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Abstract: Sorting rare cells from heterogeneous mixtures makes a significant contribution to biological
research and medical treatment. However, the performances of traditional methods are limited
due to the time-consuming preparation, poor purity, and recovery rate. In this paper, we proposed
a cell screening method based on the automated microrobotic aspirate-and-place strategy under
fluorescence microscopy. A fast autofocusing visual feedback (FAVF) method is introduced for
precise and real-time three-dimensional (3D) location. In the context of this method, the scalable
correlation coefficient (SCC) matching is presented for planar locating cells with regions of interest
(ROI) created for autofocusing. When the overlap occurs, target cells are separated by a segmentation
algorithm. To meet the shallow depth of field (DOF) limitation of the microscope, the improved
multiple depth from defocus (MDFD) algorithm is used for depth detection, taking 850 ms a time
with an accuracy rate of 96.79%. The neighborhood search based algorithm is applied for the tracking
of the micropipette. Finally, experiments of screening NIH/3T3 (mouse embryonic fibroblast) cells
verifies the feasibility and validity of this method with an average speed of 5 cells/min, 95% purity,
and 80% recovery rate. Moreover, such versatile functions as cell counting and injection, for example,
could be achieved by this expandable system.

Keywords: micromanipulation; visual feedback; autofocusing; rare cells sorting;
fluorescence microscopy

1. Introduction

Low-abundance cells with samples containing less than 1000 target cells/ml are considered as
rare cells [1]. Research on sorting and isolating a specified number of rare cells, such as circulating
tumor cells (CTCs), circulating fetal cells, and stem cells from complex and heterogeneous mixtures,
are vitally important in biology and medicine [2]. This practice often serves as the preparatory
work in many diagnostic and therapeutic practices to enhance the research efficiency [3]. CTCs,
for example, are recognized as the biomarker for various cancers, such as breast, prostate, ovarian,
colon, etc. [4,5]. Sorting and detecting CTCs from cancer patients is viable for cancer prognosis and
treatment. Meanwhile, the rapid and accurate sorting of rare cells is highly demanded in personalized
medicine. The tailored medicine improves the precision and effectiveness of therapy [6].
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Various methods have been proposed for cell sorting. Density-gradient centrifugation (DGC)
separates targets by the density difference between cell types [7]. However, the recovery rate
of the desired cell is largely reduced, and undesired cell types are introduced as heterogeneous
cells [8]. Fluorescence-activated cell sorting (FACS), as the first commercial cell sorter, was invented
in 1969 [9]. As a high-throughput system, FACS detects and analyzes multiple cell types with
sorting speed up to 50,000 cells per second [10]. However, FACS is limited for clinical application
and commercialization due to the high initial costs of system, the risk of sample contamination,
and the necessity of technical expertise for operating complex machinery [10]. Another commercially
available sorter, the immunomagnetic-assisted cell sorting (IMACS) system, was invented later. It is
capable of selecting circulating tumor cells, fetal cells, and stem cells at a high recovery rate of
about 80% [11]. However, the magnetic field used in IMACS may produce perturbations on cell
differentiation, which the viability of cells is affected by to some extent [1]. In recent years, microfluidic
cell sorting was presented as a new approach [3]. Through combining with FAC, IMACS and wireless
driven forces derived from magnetic, electric, and optical fields, it provides numerous advantages
over conventional methods such as small equipment size and low reagent consumption [12–18].
However, the limited lifespan of microfluidic chips and complex sample preparations are barriers
for clinical use. Unfortunately, most of the existing rare cells sorting methods are non-automated or
semiautomated, where operators are required. The misoperation and fatigue of operators can lead to
the unreliable and unrepeatable experimental data.

