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Abstract: Circulating tumor cells (CTCs) have attracted increasing attention as important biomarkers
for clinical and biological applications. Several microfluidic approaches have been demonstrated to
separate CTCs using immunoaffinity or size difference from other blood cells. This study demonstrates
a sheathless, high-throughput separation of CTCs from white blood cells (WBCs) using a viscoelastic
fluid. To determine the fluid viscoelasticity and the flow rate for CTC separation, and to validate
the device performance, flow characteristics of 6, 13, and 27 µm particles in viscoelastic fluids with
various concentrations were estimated at different flow rates. Using 0.2% hyaluronic acid (HA)
solution, MCF-7 (Michigan Cancer Foundation-7) cells mimicking CTCs in this study were successfully
separated from WBCs at 500 µL/min with a separation efficiency of 94.8%. Small amounts of MCF-7
cells (~5.2%) were found at the center outlet due to the size overlap with WBCs.

Keywords: circulating tumor cell; white blood cell; sheathless; high-throughput; viscoelastic
fluid; separation

1. Introduction

Circulating tumor cells (CTCs) are defined as rare tumor cells within the peripheral bloodstream.
They are shed from the primary tumor, and can be a vital cause of hematogenous metastases [1,2].
Recently, CTCs have attracted increasing attention as they contain important information regarding
cancer and its metastasis. CTCs can also be used as non-invasive biomarkers for early diagnosis,
real-time monitoring of therapeutic processes, and genotypic and phenotypic changes in research
applications [3,4]. However, due to their extreme rarity (1–10 CTCs per milliliter blood) and
heterogeneity [5], it is difficult to distinguish CTCs amongst billions of red blood cells (RBCs)
and millions of white blood cells (WBCs).

Recent advancements in microfluidics enable the utilization of microfluidic techniques for cell
separation from a heterogeneous mixture sample [6,7]. Most current approaches for CTC separation
employ affinity-based capture methods using an antibody that targets the tumor cell surface antigens,
such as epithelial cell adhesion markers (EpCAM) [8]. However, due to the epithelial-to-mesenchymal
transition (EMT), which may cause downregulation of epithelial surface markers, the capture efficiency
can be limited [9]. To address the limitation of immuno-separation methods, size distinction of CTCs
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from other blood cells has been used as an alternative biophysical marker, negating the use of labeling.
Microfluidic size-based separation techniques can be divided into two categories, active and passive,
depending on the use of external forces. Active techniques employ external force fields, including
dielectric [10,11] and acoustic fields [12–15], to separate CTCs, while passive methods utilize a special
channel design, such as mechanical filtering techniques using microsieves [16,17], weir [18] and pillar
arrays [19], deterministic lateral displacements (DLD) [20], dean flow fractionation (DFF) [21,22],
and microfluidic vortices [23,24]. Active techniques for CTC separation have limited throughput due
to the working time required for samples to be affected by external force fields (~20 µL/min [11] and
~80 µL/min [13]). Passive methods require no external force fields and can achieve relatively high
throughput (~10 mL/min [20] and ~3 mL/min [17]), however, elaborate channel structures or complex
fabrication processes for three-dimensional structures are required.

Recently, viscoelastic non-Newtonian microfluidics has gained heightened attention due to the
intrinsic properties of viscoelastic fluids, which allow for easier manipulation of cells without the need
for complex channel structures [25]. In addition, compared to previous passive methods, viscoelastic
cell separation can be achieved over a wide working range of flow rates simply by modulating
the viscoelastic fluid rheological properties. In a non-Newtonian fluid, non-uniform distribution
of the first normal stress difference (N1) can drive suspended cells laterally in a simple straight
microchannel, which has been applied to particle/cell focusing [26–29] and size-based particle/cell
separation [30–35]. More recently, size-based separation techniques using viscoelastic fluid flows
have been applied to separate CTCs from other blood cells [33,36,37]. However, the throughputs of
these approaches (~7.5 µL/min [36] and ~50 µL/min [37]) were lower than previous reports on CTC
separation (~80 µL/min [13], ~200 µL/min [12], and ~280 µL/min [38]), which can limit the separation of
extremely rare CTC separation. Also, complicated channel geometry was required for high separation
efficiency [33].

In this study, we show the sheathless, high-throughput separation of CTCs using a viscoelastic
fluid in a low aspect ratio (AR = height/width) microchannel. Size-dependent equilibrium positions in
a straight rectangular microchannel with a low AR have previously been examined using a viscoelastic
fluid [37–39]. However, to the best of the authors’ knowledge, previous studies have not used a low AR
microfluidic device for continuous separation of CTCs from lysed blood samples. We examined the
equilibrium positions of particles with different sizes depending on the viscoelastic fluid rheological
properties and flow rates. Finally, optimized flow characteristics with a specific flow rate and
concentration of a viscoelastic fluid were adopted to separate CTCs. Based on the results provided in
this work, our device provides a simple but powerful tool for high-throughput separation of extremely
rare, heterogeneous CTCs.

2. Working Principle

A schematic of the proposed device for sheathless high-throughput CTC separation using a
viscoelastic non-Newtonian fluid is shown in Figure 1. As shown in the schematic, the device consists
of a microfluidic channel with a low aspect ratio of 0.5. The initial sample mixture contains large
tumor cells and relatively smaller WBCs suspended in a viscoelastic fluid with low viscosity but high
elasticity [40]. This can enhance the throughput of the proposed device. At the inlet, the cells were
injected as randomly distributed, as shown in the cross-sectional view in Figure 1.
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Figure 1. Schematic of sheathless, high-throughput separation of circulating tumor cells using a
viscoelastic non-Newtonian fluid. Sample mixtures containing MCF-7 (Michigan Cancer Foundation-7)
cells and white blood cells (WBCs) in a viscoelastic fluid were randomly introduced to the inlet of
a low aspect ratio microchannel. Due to size-dependent viscoelastic separation, MCF-7 cells were
separated at the rear outlet, while WBCs were removed at the center outlet. Inset (bottom right) shows
an experimental setup consisting of a syringe pump, a microscope, and the polydimethylsiloxane
(PDMS) channel device.

During the flow of the viscoelastic fluid, the elastic force (Fe) is induced by non-uniform differences
in the first normal stress (N1), which depends on the cell size [41,42].

Fe ∼ a3 ∂N1

∂x
∼ λ(a/W)3Q3 (1)

Here, a, N1, x, W, and Q are the cell diameter, first normal stress difference, lateral distance, width
of the microchannel, and volumetric flow rate, respectively. The inertial lift force also affects the lateral
migration of cells in a viscoelastic fluid, which can be divided into two counteracting components,
namely, the shear gradient lift force (Fi,s) and the wall repulsion force (Fi,w).

Fi = Fi,s + Fi,w ∼ ρ(a/W)4Q2 (2)

Here, ρ is the solution density. The elastic force drives the suspended cells to low shear rate
regions at the center and four corners of the microchannel. Conversely, the shear-gradient lift force
drives the cells toward the channel walls, while the wall repulsion force drives cells to the center of
the channel.

Both elastic and inertial forces affecting the suspended cells are dependent on the cell diameter,
a, but elastic and inertial force scale differently with the cell diameter. The cells with different sizes
therefore migrate toward distinct equilibrium positions in the microchannel, which enables size-based
cell separation [38,39]. Briefly, the MCF-7 (Michigan Cancer Foundation-7) cells with a high blockage
ratio (β = a/H; H indicates the channel height) are affected by the elastic force, driving the cells toward
the channel walls. However, when considering small cells in comparison to the channel size (WBCs),
inertial lift force affects the cells driving away from the channel walls and the center, while the elastic
force drives the cells to the channel center. The diameters of WBCs and MCF-7 cells are known to be
9–15 µm and 14–27 µm, respectively [22,39]. To apply the working principle of our device for MCF-7
cell separation from WBCs, a straight microchannel with 100 µm width, 50 µm height, and 25 mm
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length was designed. Therefore, the blockage ratios (β) of WBCs and MCF-7 cells could be calculated
as 0.18–0.3 and 0.28–0.54, respectively. As shown in the cross-sectional view at the outlet in Figure 1,
WBCs are tightly focused at the center of the microchannel, while MCF-7 cells are located at two
equilibrium positions between the center and the side walls of the microchannel. WBCs are removed
from the initial mixture at the center outlet (Outlet A), while MCF-7 cells can be collected at the rear
outlet (Outlet B). The inset figure at the bottom right shows the experimental setup of a syringe pump
for sample injection, a microscope for optical observation, and the polydimethylsiloxane (PDMS)
channel device with a single inlet and two outlets.

To characterize the fluid and the cell dynamics during the viscoelastic flow, non-dimensional
numbers should be considered. The Reynolds number (Re) describes the ratio of the inertial force to the
viscous force, Re = ρVmDh

ηc
, whereas the Weissenberg number (Wi) describes the ratio of the elastic force

to the viscous force, Wi = λ
.
γc. Here, ρ, Vm, Dh, ηc, λ, and

.
γc indicate the solution density, mean flow

velocity, hydraulic diameter of the particle, characteristic viscosity of the solution, fluid relaxation time,
and characteristic shear rate, respectively. The relative effect of fluid elasticity to inertia is evaluated by
the elasticity number, El = Wi/Re.

3. Materials and Methods

3.1. Device Design and Fabrication

A straight microfluidic channel of 100 µm width and 50 µm height was used, and thus the aspect
ratio was defined as 1/2 (AR = height/width). The length of the main channel was 25 mm and the
width of the expansion region at the outlet trifurcation was 800 µm for visualization of the flow streams
of particles and cells. At the entrance region of the microchannel, micropillars of 50 µm width and 100
µm length were designed with 50 µm spacing to avoid the possible blockage of the microchannel by
aggregated particles or CTC clusters. In clinical samples, CTC clusters can be found in approximately
5–20% of the total CTCs [43,44].

A polydimethylsiloxane (PDMS) microfluidic channel was fabricated using standard
soft-lithography techniques with a replica mold, which was fabricated using an SU-8 negative
photoresist (MicroChem, Newton, MA, USA) on a silicon wafer. A 10:1 mixture of the PDMS base
and curing agent (Sylgard 184, Dow Corning, Midland, MI, USA) was cast over the replica mold,
degassed in a vacuum chamber, and baked in an oven at 80 ◦C for 1 h. The cured PDMS channels
were peeled off from the mold and bonded on a glass slide with oxygen plasma (CUTE, Femto Science,
Gyeonggi, Korea). To minimize unwanted hydrophobic interactions between polystyrene particles
and the channel surface, the PDMS channel was treated with Tween 20 [45].

3.2. Sample Preparation

Hyaluronic acid (HA) solutions at various concentrations (0.1, 0.2, and 0.3 (w/v) %) were prepared
by adding hyaluronic acid (HA) sodium salt (357 kDa, Lifecore Biomedical, Chaska, MN, USA) powder
to phosphate-buffered saline (PBS) to evaluate the effect of viscoelasticity on flow characteristics.
To estimate the flow characteristics, fluorescent polystyrene particles with diameters of 6 µm, 13 µm,
and 27 µm (ThermoFisher, Waltham, MA, USA) were used. The particle diameters of 13 and 27 µm were
selected as analogues to white blood cells (WBCs) and MCF-7 tumor cells, respectively. The particles
were suspended in HA solution at each concentration at a final concentration of approximately
1.2 × 106 particles/mL.

A droplet of untreated human blood directly taken from a fingertip was used. The blood samples
were lysed by 10×-diluted BD FACS (Fluorescence Activated Cell Sorter) lysis buffer (BD (Becton,
Dickinson and Company) Biosciences, San Jose, CA, USA) and WBCs in lysed blood sample were
stained using a fluorescent dye (SYBR Green).

Human breast adenocarcinoma cell line MCF-7 cells were used to mimic CTCs in this study.
MCF-7 cells were maintained and propagated in DMEM (Dulbecco’s Modified Eagle’s Medium)/F12
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supplemented with 10% fetal bovine serum (FBS, Gibco-BRL (Bethesda Research Laboratories)) and 1%
penicillin/streptomycin (P/S, Gibco-BRL). The cells were cultured in 75-cm2 cell culture flasks (VWR
Scientific Products, Bridgeport, NJ, USA) in a humidified atmosphere with 5% CO2 at 37 ◦C to 70–80%
confluence. Final concentrations of cells were ~1.2 × 105 MCF-7 cells/mL and ~1.8 × 105 WBCs/mL,
respectively. Final concentration of MCF-7 cells in the sample solution was set to be higher than that of
a clinical sample for demonstration of the device performance [46].

3.3. Fluid Rheology Measurements

The rheological properties of HA solutions were measured by a dynamic light scattering system
(Zetasizer ZSP, Malvern Instruments, Malvern, UK) using microrheology measurement at 20 ◦C,
since HA solutions are polymer solutions with low viscosity and elasticity. Based on measurement
of viscoelastic moduli, G’ and G”, the zero-shear viscosity and the relaxation time of 0.1 (w/v) % HA
solution were measured as 0.89 mPa·s and 0.25 ms, respectively, which showed good agreement with
the reported values in previous research [40]. Measured zero-shear viscosities and the relaxation times
of the polymer solutions are summarized in Table 1.

Table 1. Rheological properties of the prepared polymer solutions at 20 ◦C.

Properties Hyaluronic Acid (HA) Concentration (wt.%)

0.1 0.2 0.3

Density (g/cm3) 1.0 1.0 1.0
Zero-shear viscosity (mPa·s) 0.89 0.97 1.16

Relaxation time (ms) 0.25 0.28 0.31

3.4. Experimental Procedure

The flow rate of the sample solution was controlled by using a syringe pump (KDS210, KD Scientific,
Holliston, MA, USA). During the experiment, particles and cells flowing in the microchannel were
monitored by an inverted microscope (CKX41, Olympus, Tokyo, Japan with a high-speed camera
(V611, Phantom, Wayne, NJ, USA) and a fluorescent camera (CS230B. Olympus, Tokyo, Japan).

4. Results and Discussion

To examine the effect of viscoelasticity on flow characteristics of 6, 13, and 27 µm fluorescent
particles (blockage ratios β = 0.12, 0.26, and 0.54), distributions of particles suspended in PBS, 0.1% HA,
0.2% HA, and 0.3% HA solution were observed. Figure 2 shows the stacked microscopic images and
normalized fluorescence intensities of each particle in the expansion region at a flow rate of 300 µL/min.
In PBS without elasticity, 6 and 13 µm particles (β = 0.12 and 0.26) were weakly focused into three
fluorescent streams at the channel center and near the side walls, while 27 µm particles (β = 0.54) were
tightly focused at the channel center at 300 µL/min (Re = 75.1). This agrees with previous reports
regarding inertial flow characteristics in a low AR channel [47]. In 0.1% HA solution (Re = 74.9,
Wi = 5.0, El = 0.06), 6 µm particles (β = 0.12) were focused along the centerline, while 13 and 27 µm
particles (β = 0.26 and 0.54) were weakly focused into two fluorescent streams between the center and
the side walls. For non-Newtonian fluid flow in a HA solution, the equilibrium position of particles
was determined by the simultaneous effect of three main parameters: (1) flow inertia, (2) flow elasticity,
and (3) the blockage ratio of each particle in the microchannel. For small particles compared to the
channel size, inertial lift force drives particles away from the side walls and the center and elastic lift
force drives particles to the center. Therefore, center-focusing of small particles can be achieved. When
the blockage ratio of the particles is high (β > 0.25), the side wall-bound elastic lift force acts on the
particles due to fluid elasticity, which shows a strong dependence on the particle size compared to
the center-bound elastic force [38,48,49]. The particles with β > 0.25 are, therefore, off-center focused.
These results showed good consistency with previous studies [38,39].
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Figure 2. Effect of the polymer concentration on the particle size-dependent flow characteristics of
fluorescent polystyrene particles with 6, 13, and 27 µm diameters using phosphate-buffered saline
(PBS), 0.1%, 0.2%, and 0.3% HA solution. Stacked microscopic images (left) and normalized fluorescent
intensities (right) in an expansion region at the fixed flow rate of 300 µL/min. White dotted lines
indicate the channel sidewalls.

With an increased concentration of the HA solution to 0.2 (Re = 68.7, Wi = 5.6, El = 0.08) and 0.3%
(Re = 57.5, