derived, based on the proposed model. In order to verify
the theoretical analysis, the finite element method (FEM) is used for simulation and modal analysis,
and the simulation results indicate that the errors of the amplification ratio, input stiffness, and output
stiffness of the stage between the proposed model and the FEM results are 2.34%, 3.87%, and 2.66%,
respectively. Modal analysis results show that the fundamental natural frequency is 44 Hz, and the
maximum error between the theoretical model and the FEM is less than 4%, which further validates
the proposed modeling method. Finally, the prototype is fabricated to test the amplification ratio,
cross-coupling error, and workspace. The experimental results demonstrate that the stage has a
relatively large workspace, of 346.1 µm × 357.2 µm, with corresponding amplification ratios of 5.39 in
the X-axis and 5.51 in the Y-axis, while the cross-coupling error is less than 1.5%.

Keywords: compliant mechanism; micro-positioning stage; Castigliano’s second theorem; beam
constrained model; bridge-type amplification mechanism

1. Introduction

With the rapid development of microelectromechanical systems (MEMS), nanotechnology, and
precision engineering, the demands on precision positioning technology have been increasing.
Conventional rigid positioning stages composed of transmission gears and rigid joints are no longer
suitable, due to the backlash and friction. New micro/nano-positioning stages based on compliant
mechanisms has attracted the attention of many scholars, due to their characteristics of no friction,
no backlash, no lubrication, and ease of fabrication [1]. Moreover, it is vital to employ actuators with
high resolution for precision positioning. Commonly used actuators in precision driving fields can
be classified as follows: piezoelectric actuators (PEAs), voice coil motors (VCMs), electromagnetic
actuators, magnetostrictive actuators, shape memory alloy (SMA) actuators, and electrostatic actuators,
among others. [2–5]. Due to the requirements of the external magnetic field, which usually makes the
structure of the system hard to miniaturize, electromagnetic actuators and magnetostrictive actuators
have rarely been adopted in micro-positioning stages. Shape memory alloy actuators have complex
force-electric-thermal coupling relationships, making it difficult to achieve precise control when using
them. Common electrostatic actuators usually require a large driving voltage to achieve a desired
output displacement. However, a large driving voltage will tend to cause electrostatic breakdown,
affecting reliability [6]. Thus, PEAs and VCMs have typically been adopted to actuate compliant
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micro/nano positioning stages [7–11]. The advantages of PEAs are high motion resolution, large output
force, and fast response; however, the output displacement is usually small, with only a 0.1–0.2% range
of its own length, which does not meet the requirements of some applications requiring compact size
and large stroke [12]. Moreover, the inherent non-linear effects of these actuators, such as hysteresis
and creep, also decrease the motion accuracy and positioning resolution of the micro-positioning
system [13]. VCMs have the advantages of simple structure, small volume, high frequency response,
and high precision, but their output force is small, making them difficult to apply in stages with large
input stiffness and compact size [14]. Compared with VCMs, piezoelectric transducers have also been
widely applied in active vibration control and precision driving fields [15,16]. Thus, the PEA was
selected as the driving component in this study.