Bio-micromanipulation, driven by micro-nano technology and biomedical engineering,
provides a new approach to rare cells sorting. As a straightforward method, bio-micromanipulation
is capable of performing a series of operations such as injection, aspiration, and gripping [19–21].
However, it is generally performed manually or is semiautomated with poor repeatability and success
rate. The combination of bio-micromanipulation and robots has generated considerable research interest
recently [22–26]. To increase the accuracy and realize automated bio-micromanipulation, visual-servo
control is necessary for microrobotic manipulation [27]. A semi-automated robot was reported
for automated single cell isolation from suspension with visual-servo control [28]. Whereas only
cells’ planar locations are provided as the lack of depth limits the application of robots in thin-layer
suspensions. Cell depth is the basis for the three-dimensional (3D) location of cells, and subsequently
automated sorting. To obtain the depth of targets, Mulligan reported a fast calibrated stereo vision
for micromanipulation [29]. Li et al. described a dual-camera system which is mounted on a stereo
light microscope to achieve 3D displacement measurement at microscale, where enough depth of filed
(DOF) is essential [30]. However, most microscopes are featured with shallow DOF, which makes an
efficient visual-processing-based method for the 3D detection of objects a great necessity. In addition,
the clearness of targets, especially for rare cell sorting, is critical to accurate 3D information capture.
Most of the micromanipulation systems work under a bright-field illumination microscope. The low
contrast between cells and background increases the difficulty of detection, and the overlap of
multiple cells reduces the precision of the location. Compared with its traditional counterpart,
the fluorescence microscope has a better performance of clearness superiority over bright field [31].
Fluorescence, as a non-invasive label, maintains cell viability and makes visual processing easy [32].
Nevertheless, the time of fluorescence observation is limited due to the fluorescence quenching [33].
The fast visual processing algorithm for rare cell fluorescence observation is lacking.

In this paper, we propose a fast autofocusing visual feedback (FAVF) method for automated
sorting of rare cells under fluorescence microscope. The whole sorting process is shown in
Figure 1. The microrobotic manipulation system is mounted in the inverted fluorescence microscope.
The fluorochrome enhances the clarity and contrast of cells and micropipette clear. The visual
information is obtained by a camera and transmitted to the main computer simultaneously. In visual
processing, the FAVF algorithm mainly consists of four parts: preprocessing, planar locating,
depth detection, and object tracking. Planar locating relies on the scalable correlation coefficient
(SCC) matching and watershed segmentation algorithm. Depth detection is achieved by the improved
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multiple depth from defocus (MDFD) algorithm, which derives from traditional depth from defocus
(DFD). The neighborhood search based algorithm is adopted for object tracking. Assisted by FAVF,
real-time 3D locating of micropipette and cells are achieved. With the visual feedback, automated rare
cells sorting is carried out by microrobotic system with high positioning accuracy and high operating
efficiency. The system is evaluated by sorting DiI (cell membrane red fluorescent probe) stained
NIH/3T3 cells with red fluorescence from DiO (cell membrane green fluorescent probe) stained
NIH/3T3 cells with green fluorescence. The experiment demonstrates the system has considerable
sorting speed, purity and recovery rate. Due to its simplicity, durability, cost-effectiveness and
expandability, the system is viable for the isolation of most rare cell types and promising for biological
and medical research.
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Figure 1. Schematic of automated sorting process.

2. Materials and Methods

2.1. Planar Locating

2.1.1. Scalable Correlation Coefficient Matching

Template matching algorithm has been widely used in micromanipulation for its accurate and fast
performance. For cell sorting, target cells are scattered in suspension with different spatial distributions.
Due to the shallow DOF of microscope, cells have various sizes and the degrees of blur. In traditional
template matching method, template is preselected with fixed size, which is inapplicable in this
case. The scalable correlation coefficient (SCC) matching algorithm for planar locating is proposed.
According to the correlation coefficient equation:

R(x, y) =
∑
x′,y′

(T′(x′, y′) · I′(x + x′, y + y′)) (1)

and
T′(x′, y′) = T(x′, y′) − 1/(w · h) ·

∑
x′′ ,y′′

T(x′′ , y′′ ) (2)

I′(x + x′, y + y′)) = I(x + x′, y + y′) − 1/(w · h) ·
∑

x′′ ,y′′
I(x + x′′ , y + y′′ ) (3)

where x and y are coordinate value of pixels, T is grayscale value of template, I is grayscale value of
source image, w and h are the width and height of template, R is correlation coefficient. The correlation
coefficient value and matching degree are positively correlated.
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As shown in Figure 2, focused cell is preselected as the original template. It is enlarged to a series
of templates with Gaussian blur. In rough locating, two blurred target cells are detected by scalable
templates with optimal sizes and are marked by a bounding box. The result of rough locating generates
the region of interest (ROI) for subsequent depth detection. The focused target cells are matched by
optimal template and their precise locations are marked with tow cross lines.
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2.1.2. Watershed Algorithm Based Instance Segmentation

