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Abstract: Organ-on-chip (OOC) is becoming the alternative tool to conventional in vitro screening.
Heart-on-chip devices including microstructures for mechanical and electrical stimulation have
been demonstrated to be advantageous to study structural organization and maturation of
heart cells. This paper presents the development of metal and polymeric strain gauges for in
situ monitoring of mechanical strain in the Cytostretch platform for heart-on-chip application.
Specifically, the optimization of the fabrication process of metal titanium (Ti) strain gauges and
the investigation on an alternative material to improve the robustness and performance of the devices
are presented. The transduction behavior and functionality of the devices are successfully proven
using a custom-made set-up. The devices showed resistance changes for the pressure range (0–3 kPa)
used to stretch the membranes on which heart cells can be cultured. Relative resistance changes of
approximately 0.008% and 1.2% for titanium and polymeric strain gauges are respectively reported
for membrane deformations up to 5%. The results demonstrate that both conventional IC metals and
polymeric materials can be implemented for sensing mechanical strain using robust microfabricated
organ-on-chip devices.
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1. Introduction

Organ-on-chip (OOC) aims to become the alternative tool for in vitro screening. Researchers
are still facing biological and technological challenges that impede this cutting-edge technology to
be adopted as a routine tool in drug development. The limited scalability of current fabrication
processes and the lack of self-integrated monitoring are among the technical limitations hindering
its adoption [1]. Thus, monolithically microfabricated OOC devices have been developed aiming to
overcome such limitations. The so-called Cytostretch [2,3], has been developed as a heart on chip with
integrated microelectrodes. This platform enables the access of data related to the action potential
generated by iPSC-derived cardiomyocytes with also the possibility to precisely stimulate electrically
the cell culture.

Other heart-on-chips including mechanical stimulation have also demonstrated their advantage to
promote structural organization and maturation of the cells [4–7]. Generally, most devices are based on
mechanically flexible materials that enable continuous mechanical stimulation of the different cell
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cultures [8–12]. Polydimethylsiloxane (PDMS) is typically used as main structural substrate facilitating
dynamic stretching, exploiting its intrinsic advantages of biocompatibility, optical transparency and
mechanical flexibility [13–15].

Nevertheless, the lack of robustness of most devices is caused by their reliance on bulk optical
microscopy and pneumatic transduction. The type and amount of data to be acquired from the
cell microenvironment and biological processes is constrained. A complete view of cell behavior,
particularly in heart-on-chips, might be obtained if mechanical stress, bioelectrical activities, pH level,
and potassium and oxygen concentration could be quantitatively measured and controlled in situ in
a spatio-temporal manner.

Unlike other works, the Cytostretch is a modular platform where robust technologies for sensing
and actuation can be integrated for such purpose. The possibility to monitor strain on the substrate
was preliminary demonstrated with metal strain gauges that allow indirect quantification of the
mechanical stress in the flexible membrane. However, previous work did not yet fully exploit
the reproducibility, reliability and robustness of the polymer-last approach [2], where complex and
electrical microstructures are fabricated prior to PDMS deposition.

This paper presents the development of metal and polymeric strain gauges for in situ monitoring
of mechanical strain in the Cytostretch platform. Specifically, the optimization of the fabrication
process of metal titanium (Ti) strain gauges and the investigation on an alternative material to
improve the robustness and performance of the devices, are presented. Polymeric strain gauges using
poly(3,4-ethylenedioxythiophene)(PEDOT:PSS) are investigated to exploit the well-known electronic
conduction, high gauge factor, biocompatibility, high transparency and particularly mechanical
flexibility of the material [16–21].

2. Strain Gauges on PDMS Membranes

Strain gauges are microstructures commonly used to quantify the strain of a holding substrate
subjected to mechanical stress. By monitoring the change in the electrical resistance of these
microstructures, the strain experienced by the substrate when stretched can be indirectly obtained.
Integrating strain gauges in a microfabricated PDMS-based OOC platform enables the acquisition and
quantification of the mechanical strain provided to a cell culture, thus allowing the gathering of more
relevant information for biological studies.