To overcome the difficulties caused by the small stroke of the PEAs, a compliant displacement
amplification mechanism is usually introduced, between the actuator and the micro-positioning stage,
to improve the output displacements of the system. Commonly used displacement amplification
mechanisms include lever [17,18], bridge-type [19,20], and Scott–Russell [21,22] amplification
mechanisms. Awtar et al. [23] presented a two degrees of freedom (2-DOFs) planar X–Y flexure
mechanism based on flexible beams. The stiffness characteristics and cross-coupling errors of the
stage were investigated. Due to the low cross-coupling characteristics of the double parallelogram
mechanism, kinematic decoupling was almost achieved. A novel 2-DOFs micro-positioning stage has
been developed by Wang [24] using corrugated flexible (CF) beams, instead of notched flexible hinges
and rigid beams. The stiffness characteristics of the stage were analyzed by the stiffness matrix method
and the dimensions of the stage were optimized with the aim of a higher off-axis/axial stiffness ratio and
larger motion stroke. A 1-DOF stage with a sandwich-like structure has been devised by Wu [25] for
micro/nano-positioning in the vertical direction. The actuator was placed in the middle plane and two
orthogonal bridge-type amplification mechanisms were placed in the other two planes, which made it
a sandwich structure. Such a design made the structure of the stage more compact. Tang et al. [26]
designed a parallel X–Y micromanipulator using compound parallelogram mechanisms based on
flexible hinges and lever amplification mechanisms. Theoretical modeling and finite element simulation
of the static and dynamic characteristics of the stage were investigated, and the results indicated
that the theoretical model and the finite element model had high consistency. Li et al. [27] combined
compound bridge-type amplification mechanisms and compound parallelogram mechanisms based on
flexible beams to design a completely decoupled micro-motion stage. The stiffness characteristics and
amplification ratio were analyzed by the compliance matrix method. An experiment was set up, and
the results showed that the cross-coupling error of the stage was less than 2%. Wu et al. [28] proposed
a 2-DOFs nano-positioning stage with stacked structure. A bridge-type amplification mechanism was
employed to amplify the output displacement of the PEA and a new decoupling mechanism based
on compound parallelogram flexures was developed. FEA-based optimization aimed at maximizing
the natural frequency was also conducted. The experimental results indicated that the fundamental
frequencies of the X-axis and Y-axis were 64.03 Hz and 54.75 Hz, and that the workspace of the stage
was 212.48 × 219.24 µm2 with a resolution of 7 nm. Lin et al. [29] analyzed the characteristics of a
6-DOFs compliant stage using a bond graph approach, by combining a pseudo-rigid-body (PRB) model
and elastic beam theory. The kinematic performance, dynamic responses, and load capacity were
investigated. Qin et al [30] designed a 3-DOFs planar compliant manipulator based on the improved
Scott–Russell mechanism, and the inverse kinematics model, dynamics model, and the workspace of
the manipulator was developed.

In addition, many hybrid amplification mechanisms, consisting of commonly used amplification
mechanisms, have recently been developed [12,31–34]. Zhu et al. [31] proposed a novel displacement
amplification mechanism, which was composed of two Scott–Russell mechanisms and a half bridge-type
amplification mechanism. Combined with the positioning stage, a decoupled 2-DOFs nano-positioning
stage was designed, and the displacement amplification ratio, stiffness model, maximum stress, and
dynamic characteristics of the stage were analyzed. Zhang et al. [33] proposed a 3-DOFs spatial
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compliant micro-positioning stage which was able to move along the X, Y, and Z axes. The bridge-type
amplification mechanism and the lever amplification mechanism were connected in series to form a
two-stage amplification mechanism. Experimental results demonstrated that the cross-coupling error
along X, Y, and Z axes was less than 5%. The above achievements were mostly combined by displacement
amplification mechanisms and compound parallelogram mechanisms to devise a positioning stage,
and a combination of displacement amplification mechanism and double parallelogram mechanisms
was rarely used. Hence, in this paper, a decoupled 2-DOFs planar compliant micro-positioning stage
was designed using bridge-type amplification mechanisms, as well as double-parallelogram and
compound-parallelogram mechanisms, to achieve high decoupling characteristics with a relatively
long stroke.

The rest of this paper is organized as follows: The mechanical design and working principle of the
compliant positioning stage are introduced in Section 2; In Section 3, mathematical models, including a
stiffness model of the parallelogram mechanism, a model of bridge-type amplification mechanism, and
a stiffness model of the positioning stage, are established by Beam constrained model and Castigliano’s
second theorem. In Section 4, the finite element simulation is presented. In Section 5, experimental
verification is conducted. Finally, conclusions are provided in Section 6.