In the microscopic scene, cells are easily overlapped, due to the electrostatic force and adhesive
force. Instance segmentation of target cells is essential for precise locating. The newly developed
deep learning algorithm provide satisfactory results. However, data collecting and training is time
consuming. Here, we present a watershed algorithm-based instance segmentation method. The process
of this method is shown in Figure 3. Three target cells are stained red and stuck together (Figure 3a).
The overlapped cells are sketchily marked with bounding boxes by SCC matching. In overlapping
process, the presence of overlapping regions can trigger the subsequent segmentation (Figure 3b).
Red color channel is remained by setting threshold (Figure 3c). Markers are created as water holes
through a series of visual transforms (Figure 3g). An additional marker is set in the top left as
background water hole. Markers are applied to Figure 3b through watershed algorithm, and boundary
lines formed between cells and background. Target cells are segmented and their locations are marked
by the center of the respective area (Figure 3h).
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(b) Overlapping judgement by detecting the overlapped region of the bounding boxes; (c) Red color
channel is remained by setting threshold; (d) Binarization with the Otsu adaptive threshold method; (e)
Morphology erosion and dilation operation to separate cells; (f) Distance transform to refine regions;
(g) Markers generation by threshold and find contours; (h) Targets separation by watershed algorithm.
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2.1.3. Neighborhood Searching Based Micropipette Tracking

To feed back the location of the micropipette tip in real-time, tracking algorithm is crucial.
As shown in Figure 4a, when the micropipette gets focused, its tip is precisely located. Centering on
the micropipette tip, the original tracking template and neighborhood searching area are created.
To decrease the running time of program, the size of neighborhood searching area is limited to three
times the size of the template. When the micropipette moves, as shown in Figure 4b, the original
template searches in the neighborhood search area, and the match window is obtained by the correlation
coefficient matching algorithm. The best match is indicated in the match window, and the location of
micropipette tip is updated. Due to the fluorescence quenching and impurity adsorption, the color
and shape of the micropipette can change slightly from the initial appearance. As shown in Figure 4c,
the updated template has better performance to adapt subsequent tracking.
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2.2. Depth Detection

Autofocus technology is one of the key technologies in computer vision and various imaging
systems. It has a wide range of applications such as cameras, endoscopes and microscopes.
In microscope imaging, depth from focus (DFF) and depth from defocus (DFD) are two widely
used methods, which are essential for the acquisition of depth value and clear observation [21,34].
The DFD method has a great detection efficiency by comparing two defocused images. In this paper,
to solve the symmetrical problem in traditional DFD, the multiple depth from defocus (MDFD) method
is presented.

2.2.1. Imaging Model of Multiple Depth from Defocus (MDFD)

The convex lens imaging model of MDFD shown in Figure 5a. Through the lens, the object is
focused as a focal point (P’) on the focal plane (FP). Adjusting the imaging plane (IP) away from FP,
a defocused blur circle formed, where dn is the object depth value. As shown in Figure 5b, in the
imaging model, a cell is focused on the focal plane with focused diameter D. Changing IP successively
with a fixed step interval d, and the blur diameter Dn acts like a linear shift. According to geometry:

dn =

(
Dn −D

Dn+1 −Dn

)
d (4)

where object depth value dn is obtained when D and Dn are known. The point spread function (PSF,
h(x,y)) is introduced to explain this phenomenon—it is modeled as two dimensional Gaussian:

h(x, y) =
1

2πσ2 exp
(
−

x2 + y2

2σ2

)
(5)
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where spread parameter σ is positive correlated to Dn. As shown in Figure 5c, the observed image
g(x, y) is the result of the convolution between the focused image im(x, y) and PSF:

g(x, y) = h(x, y) ∗ im(x, y) (6)
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When IP moves away from FP, brightness energy of the cell is dispersed and the observed Dn

is getting larger. For a certain cell, the energy distribution curves on different IP have the same two
intersections. The width of two intersections is the focused diameter D of the cell.

However, the symmetrical problem exists. As shown in Figure 5b, in symmetrical position (IP1
and IP’1) on either side of the plane, objects have the same blur diameter (D’1 and D1). They cannot be
distinguished by the traditional two-image DFD method.