2.1. Device Concept and Design

The devices investigated consist of either metal or polymeric strain gauges integrated on
a PDMS membrane suspended from a silicon holding frame, a platform based on Cytostretch [2,3].
The membrane acts as a stretchable substrate for cell culturing with the strain gauges allowing
a continuous electrical monitoring of the strain of the membrane when mechanically stretched.
Pneumatic actuation enables the stretching of the membrane by applying a pressure load on its
bottom surface. In Figure 1, the architecture of the devices is shown.

The shape, thickness and diameter of the membrane is determined based on the assumption that
a semicircular profile of the radial strain is obtained in the membrane when stretched (Equation (1)),
thus aiming at providing specific radial strains (0–10%) for pneumatic actuation pressures up to
2 kPa. The circular shape was preferred to exploit the symmetry of the strain distribution along the
membrane [22]. The final design comprises a flexible circular 9 µm-thick (t) PDMS membrane of 3 mm
in diameter (D). The radial strain of the membrane, εr, is given by:

εr =
r f inal − 2r

2r
=

(r)2 + d2

2rd
arcsin

(
2rd

(r)2 + d2

)
− 1 (1)

where r and d are the radius and the vertical displacement of the membrane, respectively.
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Figure 1. The architecture of the device investigated for stress sensing in a microfabricated PDMS-based
OOC platform: Tangential and radial microstructures (strain gauges) on PDMS membranes suspended
from a holding silicon frame. The membrane is pneumatically actuated to provide the stretching to
a cell culture on its surface.

The position and dimensions of the strain gauges are defined based on the expected distribution
of radial and tangential strain on circular membranes. The tangential strain, εt, is related to the radial
strain according to

εt($) = εr

(
1− $2

r2

)
(2)

where $ is the distance from the center of the membrane. Consequently, the strain gauges were located
close to the edge of the membrane, where the gradient of the tangential strain along the radial direction
is high.

Serpentine-like geometries of length (Lr, Lt) were then defined to maximize the microstructures
parallel to the expected main strain directions (radial and tangential). Likewise, the width (W = 20 µm)
was then defined to exploit the expected mechanical behavior and to have final electrical resistances in
the range of kΩ, matching with standard resistors necessary for further signal conditioning thickness
was defined to comply with the above mentioned electrical criteria and reduced as much as possible to
minimize the effect of the strain gauges on the membrane deformation.

2.2. Modelling and Simulation

An initial assessment, trough numerical simulations, was performed to analyze the expected
mechanical performance of the envisioned microstructures. The microstructures and the PDMS
membrane showed in Figure 1 were modelled and the corresponding solution to the set of equations
was obtained using the FEM-based software Comsol Multiphysics R©. The mechanical modelling
implemented was defined so that the equations can be computationally solved and particularly the
boundary conditions match the experimental conditions for the intended operation of the devices
and the subsequent electromechanical characterization. As demonstrated in other works, numerical
simulation provides better insight on the mechanical behavior of membranes with strain gauges
compared to analytical solutions. On thin membranes, the effect of the microstructures on the final
deformation of the membrane is better contemplated [22] by numerical solutions.

The modelling of the membrane with strain gauges was based on both linear and non-linear
equations of solid mechanics. The non-linearity is relevant for the model as it takes into account
the non-elastic behavior of the polymeric membrane [23]. Therefore, it is included in the model by
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introducing a stress-strain curve in the material properties, based on data previously reported [23,24].
The strain gauges were modelled assuming a linear isotropic and elastic material. Values reported in the
literature were used for the Youngs Modulus (90 GPa, 2 GPa) and Poisson ratio (0.31, 0.35) of titanium
(Ti) and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS), respectively [16–18,25].

The boundary conditions established for the model were determined based on the envisioned use
of the device for mechanical stretching of cell cultures. A boundary condition of zero displacement on
the substrate surface surrounding a circular membrane was considered, as this is the region where the
membrane is clamped to the silicon substrate. A boundary force equivalent to the pneumatic pressure
applied at the bottom surface of the membrane was included.

Subsequently, the geometry was meshed with (14 thousand elements) a high quality (≈0.83)
meshing, to calculate the displacement and strain fields.

The computation was carried out determining the displacement field of each of the elements of
the geometry representing the device. In Figure 2a,b, the strain field of a membrane with radial and
tangential metal strain gauges actuated with 2 kPa, is shown. In Figure 2c,d, the expected displacement
at the center of the membrane and the average strain for both metal and polymeric strain gauges
are reported.

Figure 2. Strain field of the membranes with radial (a,b) tangential metal strain gauges for a boundary
force corresponding to 2 kPa. (c) The curve of the displacement at the center of a membrane with metal
(blue line) and polymeric (red line) strain gauges for pressures up to 2 kPa. (d) Corresponding average
strain of the membrane.
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3. Materials and Methods

3.1. Materials

Two materials were investigated, namely a metal, titanium, and a conductive polymer,
poly(3,4-ethylenedioxythiophene)(PEDOT:PSS). Titanium was selected given its well-known
mechanical behavior, biocompatibility, gauge factor (GF ' 0.8) and the possibility to pattern it with
conventional lithography and dry etching techniques [26–30].

PEDOT is a polymer derived from ethylene dioxythiophene monomer. The electrical conductivity
is caused by the delocalized π-electrons within its chemical structure and the presence of sulfonated
polystyrene (PSS). It was adopted due to its known electronic conduction, biocompatibility,
high transparency (≥90%) and particularly for its mechanical flexibility (E ' 1.2 GPa) [16–18], making
it suitable for either sensing or stimulating microstructures [31]. Moreover, previous studies suggest
that this polymer can provide a gauge factor in the range of 0.48–17.8 [19–21].

3.2. Fabrication

To fabricate the strain gauges on PDMS membranes, wafer-level fabrication processes were
developed based on conventional photolithography and MEMS microfabrication techniques.
The nature of the two conductive materials adopted is significantly different, resulting in the
development and testing of two different processes to integrate the strain gauges.

3.2.1. Metal Strain Gauges

The fabrication process of the metal strain gauges is schematically depicted in Figure 3.
The process starts with the deposition of a 1 µm plasma-enhanced chemical vapor deposition (PECVD)
silicon oxide (SiO2) on the front side of a 100 mm in diameter, 525 µm-thick silicon wafer (Figure 3a).
The oxide acts as an etch-stop layer for the Deep Reactive-Ion Etching (DRIE) step used to form the
membrane. On the backside of the wafer, a 6 µm PECVD SiO2 hard-mask layer is deposited and
patterned to define the circular shape membranes (Figure 3b).

Then a 300 nm photosensitive polyimide (PI) layer is deposited and patterned. This layer is
included to provide electrical isolation as well as protection of the metal lines during the subsequent
steps of the process (Figure 3c). Next, a 600 nm-thick Aluminum (Al) and 100 nm-thick titanium
(Ti) layer are sputtered on the PI at room temperature. The resistivity of the sputtered materials is
20 µΩ-cm and 106 µΩ-cm, respectively. The Al layer is patterned and selectively etched by using wet
etching (Figure 3d). After defining the contacts, the Ti layer is patterned by dry etching (ICP Plasma
etcher, Trikon Omega 201) with a 2µm-thick positive resist as a masking layer (Figure 3e).

Then, a layer of PDMS (Dow Corning, Sylgard 184) is spin-coated on the front side. The elastomer
and curing agent are mixed in a 10:1 ratio and degassed in a centrifugal vacuum mixing and degassing
tool. The polymer is spun in three steps: a first step to spread the material over the silicon wafer at
10 rpm for 10 s; a second step for uniform spreading at 300 rpm for 20 s and a final step at 6000 rpm
for 30 s to get the desired 9 µm thickness. The polymer curing is performed for 30 min at 90 ◦C in
a convection oven (Figure 3f). Subsequently, a 100 nm-thick Al layer is sputtered on the PDMS at room
temperature. This temperature is set to avoid cracking of the PDMS layer during sputtering due to the
high coefficient of thermal expansion of the PDMS (310 µm/m ◦C). The metal is then patterned by
dry etching (ICP Plasma etcher, Trikon Omega 201) to open the areas corresponding to the electrical
contacts of the metallic microstructures (Figure 3g). The etching process used was optimized to avoid
any issue caused by thermo-mechanical stress. No cracking of the layers is observed when exposing
the materials to the thermal gradients during resist deposition and developing steps. Finally, the silicon
substrate is etched from the backside by DRIE using a Bosh-based process (Figure 3h). The oxide
stop layer is removed by a combination of wet and dry etching (Figure 3i). The Al layer is selectively
removed by wet etching in a solution of acetic, phosphoric and hydrofluoric acid (Figure 3j).
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Figure 3. Main steps of the fabrication process for the integration of Ti strain gauges on
PDMS membranes. (a) Deposition of oxide on the wafer front side. (b) Deposition and patterning
of the oxide on the wafer back side to define the circular membrane. (c) Deposition and patterning
of PI layer for electrical and mechanical isolation. (d) Deposition of Ti and patterning of electrical
contacts (Al). (e) Patterning of the metal layer corresponding to the strain gauges (Ti). (f) Deposition of
PDMS layer. (g) Deposition and patterning of the Al masking layer and etching of the PDMS layer to
open the electrical contacts. (h) Etching of the silicon substrate using a DRIE process. (i) Removal of
the landing SiO2. (j) Removal of the masking layer (Al) by wet and dry etching.

