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Abstract: In this report, we propose a micro vacuum chuck (MVC) which can connect three-dimensional
(3D) tissues to a tensile test system by vacuum pressure. Because the MVC fixes the 3D tissue by
vacuum pressure generated on multiple vacuum holes, it is expected that the MVC can fix 3D tissue to
the system easily and mitigate the damage which can happen by handling during fixing. In order
to decide optimum conditions for the size of the vacuum holes and the vacuum pressure, various
sized vacuum holes and vacuum pressures were applied to a normal human cardiac fibroblast 3D
tissue. From the results, we confirmed that a square shape with 100 µm sides was better for fixing
the 3D tissue. Then we mounted our developed MVCs on a specially developed tensile test system
and measured the bio-mechanical property (beating force) of cardiac 3D tissue which was constructed
of human induced pluripotent stem cell-derived cardiomyocytes (hiPS-CM); the 3D tissue had been
assembled by the layer-by-layer (LbL) method. We measured the beating force of the cardiac 3D
tissue and confirmed the measured force followed the Frank-Starling relationship. This indicates that
the beating property of cardiac 3D tissue obtained by the LbL method was close to that of native
cardiac tissue.

Keywords: beating force; bio-mechanical property; cardiac 3D tissue; human induced pluripotent
Stem cell-derived cardiomyocytes (hiPS-CM); tissue engineering; vacuum chuck

1. Introduction

Three-dimensional (3D) tissues which are constructed by cells in the environment in vitro have been
applied in a wide range of fields such as regenerative medicine [1–26], drug development [2,9,11–15,26–42],
disease modelling for pathology [11–15,36,43–46], bioactuators [47–52], food industry [42,52–56], and
BioArt [52,55–62]. With the advancement of 3D tissue technologies, evaluation methods for them
have been demanded. Conventionally, analytical approaches such as biochemical, immunological,
morphological [24,63], electrophysiological, and motion image analysis [31] methods have been applied
to evaluate artificial tissues. These methods, however, cannot evaluate bio-mechanical properties directly.
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To construct the 3D tissues, it is necessary to make not only biochemical and electrophysiological
evaluations, but also bio-mechanical evaluations. By evaluating bio-mechanical properties of 3D
tissues, various conditions of 3D tissues can be understood. For example, in the field of regenerative
medicine, bio-mechanical evaluations are important for constructing 3D tissues which replicate living
tissues. The behaviors of cells in tissues are affected by the surrounding environment [64,65]. If the
surrounding environment affects the bio-mechanical properties in a different manner from that in vivo,
tissues might develop in an undesirable form and might act in ways which are different from their true
functions. The fact that conditions of the extracellular matrix influence bio-mechanical properties of
3D tissues also indicates the importance of measurement of 3D tissues [4,5,18,23]. When constructing
thick tissues, a luminal structure is needed for nutritional transport [29]; hence, the luminal structure is
an important parameter for 3D tissue construction. The bio-mechanical properties of 3D tissues are
affected by the luminal structure because the mechanical properties of the luminal structure and other
components of the tissues are each different. Thus, measurement of bio-mechanical properties can be
evaluated by using the luminal structure of 3D tissues. Additionally, it is important for transplantation
of 3D tissues in vitro to ascertain whether or not the 3D tissues are broken by the in vivo pressure,
whether or not the 3D tissues satisfy the desired mechanical properties, and whether or not the 3D
tissues have the optimum stiffness or viscoelasticity. For the above reasons, various researchers have
statically measured bio-mechanical properties of artificial tissues such as bone [16,17], cartilage [18,19],
tendon [20–22], vein [23], and skin [24,25]. Additionally, if large-scale manufacturing of 3D tissues is
to be done, automatic handling of 3D tissues may be demanded, and then, information on mechanical
properties may be important also. In the field of drug development, bio-mechanical properties are also
important for the reasons described above. In the food industry field, artificial meats must possess
mechanical properties (texture) similar to that of real meats [54,55]. In the field of BioArt, to get the
sense of touch for semi-living, that is, artificial, tissues, it is necessary to start creating some sort of
bond [56]. Because the sense of touch mainly depends on mechanical information, the mechanical
properties of artificial 3D tissues must be known.