2.2.2. Algorithm Strategy of Multiple Depth from Defocus (MDFD)

To solve the symmetrical problem, MDFD captures additional images and possesses optimized
performance. The flow chart of MDFD is shown in Figure 6a, preprocessing and sharpness judgement
of target cell are made in the region of interest (ROI). If the cell is defocused, setting a step interval d to
capture a series of images along the z axis. D and Dn are calculated by visual algorithm, and error data
can be screened out by analysis the change of Dn. The cell depth value dn is calculated by Equation (4).
The above process may be performed multiple times, until a target gets focused.
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The visual processing of MDFD is shown in Figure 6b. Preprocessing consists of grayscale
transformation and Gaussian filtering. The k-means clustering algorithm is applied to precisely
separate the cell from background. Cluster number k is set to 3 to represent background, cell blur edge,
and body respectively. Depending on the grayscale value, the pixels will be tagged with three different
labels. According to labels, the regions of cell blur edge and body are combined to represent entire cell
by image binarization. Morphological operation is applied to remove smaller areas smooth the cell
contour. Cell contour is optimized by convex hull algorithm to search minimum area encirclement
lines. Then cell center is obtained by calculation of image moments and blur diameters of cells Dn are
obtained. Extracting pixels across the horizontal line of the cell center (PAHLCC) from convex hull
image. For grayscale images, the horizontal lines through the center of the objects are extracted and
pixel grayscale distribution curves (PGDC) are obtained. Based on the PGDC, a sharpness judgement
algorithm is proposed. For each PGDC, the sharpness of an image is evaluated by the difference
between the maximum and minimum, which is considered as image contrast c. The larger the value of
c, the clearer the image. According to the law of c change, error data (symmetrical case) is screened out.
Besides, for different PGDC, the length of two intersections is focused diameter D of cell. Finally, d is
calculated through Equation (4).
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3. Results and Discussion

3.1. Experimental Setup

3.1.1. System Framework

The microrobotic manipulation system is shown in Figure 7. The robot consists of a linear
translation stage (M-461-XYZ, Newport, Irvine, CA, USA) and three micro-stepping motors (NSA 12,
Newport, Irvine, CA, USA) with a resolution of 0.2 µm and a motion range of 11 mm for each axis.
A glass micropipette (B100-50-10, Sutter Instrument, Novato, CA, USA) is heat pulled by a micropipette
puller (PC-10, Narishige, Tokyo, Japan) with an inner diameter of 19 µm. It is fixed on an end actuator
and connected to the syringe pump (Legato 111, KD Scientific, Ringoes, NJ, USA) via a soft rubber tube.
An inverted optical microscope (OM) (IX83, Olympus, Tokyo, Japan) is connected to a CCD camera
(DP22, Olympus, Tokyo, Japan) with maximum 2.76 megapixels. The lamp (U-HGLGPS, Olympus,
Tokyo, Japan) and filter block (U-FNU/FNB/FNG, Olympus, Tokyo, Japan) ensure multi-colored
fluorescence observation. A motorized X-Y translational stage (ProScan, Prior Scientific, Cambridge,
UK) mounted on the OM can transform field of view (FOV) rapidly. A computer configured with CPU
(Core i7, Intel, Santa Clara, CA, USA) and GPU (TITAN X, NVIDIA, Santa Clara, CA, USA) is utilized
for visual processing and automated control.Micromachines 2019, 10, x 8 of 15 
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3.1.2. Experiment Preparation

NIH/3T3 (ATCC, Manassas, VA, USA) cells are chosen as sample due to their stable activity
and morphology in vitro culture. Cells stained with DiI (red)(beyotime, shanghai, china) and DiO
(green)(beyotime, shanghai, china) are mixed in a proportion of 1:100. The heterogeneous mixture is
composed of approximate 100 mL−1 red target cells and 10,000 mL−1 green cells. Cells were suspended
in culture medium consists of Dulbecco’s Modified Eagle’s Medium (DMEM, Hyclone, Logan, UT,
USA) supplemented with 10% (v/v) fetal bovine serum (FBS, Gibco, Gaithersburg, MD, USA) and 1%
(v/v) penicillin-streptomycin solution (Solarbio, Beijing, China). Furthermore, the micropipette tip is
pre-dyed with DiI. Under the fluorescence microscope, the red and green lights are excited. The overall
process of automatic microrobotic manipulation strategy is shown in Figure 8. The camera transmits
microscopic images to the main computer for visual processing. For FAVF, impurities filtering and
images smoothing are carried out in preprocessing. Sharpness judgement distinguishes blurred and
focused targets. The depth value of the micropipette tip and target cells are obtained through the
MDFD method. According to the depth value, the micropipette moves to the same focal plane as the
target cells. Then, the micropipette and target cells are located by precise planar locating algorithm and
the overlapped targets are separated by segmentation algorithm. During the manipulation, the position
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of micropipette tip is tracked simultaneously. With the visual feedback, robots are controlled to move
and aspirate target cells until all are screened in the FOV. The new group of cells are brought into the
FOV by the translation stage. Sorting will continue until the number of cells collected is sufficient.
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3.2. Planar Locating and Tracking