3.2.2. Polymeric Strain Gauges

Likewise, to fabricate the polymeric (PEDOT:PSS) strain gauges on PDMS membranes,
a wafer-level fabrication process was developed based on conventional photolithography and MEMS
microfabrication techniques. The steps for the membrane fabrication are similar to the previously
described with variations specifically meant to introduce the PEDOT:PSS microstructures.

A 1 µm-thick PECVD SiO2 is deposited on a 100 mm-Si wafer. Then a layer of 100 nm of Silver
(Ag) is deposited by evaporation and subsequently patterned by lift-off to create electrical contacts
(Figure 4a). An Al layer is then deposited and patterned to be used as a protective layer during the
subsequent polymer etching (Figure 4b). The PEDOT:PSS is deposited by spin coating and cured in an
oven at 150 ◦C for 40 min (Figure 4c). On top of the PEDOT:PSS another Al layer, used as a hard mask
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during the reactive-ion etching (RIE: O2, 20 mTorr, 50 W), is sputtered and patterned (Figure 4d,e).
The PEDOT-based microstructures are now defined, and metal contacts are exposed. Lastly, the Al
masking and protective layer are removed by wet etching using a solution of acetic acid, nitric acid
and hydrofluoric acid (PES) (Figure 4f).

Once the conductive polymer is patterned (Figure 4a–f), a PDMS layer is deposited by a two-step
spin coating process (Figure 4g). To open the contact pads, the PDMS is etched by RIE, and the SiO2 as
well as the Al are etched as described for the metal strain gauges (Figure 4h–j).

Figure 4. The main steps of the process flow developed for the wafer-scale fabrication of polymeric
strain gauges. (a) Front and back deposition of the SiO2 oxide and patterning to define the
membranes area. (b) Deposition of SiO2 and Ag on the front side patterning to define the
electrical contacts. (c) Deposition and patterning of the Al layer to open the electrical contacts to
the conductive polymer and to protect the remaining Ag layer for the subsequent etching steps.
(d) Deposition and curing of the PEDOT:PSS layer. (e) Deposition and patterning of the Al
masking layer. (f) Dry etching of the PEDOT:PSS and removal of Al masking and protective layer from
the patterned strain gauges. (g) Deposition of the PDMS layer. (h) Deposition and patterning of the
metallic (Al) masking layer and the PDMS layer to open the electrical contacts. (i) Etching of the silicon
substrate using a Bosh-based DRIE process. (j) Removal of the landing oxide layer and the masking
layer (Al) by wet and dry etching.



Micromachines 2019, 10, 536 8 of 15

3.3. Characterization Set-Up

The characterization set-up used to measure the resistance change of the strain gauges subjected
to mechanical stress is shown in Figure 5. It consists of three main modules: a 3D-printed holder to
interface the silicon chip with a pressure controller, a probe station and external circuitry for data
acquisition and signal conditioning.

Figure 5. Measurement set-up developed to characterize the microfabricated strain gauges. (a) The
electrical signal from the strain gauges is acquired by probing them with a standard probe station.
The pneumatic actuation is provided simultaneously through a special coupling holder connected
to a pressure source. (b) The electrical signal is conditioned and transmitted to a PC for further
calculations and data processing.