As mentioned above, the bio-mechanical properties are important parameters for constructing
3D tissues. However, conventional methods, such as biochemical and electrophysiological methods
and microscopic observations have not been able to evaluate bio-mechanical properties of 3D tissues.
Therefore, we tried to measure bio-mechanical properties of a sheet shape tissue (a cell sheet).
For example, we measured the adhesion force of a cell sheet by the ninety-degree peel test with our
newly developed system [66–68]. We also measured stiffness of a cell sheet with a tensile test system
which we developed [69,70]. Since the procedures for the ninety-degree peel test and tensile test are
defined by the International Standard Organization (ISO), a proposed method using them should be
standardized easily.

Next, we looked at the importance of mechanical properties of cardiac 3D tissue beating.
The bio-mechanical properties such as adhesion force and stiffness, which we measured previously,
were static properties. Nowadays, dynamical bio-mechanical property, such as beating force,
is beginning to receive attention with the appearance of cardiac 3D tissues which have been realized
by tissue engineering technologies, and embryo-stem (ES) cell and induced pluripotent stem cell
(iPSC) technologies. For example, cardiac 3D tissues were constructed by a layer-by-layer (LbL)
method [26,31]. Thus, various methods which can evaluate beating properties of cardiac 3D tissues
which were constructed by various methods have been proposed and beating force of cardiac 3D
tissues has been measured [3–13,15,32–37,43–46]. The cardiac 3D tissues assembled by the LbL method
were evaluated by biochemical, immunological, electrophysiological, and motion image analysis
methods [31]. However, these evaluation methods for cardiac 3D tissues which were constructed by
LbL method cannot evaluate bio-mechanical properties directly. Therefore, our objective in this report
was to overcome this deficiency.

However, fixing 3D tissues onto a measurement system is difficult because of their mechanical and
chemical fragility. Many studies have tried to fix 3D tissues by various methods [3–13,15,32–37,43–46].
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These methods have limits to the size and the shape of the 3D tissues because of how the fixing to
the force measurement system is done. Therefore, in the measurement of mechanical properties for
cardiac 3D tissues, most cardiac 3D tissues for which mechanical properties were measured did not
consist of just cells. These 3D tissues consisted of cells and scaffold (e.g., fibrin gel and collagen gel).
And even though cardiac 3D tissues consisted mainly of cells, the sizes of those 3D tissues were small
(length, smaller than 2 mm; width, 200 µm) [37]. Additionally, these fixing methods needed a lot of
preparation steps and complex operations.

Evaluation for dynamical bio-mechanical properties of cardiac 3D tissues which consist of just cells
(for example, tissue obtained by the LbL method) and whose size is large has been needed. In order
to mount the 3D tissue on the evaluation system, a fixture which enables fixing of various sizes and
various shaped 3D tissues is necessary. Additionally, for reliable and efficient measurement, the fixture
demands easy connection of the 3D tissues to the evaluation system. Therefore, the objective of this
study was development of a system which can solve these issues.

In this study, we newly developed a special chucking tool and a tensile test system. The chucking
tool can chuck the 3D tissue by vacuum pressure which is loaded through multi micro meter size holes.
The tensile system can measure a small force (from sub-micro newton to milli newton level) and can
drive the vacuum chucking tool. To confirm applicability of the system, we measured beating property
of cardiac 3D tissue that consisted mostly of cells (with a tiny amount of extracellular matrix) and the
tissue size was larger than that of conventional studies (diameter: 12 mm).