3.2.1. Planar Locating

The scalable correlation coefficient (SCC) matching algorithm were adopted for both rough
locating and precise locating. The algorithm was evaluated at 9 groups of depth value. For each group,
20 targets were tested. A target should be detected with the correct number and location, otherwise it
will be considered as an error detection. As shown in Figure 9, the correct detection rate is 100% in the
precise locating section. In the rough locating section, the correct detection rate slightly declines when
the depth value exceeded 20 µm. The average correct detection rate is 95% and the average processing
time is 0.8 s, which guarantees real-time feedback.
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3.2.2. Micropipette Tip Tracking

The neighborhood search based tracking algorithm was used for micropipette tip tracking.
The algorithm was evaluated by the movement of the micropipette at five groups of speed. The CCD
camera has a frame rate of 60 fps and 1500 frames were tested at each group. The location of micropipette
tip was marked by bounding box in each frame of image. Between consecutive frames, the ratio of
overlapped region of the bounding boxes is defined as overlapping rate. When overlapping rate is
greater than 70%, it is considered as accurate tracking. As shown in Figure 10, the accurate tracking
rate drops significantly when speed is over 300 µm/s. To ensure the tracking accuracy, the moving
speed of micropipette was set to 300 µm/s, which allowed a high accuracy (90%) and a sorting speed of
2 s/cell.
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3.3. Depth Detection with Multiple Depth from Defocus (MDFD)

For the sample cell, the blur diameters (Dn) on different image planes (IP) were calculated by
previously mentioned algorithm (Figure 6b). To verify the reliability of Dn, the depth value of focal
planes (FP) was set to 0, which was determined by sharpness judgement algorithm. The diameters
of cells on the FP was considered as the actual focused diameter (Da), as shown in Figure 11. The IP
was adjusted at unequal step intervals (d) and Dn were obtained. As shown in Figure 12, scatter plot
for depth values and Dn was drawn and one-time polynomial was applied for data fitting. A total
of 10 sample cells were tested in the experiment and the result showed that the average coefficient
of determination (R-square) is 0.9953. It indicated that scatter points are generally linear and the
algorithm for Dn detection was almost feasible.

Micromachines 2019, 10, x 10 of 15 

 

determination (R-square) is 0.9953. It indicated that scatter points are generally linear and the 
algorithm for Dn detection was almost feasible. 

 
Figure 11. Schematic of multiple depth from defocus (MDFD) experiment. 

 

Figure 12. Linear distribution of dn and Dn for 1 out of 10 samples. 

Then, to evaluate the accuracy of depth detection of MDFD for the sample cell, the IP was set to 
a known initial depth (di), as shown in Figure 11. Moreover, each IP was adjusted at a certain d with 
the image recorded. The experimental depth value (dn) was calculated by Equation (4). To evaluate 
the deviation of this method, the relative error formula is presented: 

100%n i

n

d - d
e =

d + D
×  (7)

where e is the experimental error. The experimental focused diameter (D) is introduced as correction 
factor.  

Set di from 4 mm to 36 mm and d from 2 mm to 12 mm, respectively. When the depth value is 
more than 40 µm, the fluorescence is very weak which cannot be recognized. Therefore, the valid test 
data dn are limited within the range of 40 µm, otherwise it is considered as out of range (OOR). A 
total of 10 sample cells were tested in the experiment, and the average e are shown in Table 1. 
According to the table data, error curve for different di were drawn, as shown in Figure 13a. In curve 
4, 5 and 6, e is all lower than 5%. However, in curve 2 and 3, e increases sharply and exceeds 10% at 
d of 10 µm and 12 µm, respectively. In curve 1, the average e is greater than 20%. The data showed 
that when dn are within 20 µm the results are highly precise. However, when dn exceeds 20 µm, the 
result is unreliable. Such a large deviation was derived from the calculation of D. Due to the imaging 
noise, D was always larger than Da which is inevitable. Then, multiple calculations were applied, as 
shown in Figure 11, and the depth values can finally converge to be accurate.  