To couple both the electrical functionality and pneumatic actuation of the devices, a custom-made
holder was specifically designed and fabricated by 3D printing. The holder allows for stretching the
membrane through the silicon cavity by connecting the chip to a commercial pneumatic pumping
system. A commercial Dual AF1 microfluidic pressure and a vacuum pump (Elveflow R©, Biotechnology
Company, Paris, France) were used to control the pressure. This system makes possible to accurately
control the pressure from 0 up to 30 mbar. Moreover, the holder enables electrical connection from
the chip to external circuitry as they were both designed such that the Al contact pads on the silicon
substrate are easily accessed from the top.

The external circuitry to measure the resistance change is connected to the metallic and polymeric
strain gauges contacts through a standard probe station. A Wheatstone bridge is implemented as a first
stage for signal conditioning. For this circuit topology, an expression for the resistance of the strain
gauges (RSG) as a function of the voltage differences (V,VCC) and the other resistors can be obtained
by applying Kirchhoffs voltage law.

The signal (V) is amplified by an operational amplifier (AMP04F, Analog Devices, Norwood, MA,
U.S.) with high gain (G = 100) and input impedance (in the order of MΩ). The output signal of the
amplifier is acquired through an Analog-to-Digital converter (USB-6001, National Instruments, Austin,
TX, U.S.), enabling the direct acquisition of the data in a personal computer and the corresponding
calculation of the resistance change. The signal is further processed and filtered using a digital low
pass filter with the cut-off frequency fixed at 10 Hz. The cut-off frequency is set as low as possible to
reduce the high-frequency noise and keep the measurement bandwidth within the expected range of
typical biological processes e.g., heart rate: 1–4 Hz.
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4. Results

4.1. Microfabrication

4.1.1. Metal Strain Gauges

In Figure 6 a full wafer containing several membranes with strain gauges is shown, demonstrating
the wafer-scale capability of the developed process. A close-up of the released membranes (red dash line)
and the titanium strain gauges can be also observed. In the background, several fibers are noticed
corresponding to the supporting substrate, showing the transparency of the PDMS membrane.

Figure 6. (a) A completed wafer containing 36 membranes equipped with strain gauges. (b) An
optical image of a die containing four devices (top) and a close-up of the released membranes with Ti
gauges (bottom). Scale bars: 150 µm (bottom), 3 mm (top).

4.1.2. Polymeric Strain Gauges

Several membranes with polymeric strain gauges were realized on a single wafer. In Figure 7
optical images show a close-up of the polymeric strain gauges integrated on the membranes. Both radial
(Figure 7a) and tangential (Figure 7b) geometries were realized, so to investigate the electromechanical
response of the polymeric strain gauges.

Although PEDOT:PSS has already been applied in related devices for neuron cell study, either
rigid materials were used as the supporting substrate or fabrication methods lack of compatibility
with high scale manufacturing schemes [31], contrary to the advantageous processes here proposed.
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Figure 7. (a) A completed wafer containing 36 membranes equipped with polymeric strain gauges.
(b) Optical images of radial (top) and tangential (bottom) polymeric strain gauges embedded in
10 µm-thick PDMS. (c) A zoom-in perspective illustrating the polymeric strain gauges integrated into
the PDMS membranes. Scale bar: 100 µm.

4.2. Electromechanical Characterization

The characterization of the devices was carried out by continuously monitoring the electrical
resistance at various stationary pressures. In particular, radial and tangential strain gauges, close to
the end PDMS membrane edge, were characterized. The response of the devices was investigated for
both Ti and PEDOT:PSS strain gauges.

4.2.1. Electrical Resistance

The resistance change in stationary regime for both tangential and radial strain gauges are
reported in Figure 8. The pressure increased from 0 to 3 kPa in steps of approximately 350 Pa, a value
slightly higher than the minimum stable change in pressure achieved with the commercial pumping
system employed.

Figure 8. Stationary measurements of resistance change for radial and tangential strain gauges made
of (a) titanium (Ti) and (b) PEDOT:PSS. Error bar: 5%.
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An incremental variation of the resistance was observed. For titanium strain gauges, a relative
resistance change up to ≈0.008 % over the tested pressure range was measured, for both radial and
tangential geometries (Figure 8a).

For PEDOT:PSS strain gauges, a relative resistance change up to ≈1.4% was measured for the
tangential geometries, a much higher value than the observed for its metal counterpart. In the case of
the radial strain gauge, the resistance change was found to be ≈0.08% (Figure 8b). The measurements
were performed under controlled humidity conditions with a relative humidity of ≈48%. Having
a controlled humidity is important as it has been shown that both electrical and mechanical properties
of PEDOT:PSS vary with humidity [16]. All results were thus obtained under the same environmental
conditions. For both geometries and materials, measurements at higher pressure were not possible as
the pumping system reached the maximum flow capacity at 3 kPa.

4.2.2. Membrane Displacement and Strain

The displacement at the center of the membrane with polymeric and metal strain gauges was
measured for the same pressure ranges. The mechanical stimulus can thus be translated as strain
at the surface of the material. For the microfabricated device, the strain can be approximated based
on the maximum displacement of the center of the suspended polymer layer [2,3]. In Figure 9a,
the displacement for different pressures is shown.

Figure 9. (a) Displacement in the center of the membranes with metal and polymeric strain gauges
measured optically for different pressures set through the pumping system (1–3 kPa). (b) Estimation
of the radial strain of the membranes with strain gauges based on the displacement measurements.
Error bar: 6%.

The strain on the membrane was also indirectly obtained assuming a semicircular profile and
a continuous distribution along the radius. In Figure 9b, the calculated radial strain for the same
pressures range used to investigate the resistance change, is shown.

4.2.3. Calibration Curves

The data acquired by the electrical and mechanical characterizations (Figures 8 and 9 have been
used to calibrate the measured strain gauges, thus achieving the resistance change of the devices
as a function of the total membrane strain. In Figure 10 the calibration curves are shown for both
geometries and materials investigated.
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Figure 10. Resistance change as function of the strain on the membrane for radial and tangential strain
gauges made of (a) titanium (Ti) and (b) PEDOT:PSS.

Based on the experimental data, given a resistance change it is possible to establish an approximate
transfer function for the actual strain on the membrane. The results of the Ti strain gauges suggest
an estimated sensitivity of 4.5 mΩ · µm−1 and 11.6 mΩ · µm−1 for radial and tangential geometries,
respectively. The tangential geometry showed higher sensitivity, confirming what suggested by
theoretical and numerical analysis reported in other works [22]. For polymeric strain gauges, sensitivity
of 0.571 Ω · µm−1 and 62 Ω · µm−1 for radial and tangential geometries, were obtained, respectively.

5. Discussion

The fabrication processes presented in this paper enabled the development of both metallic and
polymeric strain gauges as a potential transduction mechanism for in situ monitoring of strain on
PDMS membranes for OOC applications. The electrical resistance of the metallic strain gauges at the
end of the fabrication was stable and did not show to be affected by the process. A slight deviation
of approximately 2% compared to the designed values was measured. Both radial and tangential
geometries (Figure 6b) did not suffer any mechanical disruption after the releasing of the membrane,
a critical step to realize the final devices. This demonstrated the robustness and reliability of the
fabrication process developed.

The experimental data of resistance change for both metallic radial and tangential devices are
within the same order of magnitude, as can be observed in Figure 8. The results show a linear behavior
up to 3 kPa, the maximum pressure measurable and supplied by the pneumatic system. However,
the data on the displacement shows a non-linear tendency for the same pressure range (Figure 9),
causing the non-linearities observed in the calibration curve for strains above 3% (Figure 10). This is
due to the saturation of the displacement at the center of the membrane, which might be explained by
the difference of a few orders of magnitude in stiffness between the membrane and the metal. Despite
these non-linearities, a first linear approximation can be made to establish a transfer function for the
actual strain on the membrane given a certain resistance change. Thus, the estimated sensitivity for
radial and tangential geometries for strains below 3% is 4.5 mΩ ·µm−1 and 4.4 mΩ ·µm−1, respectively,

For polymeric strain gauges, the process was more challenging given the nature of the material.
The main challenge encountered was to enable and optimize the electrical contact. As it was not
possible to establish ohmic contact using readily available metals (Al, Ti, TiN), the process needed to
be adapted and optimized. To do so, it was redesigned to minimize long exposure of the materials
to water as PEDOT:PPS is highly hygroscopic and degraded easily in contact with water. Given its
characteristic reduction potential (E0 = +0.8 V) and the accessibility to Ag deposition and patterning
techniques, this material was used to create the electrical contacts. A low reactive metal is adopted due
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to the high acidity of the sulfonate functional group (PSS), which easily oxidizes most metals used
in IC fabrication processes, unavoidably increasing the contact resistance [32]. The addition of such
material increased the number of steps and complexity of the process as the material is not standard
in the facilities available. Thus, Al was introduced as masking and protection layer so that the Ag
contacts were never open when performing the lithography and dry etching steps, safeguarding the
processing tools from possible exposure to Ag or unexpected back-sputtering.

Another addressed aspect was the temperature and baking time of the polymer. The effect of
these parameters on the electrical contact was investigated. By increasing the baking temperature to
150 ◦C and the baking time to 30 min, the contact resistance decreased by 20% compared to initial
experiments. This indicates the importance of complete removal of water from the polymer to enhance
electrical contact. It is worth mentioning that the measurements and fabrication were always carried
out under controlled humidity conditions with relative humidity around 48%. Having a controlled
humidity was important to keep the consistency of the experiments, as it has been shown that both
electrical and mechanical properties of PEDOT:PSS might vary with humidity [22].

Regarding the electrochemical characterization of the polymeric strain gauges, the results also
showed a measurable change in resistance of the microstructures when stretching the membrane.
In particular, a higher value of relative resistance change (up to 1.4%) was observed compared to
metal strain gauges. The tangential structures showed a higher value than the radial ones. This might
be correlated with the nature of PEDOT:PSS and the deposition technique used. The polymer has
a structure of fiber-like chains with de-localized π−electrons that enable the conductivity. This suggests
that the deposition technique might be inducing a radial arrangement of the fibers as consequence
of the spinning, leading to higher resistance changes when stretched. Significant degradation of the
devices was observed with stretching and time, suggesting the need for optimizing the patterning of
PEDOT:PSS microstructures and to properly characterize the dependence of mechanical properties
with environmental conditions. Alternative depositions, such as electro-deposition and encapsulation
of the material (e.g., Parylene, Polyimide), can be explored to address these issues and to optimize the
polymer deposition, as reported in several works in implantable applications [33–36].

However, it is possible to establish a first linear approximation for the transfer function of
polymeric strain gauges. In this case, the sensitivity of 0.571 Ω · µm−1 and 62 Ω · µm−1 for radial and
tangential geometries, are obtained respectively for strains below 3%. This indicates a much higher
sensitivity for polymeric strain gauges.

In the characterizations performed for both the polymeric and metal strain gauges, more
than 50 samples per data point were collected for the mechanical and electrical measurements,
with corresponding standard deviations in the 4–5% range, which suggest a high reproducibility
and reliability of the devices.

6. Conclusions

So far, the majority of OOCs have relied entirely on bulk optical techniques (immunofluorescence
end-point detection, microscope cell imaging) to acquire and analyze the information of cell
microenvironments. A complete view of cell responses can be obtained if mechanical strain and other
relevant cues could be quantitatively measured in situ and in a spatio-temporal manner. This paper
reports wafer-scale microfabrication processes that enable the integration of metal and polymeric strain
gauges in monolithically fabricated organs on chips.

The results indicate that both conventional IC metals (Ti) and polymeric materials (PEDOT:PSS)
can be used for sensing mechanical strain on flexible substrates for organ-on-chip applications. The
transduction behavior and the functionality of the devices were proven. A custom-made set-up
allowed to show a resistance change of the devices for different pressures applied to the membranes,
demonstrating the functionality of the proposed device. Relative resistance changes of approximately
0.008% and 1.2% for titanium and polymeric strain gauges have been observed, respectively for
pressures up to 3 kPa applied to stretch the membranes. Correspondingly, the displacement
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measurements showed that for such resistance changes a strain of up to ≈5 % is induced on the
membrane. The results indicate a much higher sensitivity for polymeric strain gauges and a high level
of reproducibility.
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