2. Materials and Methods

2.1. Design of the Micro Vacuum Chuck (MVC)

In order to apply a tensile test for 3D tissues, tissues have to be connected to the tensile test system
by using a chucking tool. In general, the mechanical and chemical strengths of conventionally chucked
samples (i.e., metal, latex, plastic, cloth, and ceramic, etc.) are larger than those of 3D tissues and
the sample sizes (millimeters to centimeters) are also bigger than those of 3D tissues (micrometers
to millimeters). Thus, when conventional samples are connected to the tensile test system, a clamp
type fixture or chemical bonding is applied. On the other hand, because 3D tissues are very soft
(mechanically fragile), the clamp can crush them and chemical bonding can cause chemical damage
to them. Additionally, the small 3D tissue size makes a fixing operation which employs the above
methods difficult. Some reports which measured contractile force of 3D tissues have used fixing
by piercing or hooking with a fine hook [3–8,12,37], tying with nylon fiber [10,13,46], embedding
a special fixture in an early preparation stage [11,15,32,35,43–45], and using a silicon post (a micro
pillar) [9,33,34,36] in a manner similar to the embedding method. We have also employed hooking for
fixing sheet shape tissues [66–70]. However, when applying these fixing methods to the tensile test of
3D tissue, there are some problems. For instance, by hooking or piercing the 3D tissue, it may tear
away from the pierced holes. Hooking also restricts the shape of the 3D tissues somewhat; however,
a ring and a fiber (rod) shape are possible examples. When using the ring shape 3D tissue, mechanical
properties due to the shape and friction between the hook and tissue become a concern. Tying is
a complicated operation and it does not allow evaluation of many 3D tissues. Additionally, tying
causes variation of the measured force and load mechanical damage to 3D tissues. Operations such
as hooking, piercing, and tying may also cause unsure measurements because of deformation of the
3D tissue by stress concentration. To use a special embedded fixture, the shape of the 3D tissue and
preparation method are restricted. Force generated by the 3D tissue cannot be measured directly by
the micro pillar. It is difficult to apply the tensile test for the micro pillar since the length of the 3D
tissues cannot change due to the structure of the system. Additionally, for the micro pillar, shapes of
3D tissues are limited (i.e., a fiber (rod) shape).

Therefore, in this report, we have suggested an MVC which can fix 3D tissue by using vacuum
pressure (Figure 1). The MVC has four advantages. First, the MVC can fix various shaped 3D
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tissues such as sheet, tube, and block shapes. Second, the MVC can fix 3D tissues easily without
complex operations. Third, the MVC causes less damage to the 3D tissues and the uncertainty of the
measurement is less by decreasing the effect of stress concentration because the MVC does not use
fixation tools such as the fine hook, tying fiber, and embedding fixture. Finally, the MVC causes less
chemical damage to the 3D tissue since the MVC does not need chemical bonding.Micromachines 2019, 10, x FOR PEER REVIEW 4 of 17 
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Figure 1. Conceptual illustration of the micro vacuum chuck (MVC). The 3D tissue is suctioned toward
the micro size vacuum holes and fixed there by vacuum pressure which is generated at the holes.

The 3D tissue was fixed with a negative pressure generated at vacuum holes of the MVC. When the
single vacuum hole was applied for tissue fixing, an excessive vacuum was confirmed to cause a load
on the tissue [71]. The excessive vacuum could cause damage to the 3D tissue, including unexpected
length changes and deformation. Additionally, when fixing the 3D tissue with the single vacuum hole,
the 3D tissue has to be detached from the culture surface before fixing. Therefore, the initial length of
the 3D tissue changes by pre-detachment of the 3D tissue because the 3D tissue length is not fixed by
the fixtures in advance. If the 3D tissue is fixed by using the single vacuum hole, the 3D tissue becomes
detached from the vacuum hole when the 3D tissue is detached from the culture surface because the
vacuum pressure which is generated by only one hole is weak (that is, the vacuum pressure is not
strong enough to pull the 3D tissue into the vacuum hole). In order to fix the 3D tissue to the tensile
test system while maintaining the initial length of the 3D tissue, a fixture which has multi vacuum
holes is needed.

Therefore, we used the MVC with several vacuum holes. By increasing the number of vacuum
holes, the 3D tissue could be fixed with a small stress concentration. Additionally, we expect that
the excessive vacuum on the 3D tissue would be decreased because multiple close-by areas of the
tissue would be pulled into the micro vacuum holes at the same time. By increasing the number of
the vacuum holes, we can also expect certainty of fixation. Additionally, unlike hooking and tying,
the MVC is able to fix variously sized and shaped 3D tissues by adjusting size and shape of the MVC.
While, the method which uses an embedding special fixture may fix variously sized and shaped 3D
tissues, it has to use impurities (e.g., fibrin gel and collagen gel) for formation of 3D tissues.