Figure 11. Schematic of multiple depth from defocus (MDFD) experiment.

Micromachines 2019, 10, x 10 of 15 

 

determination (R-square) is 0.9953. It indicated that scatter points are generally linear and the 
algorithm for Dn detection was almost feasible. 

 
Figure 11. Schematic of multiple depth from defocus (MDFD) experiment. 

 

Figure 12. Linear distribution of dn and Dn for 1 out of 10 samples. 

Then, to evaluate the accuracy of depth detection of MDFD for the sample cell, the IP was set to 
a known initial depth (di), as shown in Figure 11. Moreover, each IP was adjusted at a certain d with 
the image recorded. The experimental depth value (dn) was calculated by Equation (4). To evaluate 
the deviation of this method, the relative error formula is presented: 

100%n i

n

d - d
e =

d + D
×  (7)

where e is the experimental error. The experimental focused diameter (D) is introduced as correction 
factor.  

Set di from 4 mm to 36 mm and d from 2 mm to 12 mm, respectively. When the depth value is 
more than 40 µm, the fluorescence is very weak which cannot be recognized. Therefore, the valid test 
data dn are limited within the range of 40 µm, otherwise it is considered as out of range (OOR). A 
total of 10 sample cells were tested in the experiment, and the average e are shown in Table 1. 
According to the table data, error curve for different di were drawn, as shown in Figure 13a. In curve 
4, 5 and 6, e is all lower than 5%. However, in curve 2 and 3, e increases sharply and exceeds 10% at 
d of 10 µm and 12 µm, respectively. In curve 1, the average e is greater than 20%. The data showed 
that when dn are within 20 µm the results are highly precise. However, when dn exceeds 20 µm, the 
result is unreliable. Such a large deviation was derived from the calculation of D. Due to the imaging 
noise, D was always larger than Da which is inevitable. Then, multiple calculations were applied, as 
shown in Figure 11, and the depth values can finally converge to be accurate.  

Figure 12. Linear distribution of dn and Dn for 1 out of 10 samples.



Micromachines 2019, 10, 567 11 of 15

Then, to evaluate the accuracy of depth detection of MDFD for the sample cell, the IP was set to
a known initial depth (di), as shown in Figure 11. Moreover, each IP was adjusted at a certain d with
the image recorded. The experimental depth value (dn) was calculated by Equation (4). To evaluate the
deviation of this method, the relative error formula is presented:

e =
|dn − di|

|dn|+ D
× 100% (7)

where e is the experimental error. The experimental focused diameter (D) is introduced as
correction factor.

Set di from 4 mm to 36 mm and d from 2 mm to 12 mm, respectively. When the depth value is
more than 40 µm, the fluorescence is very weak which cannot be recognized. Therefore, the valid test
data dn are limited within the range of 40 µm, otherwise it is considered as out of range (OOR). A total
of 10 sample cells were tested in the experiment, and the average e are shown in Table 1. According to
the table data, error curve for different di were drawn, as shown in Figure 13a. In curve 4, 5 and 6, e is
all lower than 5%. However, in curve 2 and 3, e increases sharply and exceeds 10% at d of 10 µm and
12 µm, respectively. In curve 1, the average e is greater than 20%. The data showed that when dn are
within 20 µm the results are highly precise. However, when dn exceeds 20 µm, the result is unreliable.
Such a large deviation was derived from the calculation of D. Due to the imaging noise, D was always
larger than Da which is inevitable. Then, multiple calculations were applied, as shown in Figure 11,
and the depth values can finally converge to be accurate.

Table 1. Error of multiple depth from defocus (MDFD) at different initial depth and step interval.

Initial
Depth di

e at d of 2 µm e at d of 4 µm e at d of 6 µm e at d of 8 µm e at d of 10 µm e at d of 12 µm