2. Mechanical Design and Working Principle of Compliant Positioning Stage

The compliant positioning stage, with a symmetrical design, is mainly composed of two bridge-type
amplification mechanisms (Amplification Module), four double parallelogram mechanisms (Compliant
Module 1), four compound parallelogram mechanisms (Compliant Module 2), and a motion platform, as
shown in Figure 1. Based on the aforementioned discussion of the different actuators used in precision
driving fields, PEAs were selected as the driving components and installed into the bridge-type
amplification mechanisms.
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In the literature, various types of flexible hinges with different notches have been developed [35–39],
including the commonly used circular notch type, hyperbolic notch type, elliptical notch type, and
right angle notch type, as shown in Figure 2. In order to obtain the stiffness characteristics, the
force-displacement relationship of four common flexure hinges was analyzed by ANSYS. It should
be noted that the dimension parameters and material of each flexure hinge are the same in the finite
element analysis. The results, as shown in Figure 3, indicate that the displacement of the right
angle notch flexible hinge was the largest when an equivalent force was applied. The parallelogram
mechanism constructed by flexible beams provided a larger linear deformation region than that
constructed by flexible hinges and rigid beams [40]. In addition, it is easier to achieve higher accuracy
when machining straight contours, rather than curved contours. For large motion stroke and ease of
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fabrication, the bridge-type amplification mechanism and parallelogram mechanism were constructed
using right angle notch flexible hinges with lumped compliance and flexible beams with distributed
compliance, respectively.
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Due to the symmetry of the stage, only motion in the Y-axis of the stage is taken as an example
to demonstrate the working principle. The working principle and PRB model of the bridge-type
amplification mechanism are illustrated in Figure 4. As the bridge-type amplification mechanism is
composed of four symmetrical branches, one of the branches is taken to present the working principle,
and the equivalent model is shown in Figure 4a. When an input displacement xin is applied to the
point O1 along the X-axis, a displacement xout along the Y-axis is generated at the point O2. As can
be observed from Figure 4b, the motion state of the branch J2J7 is similar to that of O1O2. The only
difference is that the point J7 is a fixed hinge, so point J2 moves the displacement of xout along the
positive direction of Y-axis while moving along X-axis. Similarly, when point J1 moves along the
negative direction of X-axis, the output displacement xout along the positive direction of Y-axis is
generated at point J5. However, as point J2 raises the initial position of point J5 by xout, the actual
output displacement of point J5 is 2xout. The output displacement of point J6 is the same as point J5,
due to the symmetrical structure. It should be noted that the values of the displacement along X-axis
are equal and the directions are opposite; therefore, link B1 only moves along the Y-axis. Thus, when
the inputs A1 and A2 of the bridge-type amplification mechanism are driven by a force Fin along the
X-axis, the input displacements xin will be applied in the positive and negative directions of the X-axis,
respectively. Simultaneously, an output displacement of 2xout in the positive direction of the Y-axis
will be produced at link B1. Due to the high axial stiffness and low transverse stiffness of flexible
beams, the compound parallelogram mechanisms C1 and C2 and double parallelogram mechanisms
D3 and D4 can be assumed to be prismatic pairs of the motion. While the compound parallelogram
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mechanisms C3 and C4 and double parallelogram mechanisms D1 and D2 can be assumed to be rigid
bodies, the linear motion of the motion platform is finally achieved through motion transmission, as
shown in Figure 5. The working principle is similar in the X-axis, but the prismatic pairs and rigid
bodies are exchanged. Thus, 2-DOFs of motion (i.e., in the X and Y directions) are obtained. Double
parallelogram mechanisms and compound parallelogram mechanisms with small cross-coupling error
are adopted in the design, which can effectively attenuate the cross-coupling displacement.
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3. Mathematical Model of the Positioning Stage