Figure 2 shows a photo of the MVC. The MVC had 17 vacuum holes. The distance between
the vacuum holes was 206 µm. Each vacuum hole was square and each side length was 100 µm.
The vacuum hole size was decided by an experiment (see Section 2.3, Section 3.1, and Section 4).
The MVC width was 5 mm. Because the single hole type vacuum chucks were made of fine tube,
fabrication of the multi hole type vacuum chuck was difficult. We used a micro fluid channel fabricated
by a photolithography technique (see Supplementary Materials and Figure S1).
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Figure 2. Photo of a micro vacuum check (MVC). The MVC had 17 micro vacuum holes and each hole
was a square shape with a side length of 100 µm. The MVC was 5 mm wide.

2.2. Design of Tensile Test System

Since there were no tensile test systems for 3D tissue, we also developed a special tensile test
system. We designed the system configuration and devices conditions and ordered the system
fabrication from a maker (HS101, Tech Alpha, Tokyo, Japan) (Figure 3a). The tensile test system for
3D tissues consisted of the six parts indicated in Figure 3b. (1) The force transducer was used to
measure contractile force of the 3D tissue. (2) The MVCs fixed the 3D tissue to the force transducer and
motorized stage. (3) The vacuum pressure generating system adjusted the vacuum pressure of the
MVCs. This vacuum pressure system was constructed with a vacuum pump, an electromagnetic valve
and a pressure sensor. The vacuum pressure was feedback controlled. (4) The motorized stage loaded
a tensile force onto the 3D tissue. (5) The culture dish protected the 3D tissue from drying out during
the tensile test. (6) The charge-coupled device (CCD) camera and microscope were used in recording
the test conditions. Measured force data were analyzed by commercial analysis software (Igor Pro,
Wave Metrics, Lake Oswego, OR, USA). Video data and measurement data were synchronized by
turning on an LED lamp and recording the LED voltage signal simultaneously.

Figure 3c shows a schematic illustration of the region around one MVC which was connected to
the force transducer of the tensile test system. In order to get close contact between the micro vacuum
holes and the 3D tissue which adheres on the culture surface, the MVC was connected to the tensile test
system vertically. When measuring the tensile force of the 3D tissue, stiffness of the vacuum tube which
was supplying the vacuum pump suction at the MVC may affect the force measurement. Thus, a small
diameter (ID, 0.5 mm; OD, 1 mm) and flexible silicon tube (CP-N-0.5-1-10, Shin-Etsu Polymer Co.,
Ltd., Tokyo, Japan) was used and the tube was positioned vertically relative to the tensile force loaded
direction. If the tube connects the force transducer and the vacuum pressure generating system directly,
the force transducer can measure mechanical noise (i.e., vibration) which is generated by the vacuum
pump. Thus, a tube fixture kept the tube in place mechanically near the force transducer, and the tube
fixture mechanically separated the force transducer from the vacuum pressure generating system.
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Figure 3. (a) Photo of the newly developed tensile test system with attached micro vacuum chuck
(MVCs). (b) The tensile test system for 3D tissues consisted of six parts. (1) The force transducer was
used to measure the bio-mechanical properties of the 3D tissue. (2) The MVCs fixed the 3D tissue to the
force transducer and motorized stage. (3) The vacuum pressure generating system adjusted the vacuum
pressure of the MVCs. This vacuum pressure system had a vacuum pump, an electromagnetic valve
and a pressure sensor. (4) The motorized stage loaded tensile force onto the 3D tissue. (5) The culture
dish protected the 3D tissue from drying out during the tensile test. (6) The charge-coupled device
(CCD) camera and microscope were used in recording the test conditions. (c) Schematic illustration
around one MVC connected to the force transducer of the tensile test system. The vacuum tube
(a flexible silicon tube) was positioned vertically relative to the tensile force loaded direction. A tube
fixture kept the tube in place mechanically.

2.3. Confirmation Experiment on the Effect of Vacuum Hole Size and Vacuum Pressure

To decide the optimum size of the vacuum hole of the MVCs, we confirmed amounts of 3D tissues
which were pulled into variously sized vacuum holes at different vacuum pressures. We applied 3D
tissues with pressures of 1 kPa, 3 kPa, 10 kPa, and 20 kPa. The square-shaped vacuum holes had side
lengths of 50 µm, 100 µm and 200 µm. To simply evaluate these experimental results, we made MVCs
with a single hole; the fabrication process was as described in the Supplementary Materials.

The reason for setting the end of the vacuum pressure range as 20 kPa was as follows. In this
study, we measured beating properties of cardiac 3D tissues with a loaded strain stimulation by tensile
force. When a large strain stimulation is loaded, the 3D tissues become detached from the MVCs by
the large tensile force and beating properties cannot be measured. Therefore, vacuum hole size and
vacuum pressure needed to be determined in order to prevent the detachment of the 3D tissues from
the MVCs by large strain stimulation. The normal human cardiac fibroblast (NHCF, CC-2509, Lonza,
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Basel, Switzerland) 3D tissue had a contractile force of about 400 µN (sample width, 3 mm; strain,
0.6) which was measured by using a prototype MVC and a prototype tensile test system [72]. If the
contractile force increases linearly with increase of loaded strain, the contractile force could be about
667 µN when NHCF 3D tissue has a loaded strain of 1. In measurement of cardiac tissue contractile
force for this study, we used 12-well cell culture inserts (diameter, 12 mm; this diameter would mean
our tissue sample width was four times that of the reported sample width with presumed contractile
force of about 667 µN). Thus, we hypothesized that the contractile force of cardiac tissue was about
four times larger (about 2668 µN) than that of NHCF tissue for the loaded strain of 1 (667 µN). Since
the number of vacuum holes of the multi-hole MVCs was 17 and the necessary fixing force was at
least over 2668 µN, we hypothesized that the needed force generated by one vacuum hole was about
157 µN. Then, because the area of one vacuum hole was 0.01 µm2, the needed vacuum pressure was
more than 15.7 kPa. Thus, we applied the maximum pressure of 20 kPa to the single-hole MVC. In this
confirmation experiment, 3D tissues constructed from NHCF was used (see Supplementary Materials).

The confirmation experiment was done in the culture medium (Dulbecco’s Modified Eagle
Medium (D-MEM, High glucose, Nacalai Tesque, Kyoto, Japan) containing 10% fetal bovine serum
(FBS, Life Technologies Co., Grand Island, NY, USA) at about 25 ◦C. About one minute after vacuuming
NHCF 3D tissues using the single-hole MVCs, the amounts of pulled-in 3D tissue were observed
through a microscope (Leica DMi1, Leica Microsystems, Tokyo, Japan) and recorded by the attached
CCD camera. Then, recorded images were analyzed by the image processing software (ImageJ, 1.48v).
After every observation was finished, the NHCF 3D tissue was removed from the single-hole MVCs,
and then, another vacuuming and observation was made for the rest of the same 3D tissue. The amount
of NHCF 3D tissue which was pulled into the single-hole MVC was defined as the distance between
the tip of the pulled-in 3D tissue and the vacuum hole opening. Experiments were carried out once at
each pressure and each size vacuum hole.

2.4. Tensile Test of 3D Tissue Constructed of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes
(hiPS-CM)

In this test, 3D tissues constructed of human induced pluripotent stem cell-derived cardiomyocytes
(hiPS-CM) were used (see Supplementary Materials). When cardiac 3D tissues are detached from the
culturing surface, the 3D tissues shrink and their length changes. So first, the MVCs were used to hold
the 3D tissue which was on the culturing surface that consisted of a culturing insert membrane by
vacuum pressure (about 30 kPa) (Figure 4a). After confirming that the MVCs were holding the tissue,
the culturing surface was detached from the adhered cardiac 3D tissue with a knife and tweezers
(Figure 4b). By following these steps, we were able to measure the beating properties of the 3D tissue
without any change in its conditions from those at the time of culturing. For example, the initial
length of the 3D tissue was not changed because the length of the 3D tissue was fixed by the fixtures
in advance. After again confirming the 3D tissue was held by the MVCs, the tissue was strained in
one direction at a constant speed of 0.01 mm/s for arbitrary distances (Figure 4c). Then, after finishing
the strain, the beating force was measured. The operations to strain the 3D tissue and measure the
beating forces were repeated for each strain stimulation. Beating forces were measured for each strain
stimulation without detachment of the 3D tissue. The extension was considered to be ended when
the 3D tissue became detached from the MVCs. This detachment was judged from a rapid decrease
of beating force of the 3D tissue or a decrease of vacuum pressure. The tensile test was done in the
culture medium (DMEM + 10% FBS) at about 25 ◦C. In this experiment, the beating of 3D tissues was
not evoked by such stimulations as electrical or optical stimulation. The passive contractile forces were
measured. The initial length of the 3D tissue (distance between the MVCs) was 5 mm. Maximum
strain value was 0.9. The force was measured at various strains before reaching the maximum strain.
The beating force was defined as the value at the peak amplitude. The beating forces were measured
from 8 to 20 times for each strain stimulation. We adjusted the number of measurements according
to beat frequency. When the beating was slow, in order to shorten the experiment time, the number
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of beats for measurement was decreased. The measured peak forces were averaged and standard
errors were also calculated. Three samples were used. Beating stress was calculated by force derived
by the cross-sectional area of the 3D tissue. The slimmest parts of each 3D tissue were used for the
cross-sectional area calculation. We assumed 89 µm as the thickness of all 3D tissues. The beating
force measurement of the cardiac 3D tissues was conducted from 10 to 15 days after the seeding of
cells in the culture inserts. The calculated beating stresses were averaged and standard errors were
also calculated.
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Figure 4. Schematic illustration of 3D tissue fixation by the micro vacuum chuck (MVC). (a) The 3D
tissue, on a culturing surface that consisted of a culturing insert membrane, was fixed by the MVCs
using the vacuum pressure. (b) The culturing surface was detached from the 3D tissue. (c) The 3D
tissue was strained in one direction and beating force was measured.

3. Results

3.1. Results of Confirmation Experiment on Effects of Vacuum Hole Size and Vacuum Pressure

Figure 5 shows photos of a 3D tissue consisting of NHCF that was pulled into a single-hole MVC.
As soon as the NHCF 3D tissue was attached on the MVC, part of it was pulled into the vacuum hole.
Figure 6 shows the amount of NHCF 3D tissues which were pulled into the vacuum hole by various
vacuum pressures for three sizes (side lengths) of the square-shaped holes, 50 µm, 100 µm, and 200 µm.
The amount was defined as the distance between the tip of the pulled-in NHCF 3D tissue and the
hole opening. We confirmed that the amount of pulled-in NHCF 3D tissues tended to increase with
increment of vacuum pressure. Additionally, the amount of pulled-in NHCF 3D tissues also increased
with increment of the vacuum hole size. When the hole was 50 µm × 50 µm, we observed collapse of
the NHCF 3D tissue surface.
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Figure 5. Photos of the normal human cardiac fibroblast (NHCF) 3D tissue that was pulled into the
single-hole micro vacuum chuck (MVC). The cross-sectional shape of the vacuum hole was square and
the side lengths were 50 µm, 100 µm and 200 µm. Applied vacuum pressures were 1 kPa, 3 kPa, 10 kPa,
and 20 kPa. In each photo, a part of the NHCF 3D tissue was pulled into the hole. (Scale bar: 200 µm).
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Figure 6. The amount of normal human cardiac fibroblast (NHCF) 3D tissues pulled into one vacuum
hole by various vacuum pressures for three sizes of the square-shaped holes, 50µm, 100µm, and 200 µm.
The amount was defined as the distance between the tip of the pulled-in NHCF 3D tissue and the hole
opening. The amount of pulled-in 3D tissues tended to increase with increasing vacuum pressure,
and it also increased with increasing size of the hole.