4 µm 0.03% 0.22% 0.07% 0.65% 0.76% 0.51%
6 µm 1.23% 1.83% 2.06% 1.21% 0.89% 0.68%
8 µm 2.56% 3.56% 2.68% 2.35% 1.24% 3.43%
10 µm 4.40% 3.83% 3.39% 3.25% 4.61% 20.65%
12 µm 5.64% 7.62% 5.81% 6.23% 20.03% 18.68%
16 µm 7.26% 7.74% 21.56% 23.42% 20.58% 23.44%
18 µm 8.65% 23.64% 23.78% 21.56% 23.68% 23.81%
20 µm 18.66% 17.91% 24.59% 25.48% 27.12% 26.28%
24 µm 17.59% 16.23% 15.52% 11.07% 18.65% 18.39%
30 µm 27.58% 27.54% 27.17% 27.26% 28.96% OOR
32 µm 20.54% 23.44% 18.65% 16.63% OOR OOR
36 µm 23.33% 22.84% OOR OOR OOR OOR

In a precise range, e can decrease significantly when d is greater than 4 µm, as shown in Figure 13b.
However, too large d can make dn into the large error range and it was set to 6 µm. To solve the
symmetry problem, the algorithm worked based on the three blur images, and one of them was used
as a reference. The results showed that the depth values were obtained after approximately two or
three calculations with an almost small error of 3.21%. The entire focusing process took a short 850 ms
averagely and the real-time feedback is guaranteed.
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3.4. Automated Fast Autofocusing Visual Feedback (FAVF) Cell Sorting

The performance of the FAVF cell sorting method was evaluated using heterogeneous mixtures
under the fluorescence microscope. The volume of the mixture was 1 mL and 100 target NIH/3T3 cells
were contained. The rough planar locations of micropipette and target cells were detected by SCC
matching algorithm (Figure 14a). FOV was focused after acquiring depth by MDFD and precise planar
locations were obtained (Figure 14b). The micropipette was controlled to move to target cells with
tip was tracked. When all targets were sorted, the FOV was transformed by regular scanning on the
surface of a Petri dish with a diameter of 35 mm. Scanning stopped until the sufficient number of cells
was collected (see Supplementary Video S1). The result of 10 experiments showed that the proposed
method achieved the average speed of 5 cells/min, a purity of target cells of 95%, and recovery rate of
80%. The introduction of a small number of heterogeneous cells is mainly due to the deformation of the
soft rubber tube—which is why a hard rubber tube will be utilized in the future research. In the entire
process, FOV switching takes up the bulk of time and limits the sorting speed greatly. When additional
target cells were added in the mixture, the speed got obviously increased, as shown in Figure 15.
When the concentration was raised to 1000 target cells mL−1 and the sorting speed increased obviously.
However, with an increase of target number, an upward trend gradually decreases in intensity. The
optimal concentration was about 600 target cells/mL, with an average speed of 11 cells/min, where the
sorting efficiency was mainly limited by the increment of computational complexity for 3D locating,
segmentation and tracking. Meanwhile, FOV switching took approximately 10 min, scanning the
entire surface of the Petri dish with a diameter of 35 mm. Therefore, the optimized the switch strategy
and algorithm will be carried out in the future work to improve system performance. Cell viability
before and after sorting was calculated based on statistic data by using calcein AM fluorescent stains
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(Molecular Probes, Eugene, OR, USA). Three independent experiments were carried out and the
average cell viability were 98% (before sorting) and 90% (after sorting), which demonstrated the
non-invasiveness of our method.

Micromachines 2019, 10, x 12 of 15 

 

The performance of the FAVF cell sorting method was evaluated using heterogeneous mixtures 
under the fluorescence microscope. The volume of the mixture was 1 mL and 100 target NIH/3T3 
cells were contained. The rough planar locations of micropipette and target cells were detected by 
SCC matching algorithm (Figure 14a). FOV was focused after acquiring depth by MDFD and precise 
planar locations were obtained (Figure 14b). The micropipette was controlled to move to target cells 
with tip was tracked. When all targets were sorted, the FOV was transformed by regular scanning on 
the surface of a Petri dish with a diameter of 35 mm. Scanning stopped until the sufficient number of 
cells was collected. The result of 10 experiments showed that the proposed method achieved the 
average speed of 5 cells/min, a purity of target cells of 95%, and recovery rate of 80%. The introduction 
of a small number of heterogeneous cells is mainly due to the deformation of the soft rubber tube—
which is why a hard rubber tube will be utilized in the future research. In the entire process, FOV 
switching takes up the bulk of time and limits the sorting speed greatly. When additional target cells 
were added in the mixture, the speed got obviously increased, as shown in Figure 15. When the 
concentration was raised to 1000 target cells mL−1 and the sorting speed increased obviously. 
However, with an increase of target number, an upward trend gradually decreases in intensity. The 
optimal concentration was about 600 target cells/mL, with an average speed of 11 cells/min, where 
the sorting efficiency was mainly limited by the increment of computational complexity for 3D 
locating, segmentation and tracking. Meanwhile, FOV switching took approximately 10 min, 
scanning the entire surface of the Petri dish with a diameter of 35 mm. Therefore, the optimized the 
switch strategy and algorithm will be carried out in the future work to improve system performance. 
Cell viability before and after sorting was calculated based on statistic data by using calcein AM 
fluorescent stains (Molecular Probes, Eugene, OR, USA). Three independent experiments were 
carried out and the average cell viability were 98% (before sorting) and 90% (after sorting), which 
demonstrated the non-invasiveness of our method. 

Compared with the DGC method, our system allows the markedly improved purity and 
recovery rate. Besides, this approach also shows some advantages over the FACS and IMACS 
methods such as a short time sample preparation, the requirement of convenient equipment, and 
non-invasive features. In addition, compared with microfluidic cell sorting, the robotic system is 
durable and reusable. Moreover, in comparison to traditional bio-manipulation methods, it realizes 
automated 3D locating with optimized depth detection algorithm without extra devices introduced.  

The proposed method is likely universalizable for the isolation of most rare cell types, such as 
CTCs, stem cells, and circulating fetal cells, which could make further contributions to medical 
diagnosis and tailored medicine. Moreover, the open-ended system means the addition of multiple 
visual algorithms and end actuators. It may achieve more functions like cell counting and injection 
for versatile applications across biology, biotechnology, and medicine. 

 
Figure 14. Automated fast autofocusing visual feedback (FAVF) cell sorting. Figure 14. Automated fast autofocusing visual feedback (FAVF) cell sorting.Micromachines 2019, 10, x 13 of 15 

 

 

Figure 15. Plot of sorting speed versus different target number. 

4. Conclusions 

In this study, a novel FAVF algorithm for the automated sorting of rare cells under the 
fluorescence microscope was proposed. The algorithm is performed on the microrobotic 
manipulation system with visual feedback control. In FAVF, the accurate 3D locations of objects are 
obtained in real time. SCC matching is presented for both rough and precise planar locating. The 
watershed segmentation algorithm is introduced to separate the overlapped cells. The improved 
MDFD algorithm is used in depth detection. The neighborhood search based algorithm is applied for 
tracking the movement of the micropipette. With visual feedback, robots are precisely controlled to 
move and aspirate target cells automatically. The experiment of screening NIH/3T3 cells 
demonstrates the good performance of the proposed system. Compared with other existing methods, 
this system has many advantages, such as relatively high purity and recovery rate, universalizability, 
simplicity, durability, and cost-effectiveness. 
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Figure 15. Plot of sorting speed versus different target number.

Compared with the DGC method, our system allows the markedly improved purity and recovery
rate. Besides, this approach also shows some advantages over the FACS and IMACS methods such as
a short time sample preparation, the requirement of convenient equipment, and non-invasive features.
In addition, compared with microfluidic cell sorting, the robotic system is durable and reusable.
Moreover, in comparison to traditional bio-manipulation methods, it realizes automated 3D locating
with optimized depth detection algorithm without extra devices introduced.

The proposed method is likely universalizable for the isolation of most rare cell types, such as
CTCs, stem cells, and circulating fetal cells, which could make further contributions to medical
diagnosis and tailored medicine. Moreover, the open-ended system means the addition of multiple
visual algorithms and end actuators. It may achieve more functions like cell counting and injection for
versatile applications across biology, biotechnology, and medicine.

4. Conclusions

In this study, a novel FAVF algorithm for the automated sorting of rare cells under the fluorescence
microscope was proposed. The algorithm is performed on the microrobotic manipulation system
with visual feedback control. In FAVF, the accurate 3D locations of objects are obtained in real time.
SCC matching is presented for both rough and precise planar locating. The watershed segmentation
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algorithm is introduced to separate the overlapped cells. The improved MDFD algorithm is used in
depth detection. The neighborhood search based algorithm is applied for tracking the movement of
the micropipette. With visual feedback, robots are precisely controlled to move and aspirate target cells
automatically. The experiment of screening NIH/3T3 cells demonstrates the good performance of the
proposed system. Compared with other existing methods, this system has many advantages, such as
relatively high purity and recovery rate, universalizability, simplicity, durability, and cost-effectiveness.
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