3.1. Stiffness Model of the Parallelogram Mechanism

The double parallelogram mechanism and the compound parallelogram mechanism are both
composed of flexible beams. In general, the flexible beam is in a state of large deflection and, so, the
analysis of the flexible beam involves complicated non-linear factors. The models for the non-linear
deflection of a beam are: The PRB model (including the improved PRB model, which can be utilized
to analyze flexible beams with inflection points) [41–43], the Beam constraint model, the non-linear
finite element method, and the elliptic integral method. When the transverse displacements of
the flexible beam are as small as the thickness of the beam, the non-linearity caused by the force
equilibrium conditions becomes significant, due to the load-stiffening and elastokinematic effects.
While PRB models capture load-stiffening, their inherent lumped-compliance assumption precludes
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elastokinematic effects (for more details, see [44]). High calculation accuracy can be obtained by the
non-linear finite element and ellipse integral methods, while a large number of nodes and complex
integral calculation make such methods unfavorable for early design. In contrast, high precision with
a simple calculation can be achieved using the beam constraint model when the beam deformation
does not exceed 10% of the beam length, and this model is a general method which can calculate the
deformation of flexible beams regardless of whether there are inflection points [45]. Therefore, the
Beam constrained model was applied to model the flexible beams in this paper. As the parallelogram
mechanisms are composed of flexible beams, a single flexible beam was first modeled. The structural
parameters and deformation are shown in Figure 6, where F, P, and M are the lateral and axial forces
and moment of the flexible beam, respectively, and b, t, and L are the width, thickness, and length of
the flexible beam, respectively.
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Table 1. Calculation parameters of beam constraint model.

Parameters Values Parameters Values

a 12 i −0.6
b 4 j −1/15
c −6 k 1/20
e 1.2 r 1/700
g 2/15 s 11/6300
h −0.1 q −1/1400

In the actual motion of the positioning stage, the deformation of the double parallelogram
mechanism is shown in Figure 7. The same deformation of each flexible beam can be assumed, due
to the same structure. Due to the two-stage deformation, when the moving platform moves ∆y, the
displacement at the end of each beam is equal to ∆y/2. The middle platform can move along the X-axis
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during the motion; therefore, P can be approximated as equal to 0. Substituting P = 0 into Equation
(1), the relationship between force and displacement for a double parallelogram mechanism can be
derived as

f = 12δy. (5)Micromachines 2019, 10, x 7 of 20 
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Figure 7. Deformation of the double parallelogram mechanism.

The deformation of the compound parallelogram mechanism is shown in Figure 8. Each flexible
beam can be considered to be a fixed guiding beam (i.e., ∆x = 0 and the tip deflection angle is θ
= 0). Substituting ∆x = 0 and θ = 0 into Equations (1) and (2), the relationship between force and
displacement of a compound parallelogram mechanism can be derived as:

p =
0.6δ2

y

1/d + δ2
y/700

(6)

f = 12δy + 1.2pδy. (7)
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When the compound parallelogram mechanism moves along the y-axis, it can be considered as a
parallel arrangement of four fixed guiding beams. Therefore, the driving force required to produce
the same displacement becomes four times larger than that of a single flexible beam. The relationship
between force and displacement of a compound parallelogram mechanism is formulated as:

p =
0.6δ2

y

1/d + δ2
y/700

(8)

f = 48δy + 4.8pδy. (9)
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Substituting Equation (3) into Equations (5), (8), and (9), the lateral stiffness of the double
parallelogram mechanism KDPM can be derived as

KDPM =
12EI
L3 . (10)

The lateral stiffness of the compound parallelogram mechanism KCBPM is calculated as:

KCBPM =

48 +
2.88δ2

y

1/d + δ2
y/700

 · EI
L3 . (11)

3.2. Model of Bridge-type Amplification Mechanism

The bridge-type amplification mechanism consists of four symmetrical branches and, hence,
only one of the branches is required to be mathematically modeled. The input and output ends are
considered as rigid parts, due to the high stiffness. The force analysis and structural parameters of the
remaining parts are shown in Figure 9. As the deformations of the two flexible hinges are basically the
same, it can be assumed that the moments M of the two flexible hinges are equal. According to the
force and moment balance equations, the following equations can be obtained:

FAx = FBx =
1
2

Fin = fx, (12)

FAy = FBy =
1
2

Fout = fy, (13)

2M = fx ·w− fy · (l1 + l2). (14)

The input and output displacements of the bridge-type amplification mechanism can be obtained
by Castigliano’s second theorem. The branch of the bridge-type amplification mechanism is considered
as a three-segment beam; that is, right angle flexible hinges are treated as short flexible beams.