3.2. Results of Tensile Test of 3D Tissue Constructed of Human Induced Pluripotent Stem Cell-Derived
Cardiomyocytes (hiPS-CM)

The photo of Figure 7 shows the MVCs could fix the 3D tissue constructed of hiPS-CM to the force
measurement system successfully. Figure 8 shows photos taken during the tensile test. The cardiac
3D tissue was fixed by the MVCs. Figure 9 shows strain-beating force properties of the cardiac 3D
tissue. The maximum beating force of the 3D tissue was 843 ± 111 µN (strain: 0.9). All beating forces
increased with increasing strain. When making a statistical analysis of beating force, we used the
smallest value of the maximum strain among three samples for the common maximum value of strain.
Figure 10 shows strain-beating stress properties of the cardiac 3D tissue. The average maximum stress
was 2.8 ± 0.5 kPa (strain: 0.9).
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Figure 8. Photos of the cardiac 3D tissue during the tensile test.
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Figure 9. Strain-beating force properties of the cardiac 3D tissues. The beating forces were increased
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Figure 10. Strain-beating stress properties of the cardiac 3D tissues. The beating stress was increased
with the increment of strain and the maximum beating stress was 2.8 ± 0.5 kPa (strain: 0.9).

4. Discussion

In evaluating 3D tissues, bio-mechanical properties are important. Therefore, we have applied the
tensile test to the cardiac 3D tissue and measured beating force. In order to apply the tensile test to
the 3D tissue, the tissue has to be connected to the tensile test system. However, there had been no
fixture which was able to connect the 3D tissue to the tensile test system until our proposed system
that held the tissue using vacuum pressure applied by an MVC. The MVC offers some advantages
(see Section 2.1). In brief, these are the capabilities to: fix tissues in place without a complex operation;
be applicable to variously sized and shaped 3D tissues; to mitigate damage caused to 3D tissue and
uncertainty of the measurement; and to eliminate the chance of chemical damage.

We considered the detailed design of the MVC in an experiment which applied various vacuum
hole sizes and various vacuum pressures to 3D tissues. In order to measure the beating properties of
cardiac 3D tissues, a 3D tissue needs to be fixed using the MVCs even when tensile force is loaded to
the 3D tissue. The MVCs must have sufficient vacuum pressure that can fix the 3D tissues. Because
applying an excessive vacuum can cause damage to the tissue and unexpected length changes, a small
amount of 3D tissue should be pulled into the vacuum hole by using the optimum hole size and shape
for the MVC. By applying various sizes of vacuum holes, we observed that the amount of pulled-in
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NHCF 3D tissues increased with increment of vacuum hole size (Figures 5 and 6). This indicated that
the smaller size vacuum hole was better for fixing 3D tissues. The excessive vacuum condition for
the smallest size MVC hole (50 µm) was smaller than that of other hole sizes. However, collapse of
the NHCF 3D tissue surface was observed for this smallest size. The amount of excessive vacuum for
the 200 µm hole MVC (max: 599) was 3.3 times larger than that of the 100 µm hole MVC (max: 183).
Additionally, collapse of the NHCF 3D tissue surface was not observed for the 100 µm hole MVC. Thus,
we concluded the MVC with the square hole size of 100 µm was the best for fixing 3D tissue.

Our developed MVC enables users to measure beating force of cardiac 3D tissue which is large
sized and assembled from just cells by the LbL method. We observed that the cardiac 3D tissue was
fixed by the MVC (Figures 7 and 8). By preparing multiple vacuum holes, the 3D tissue was not pulled
into the holes excessively compared to the single-hole MVC (Uesugi et al. [71] described the single-hole
MVC). In the tensile test, the applied vacuum pressure was 30 kPa. This value was larger than the
maximum vacuum pressure (20 kPa) which was applied in the confirmation experiment on the effect
of vacuum hole size (see Section 3.1). We consider the reason why vacuum pressure was larger than
20 kPa. When the cardiac 3D tissue had a loaded tensile strain, a gap occurred between the 3D tissue
and the holes of the MVC due to the contractile force and beating force of the extended 3D tissue,
and then, vacuum pressure was leaked. This meant that the fixing ability of the MVC was decreased.
Thus, we had to increase the applied vacuum pressure to compensate for the leakage effect of vacuum
pressure. We considered the high vacuum pressure of 30 kPa was not a problem because the amount
of pulled-in NHCF 3D tissues became fairly steady above 10 kPa, from which we hypothesized that
the amount of pulled-in cardiac 3D tissue at 30 kPa was close to that of 10 kPa and 20 kPa.

The beating forces of cardiac 3D tissue samples increased with increase of strain (Figure 9).
The trend we saw has also been seen for other artificial cardiac 3D tissues which consisted
of iPSC-derived cells [8,10,12,15,37,46] and native cardiac tissues and cardiomyocytes [73–76].
This behavior is described by the Frank–Starling relationship [73–76]. This could indicate the possibility
for the beating properties of LbL constricted tissue to be close to those of other artificial tissues and
native tissues. There has been no study which confirmed the relationship of 3D cardiac tissues whose
size was large and which consisted of just cells assembled by the LbL method. By using the MVC,
we could measure the contractile properties of the 3D tissues whose size was large and which consisted
of just cells. Since our system could measure the cardiac 3D tissue beating properties which were
similar to those of native heart tissue, we anticipate that our system will also be able to evaluate the
native-like drug response of cardiac 3D tissues in drug screening.

The beating stress of cardiac 3D tissues was 2.8 ± 0.5 kPa (strain: 0.9) (Figure 10). Conventional
studies also have reported beating stress of iPS-derived cardiac tissues. The beating stress of cardiac
3D tissues consisting mainly of iPSC-derived cells (µHM) was about 4 mN/mm2 (beating of the tissues
was controlled by applying a 1 Hz electrical stimulation without treatment of isoproterenol) [37].
The order of this stress value is close to our measured value. Because the beating force of µHM was
increased with strain stimulation, the beating stress also increased further. The beating stresses of
cardiac 3D tissues and cell sheet consisting of iPSC-derived cells and special gel have been reported as
0.08 [8], 0.62 [10], 1.34 [12], 3.3 [15] and 23.2 [11] mN/mm2. Compared with these values, our measured
beating stress was an intermediate value. The values of these conventional studies varied. We consider
that the reason for varying beating stresses was the various experimental conditions such as shape
of the 3D tissues, culturing time, number of cells, cell species content, amount of ECM, ECM species
content, extent of maturation, and fixing method. The cardiac 3D tissues which were cultured in
the conventional studies might be loaded with a static contractile stimulation by self-contraction
(self-organization) during culturing. Therefore, we cannot discuss in greater detail the beating stresses
which were reported by conventional studies of artificial cardiac 3D tissues.

The beating stresses of human myocardium and myocyte have been reported as 44.0 mN/mm2 [77]
and 51 mN/mm2 [78]. These amounts of beating stresses of native tissue and cells are over 10 times
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larger than ours. We consider that these differences were due to the extent of maturation, orientation,
cell density, and composition of the ECM of cardiomyocytes.

5. Conclusions

In order to evaluate the bio-mechanical properties of a 3D tissue, the tensile test is applied.
When applying the tensile test, the 3D tissues have to be fixed to a tensile test system by a special
fixture. However, there had been no fixture which was able to fix variously sized and shaped 3D
tissues at a small stress concentration easily. Therefore, we developed a micro vacuum chuck (MVC)
which could fix the 3D tissue by vacuum pressure and we also developed a special tensile test system
for it. In order to optimize the size of the vacuum holes and vacuum pressure, we applied various
sized vacuum holes and vacuum pressures to a NHCF 3D tissue. The results showed that a square
hole shape with 100 µm sides was better for fixing the 3D tissue. Then, we carried out the tensile
test with cardiac 3D tissue which was assembled from hiPS-CMs by the layer-by-layer (LbL) method.
We confirmed that the MVC could fix the cardiac 3D tissue during the tensile test. By using the newly
developed tensile test system, the beating stress of cardiac 3D tissues was measured (2.8 ± 0.5 kPa,
strain: 0.9). Additionally, the tensile test results for the cardiac 3D tissue confirmed that it followed the
Frank–Starling relationship, and that cardiac 3D tissue assembled by the LbL method was close to
native cardiac tissue.

Based on these results, we consider this bio-mechanical evaluation method which uses the MVC
and the developed tensile test system is useful for evaluation of 3D tissues, and it can contribute to the
fields of regenerative medicine, drug development, pathology, bioactuator development, food industry,
and BioArt.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-666X/10/7/0487/s1,
Figure S1: Schematic illustration showing assembly of the MVC.
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