xin = 2
l1∫

0

Fl(x)
EA1
·
∂Fl(x)
∂ fx

+ 2
l1∫

0

M(x)
EI1
·
∂M(x)
∂ fx

+
l1+l2∫
l1

Fl(x)
EA2
·
∂Fl(x)
∂ fx

+
l1+l2∫
l1

M(x)
EI2
·
∂M(x)
∂ fx

, (15)

xout = 2
l1∫

0

Fl(x)
EA1
·
∂Fl(x)
∂ fy

+ 2
l1∫

0

M(x)
EI1
·
∂M(x)
∂ fy

+
l1+l2∫
l1

Fl(x)
EA2
·
∂Fl(x)
∂ fy

+
l1+l2∫
l1

M(x)
EI2
·
∂M(x)
∂ fy

, (16)

where A1 and A2 are the axial cross-sectional areas of the flexible hinges and connecting beams,
respectively; I1 and I2 are moment of inertia of the axial cross sections of the flexible hinges and
connecting beams, respectively; and E is Young’s modulus. Uniform flexible beams have been
investigated comprehensively over recent years [46,47]. However, the three-segment beam is a
non-uniform flexure, which will be analyzed in the future. Here, to simplify the calculation, the same
hypothesis as in the literature [48] is adopted, as follows:

Fl(x) = fx, (17)

M(x) =
1
2
[ fx ·w− fy · (l1 + l2)]. (18)
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Substituting Equations (15) and (16) into Equations (13) and (14), the results are further rearranged
to obtain the following matrix expression:(

xin
xout

)
=

[
C11 C12

C21 C22

]
·

(
fx
fy

)
, (19)

where C11, C12, C21, and C22 are the compliance matrix parameters of the bridge-type amplification
mechanism, detailed as:

C11 = 2
Kl1

+ 1
Kl2

+ w2

2Kθ1
+ w2

4Kθ2
, C12 =

w(l1+l2)
2Kθ1

+
w(l1+l2)

4Kθ2
,

C21 =
w(l1+l2)

2Kθ1
+

w(l1+l2)
4Kθ2

, C22 =
(l1+l2)

2

2Kθ1
+

(l1+l2)
2

4Kθ2
,

where Kl1, Kl2, Kθ1, and Kθ2 are the axial tensile stiffnesses and rotational stiffnesses of the flexible
hinges and connecting beams, respectively. As only the plane stiffness of the bridge-type amplification
mechanism needs to be considered (according to reference [49]), the following simplified results are
obtained:

Kl1 =
Ebt1

l1
, Kl2 =

Ebt2

l2
, Kθ1 =

Ebt3
1

12l1
, Kθ2 =

Ebt3
2

12l2
.

If the condition of Fout = 0 is assumed, the amplification ratio and input stiffness of the bridge-type
amplification mechanism can be expressed as [50]:

Ramp =
2xout

2xin
=

C21

C11
, (20)

Kin =
Fin
xin

=
2

C11
. (21)

When Fin = 0, the output stiffness of the bridge-type amplification mechanism is formulated as:

Kout =
Fout

2xout
=

1
C22

. (22)

Therefore, the amplification ratio model of the bridge-type amplification mechanism can be
expressed as follows:

Ramp =
2xout

2xin
=

w(l1 + l2)(2/Kθ1+1/Kθ2)

8/Kl1+4/Kl2 + w2(2/Kθ1+1/Kθ2)
. (23)
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3.3. Stiffness Model of the Positioning Stage

According to the parallel relationship among the bridge-type amplification mechanism, compound
parallelogram mechanism, double parallelogram mechanism, and motion platform in the precision
positioning stage, the equivalent stiffness model of a single motion platform moving in the X-axis
(similarly for the Y-axis) is shown in Figure 10. The compound parallelogram mechanisms, C3 and C4,
and the double parallelogram mechanisms, D1 and D2, are all connected in parallel with the motion
platform. As a result, the input stiffness of a single motion platform is expressed as:

Kload= 2(KCBPM + KDPM). (24)

If the motion platform is regarded as the elastic load of the bridge-type amplification mechanism,
the stiffness of the elastic load is Kload, and the loading force can be obtained as

Fload = Kload ·Xstage, (25)

where Xstage is the output displacement of the positioning stage. The introduction of the loading force
causes the input and output ends of the bridge-type amplification mechanism to generate displacements
opposite to the intended direction of motion. Therefore, the relationship between the input force
and the output displacement of the entire positioning stage is different from that of the bridge-type
amplification mechanism at no-loading status; hence, further analysis is required. The displacement of
the input and output ends of the bridge-type amplification mechanism under the actuation of input
force Fin alone can be defined as xin1 and 2xout1, respectively. Similarly, the displacement of the input
and output ends under the actuation of loading force Fload alone can be defined as xin2 and 2xout2,
respectively. The actual displacement of the input and output ends are presented as:

Xin = xin1 − xin2, (26)

Xstage = 2xout1 − 2xout2, (27)

where,

xin1 =
Fin
Kin

, xout2 =
Fload
2Kout

.

According to equation (18), the following equations are derived:

xout1 = xin1 ·Ramp, (28)

xin2 = xout2/Ramp. (29)

The relationship between the actual input displacement and the output displacement of the
positioning stage is shown below:

Xstage = 2Xin ·Ramp. (30)

Substituting Equations (25)–(29) into Equation (30), the relationship between input force and
output displacement of the entire positioning stage can be derived:

Fin =
Kin(Kout + Kload)

2Kout ·Ramp
·Xstage. (31)

Substituting Equation (30) into Equation (31) and eliminating Xstage, the input stiffness of the
entire positioning stage is calculated as:

Kstage
in =

Kin(Kout + Kload)

Kout
. (32)
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Simultaneously, due to the parallel structure of the motion platform and the bridge-type
amplification mechanism, the output stiffness of the entire positioning stage is finally obtained:

Kstage
out = Kout + Kload. (33)

Micromachines 2019, 10, x 11 of 20 

 

Simultaneously, due to the parallel structure of the motion platform and the bridge-type 

amplification mechanism, the output stiffness of the entire positioning stage is finally obtained: 

stage

out out loadK K K  . (33) 

 

 

Figure 10. Equivalent stiffness model of the motion platform. 

4. Finite Element Simulation 

The finite element analysis of the precision positioning stage was carried out by the finite 

element software ANSYS 18.2. The material was chosen to be Al7075 with Young's modulus of 71.7 

GPa, Poisson's ratio of 0.33, yield strength of 503 MPa, and density of 2810 kg/m3. The main 

dimensional parameters of the stage are shown in Table 2, where t, LDPM, and LCBPM are the thickness 

and length of flexible beams in double parallelogram mechanisms and compound parallelogram 

mechanisms, respectively. 

Table 2. Structural parameters of positioning stage. 

Parameters Values Parameters Values Parameters Values 

t 0.5 l1 3 LCBPM 60 
t1 1 l2 50 w 8 

t2 15 LDPM 40 b 12 

4.1. Static Analysis 

Static analysis was performed to verify the prediction of the deformation of the proposed stage, 

input and output stiffness, and displacement amplification ratio of the proposed theoretical model. 

When a total displacement of 10 μm was applied to the bridge-type amplification mechanism in the 

X-axis, the resulting motion of the stage in the Y-axis is shown in Figure 11. As can be observed from 

Figure 11, the displacement of the stage was 64.2 μm, and the amplification ratio was about 6.42. 

According to Equation (16), the theoretical amplification ratio was calculated as 6.57, and the relative 

error was 2.34%, compared to the finite element value.  

When a driving force of 10 N along the X-axis was, respectively, applied to the input ends of 

bridge-type amplification mechanism, the resulting displacements of the input ends are shown in 

Figure 12. As can be observed from Figure 12, the displacement of the input end along the X-axis 

positive direction was 4.9 μm, and the input stiffness was about 2.039 N/μm. The theoretical input 

stiffness calculated by Equation (32) was 2.118 N/μm, and the relative error was 3.87%. 

Figure 10. Equivalent stiffness model of the motion platform.

4. Finite Element Simulation

The finite element analysis of the precision positioning stage was carried out by the finite
element software ANSYS 18.2. The material was chosen to be Al7075 with Young’s modulus of
71.7 GPa, Poisson’s ratio of 0.33, yield strength of 503 MPa, and density of 2810 kg/m3. The main
dimensional parameters of the stage are shown in Table 2, where t, LDPM, and LCBPM are the thickness
and length of flexible beams in double parallelogram mechanisms and compound parallelogram
mechanisms, respectively.

Table 2. Structural parameters of positioning stage.

Parameters Values Parameters Values Parameters Values

t 0.5 l1 3 LCBPM 60
t1 1 l2 50 w 8
t2 15 LDPM 40 b 12

4.1. Static Analysis

Static analysis was performed to verify the prediction of the deformation of the proposed stage,
input and output stiffness, and displacement amplification ratio of the proposed theoretical model.
When a total displacement of 10 µm was applied to the bridge-type amplification mechanism in the
X-axis, the resulting motion of the stage in the Y-axis is shown in Figure 11. As can be observed from
Figure 11, the displacement of the stage was 64.2 µm, and the amplification ratio was about 6.42.
According to Equation (16), the theoretical amplification ratio was calculated as 6.57, and the relative
error was 2.34%, compared to the finite element value.

When a driving force of 10 N along the X-axis was, respectively, applied to the input ends of
bridge-type amplification mechanism, the resulting displacements of the input ends are shown in
Figure 12. As can be observed from Figure 12, the displacement of the input end along the X-axis
positive direction was 4.9 µm, and the input stiffness was about 2.039 N/µm. The theoretical input
stiffness calculated by Equation (32) was 2.118 N/µm, and the relative error was 3.87%.
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When a 10 N driving force along the negative direction of the Y-axis was applied to the output end
of the positioning stage, the resulting output displacement is shown in Figure 13. As can be observed
from Figure 13, the displacement of the output end was 422.1 µm, and the output stiffness was about
23.69 N/mm. The theoretical output stiffness calculated by Equation (33) was 24.32 N/mm, and the
relative error was 2.66%. It should be noted that, since the displacement of the stage was a micron, the
lateral stiffness of the compound parallelogram mechanisms in the calculation can be approximated as:

KCBPM =

48 +
2.88δ2

y

1/d + δ2
y/700

 · EI
L3 ≈

48EI
L3 . (34)

.
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The adopted PEAs had an actual stroke of 65 µm. Therefore, the input displacement of 65 µm was
applied to the bridge-type amplification mechanism along X-axis, and the resulting maximum stress is
shown in Figure 14. As can be observed from Figure 14, the maximum stress of 48.61 MPa occurred at
the surface of flexure hinge, which was far below the yield strength of Al7075
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Performances of the positioning stage are listed in Table 3 and the relationship between the output
displacement and the input force of the positioning stage is presented in Figure 15. The maximum error
of the theoretical model and the finite element model was less than 4%, which verifies the correctness
of the theoretical model.

Table 3. Performance of the proposed positioning stage.
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4.2. Dynamic Analysis

In order to investigate the dynamic characteristics of the proposed positioning stage, a modal
analysis was performed by the ANSYS Workbench and the first six modes were obtained, as shown
in Figure 16. The first and fifth modes were the stage moving along Y-axis, the second and sixth
modes were the stage moving along X-axis, and the first six modes were X–Y in-plane modes. Since
the structure of the positioning stage was completely symmetrical, deformations in the X-axis and
the Y-axis were basically similar, and the natural frequencies were very close. The first and second
resonant frequencies were 44.234 Hz and 44.335 Hz, respectively.
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Figure 16. Modal analysis of the stage by ANSYS: (a) 44.234Hz, (b) 44.335Hz, (c) 88.232Hz, (d) 88.393Hz,
(e) 98.418Hz, and (f) 98.539Hz.

5. Experiment Setup

The experimental setup is established in Figure 17. A prototype of the stage was fabricated
by the wire electrical discharge machining (WEDM) process with a piece of Al7075. Two PEAs
(PSt150/7/80 VS12 from COREMORROW, Inc., Harbin, China), pre-tightened by an appropriate screw,
were installed into the bridge-type amplification mechanisms to actuate the stage; the technical
parameters of the PEA are listed in Table 4. A piezo controller (E01.D3 from COREMORROW, Inc.,
Harbin, China) which realized closed-loop control through the inside position sensor was utilized
to drive the PEAs, and the influence of the hysteresis characteristics of PEA were almost eliminated.
The output displacement and cross-coupling error of the stage were measured by a laser sensor
(optoNCDT2300 from MICRO-EPSILON Messtechnik GmbH, Ortenburg, Germany) with a 2 mm
measurement range and 30 nm resolution.
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Figure 17. Experimental setup of the positioning stage: (a) Schematic diagram, and (b) photograph of
the experimental setup.

Table 4. Technical parameters of the PEA.

Properties Values

Nominal displacement (µm) 76 ± 10%
Stiffness (N/µm) 12 ± 20%

Blocked force (N) 1200
Capacitance (µF) 7.2 ± 20%

Resonant frequency (kHz) 12
Dimensions (mm) Φ 12 × 87.5

First, a 1 Hz sinusoidal command signal with peak-to-peak amplitude of 30 µm was applied to the
PEA to test the amplification ratios and cross-coupling errors. The experimental results, including the
output displacements and cross-coupling errors were measured by the laser sensor in both directions,
which are shown in Figure 18. The maximum displacements in the X-axis and Y-axis of the stage were
80.89 µm and 82.70 µm, respectively, which indicates that the amplification ratios of the stage in the
X-axis and Y-axis were 5.39 and 5.51, respectively. Thus, the experimental amplification ratios in the
X-axis and Y-axis were 19.1% and 16.5% smaller than the FEA results, respectively. These errors were
mainly due to the fact that the tip of the PEA was a ball head and, hence, the contact area between the
spherical surface and the plane made the real contact surface in the experiment smaller than the size
set in the finite element simulation, thus leading to a deviation. In addition, Figure 18 also shows the
cross-coupling errors in the Y-axis (X-axis) when the stage moved along the X-axis (Y-axis). As depicted
in Figure 18, the maximum cross-coupling errors in the Y-axis and X-axis were approximately 1.1 µm
and 1.2 µm, respectively. Hence, the experimental cross-coupling errors in the Y-axis and X-axis were
1.36% and 1.45%, respectively. The difference in performance between the two axes may be mainly
attributed to: (1) The asymmetry of the stage due to manufacturing errors, (2) the different pre-loading
conditions of the PEAs, and (3) the influence of the contact area on one side of the input.
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Second, the workspace of the positioning stage was tested by applying several discrete input
displacements to the PEAs. The testing results are illustrated in Figure 19. It can be observed that
the output displacements of the stage increased linearly with an increase of the input displacements.
However, when the output displacements became constant and no longer changed with the increase
of input displacements, it meant that the blocked force of the PEA was reached. Even if a larger
driving displacement was applied in the controller software under this circumstance, the actual output
displacements of the PEA remained unchanged, causing the output displacement of the stage to remain
constant. In such a case, the maximum output displacement of the PEA was 65 µm and the maximum
output displacements of the stage in the X-axis and Y-axis were 346.1 µm and 357.2 µm, respectively.
Thus, the tested workspace of the stage was 346.1 × 357.2 µm.Micromachines 2019, 10, x 17 of 20 
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6. Conclusions

In this paper, a decoupled compliant positioning stage was designed, based on bridge-type
amplification mechanisms and parallelogram mechanisms. Two kinds of parallelogram mechanisms
and a bridge-type amplification mechanism were modeled by a Beam constrained model and
Castigliano’s second theorem, respectively. Based on this, the displacement amplification ratio,
input stiffness, and output stiffness of the entire stage were derived, and the results of theoretical model
were verified by finite element analysis. Compared with the finite element results, the theoretical model
had an error of 2.34% in the amplification ratio, 3.87% in the input stiffness, and 2.66% in the output
stiffness, which further validated the proposed modeling method. The prototype was fabricated to test
the amplification ratio, cross-coupling error, and workspace. The experimental results demonstrated
that the stage had a relatively large workspace, of 346.1 × 357.2 µm, with a corresponding amplification
ratio of 5.39 in the X-axis and 5.51 in the Y-axis, while the cross-coupling error was less than 1.5%.
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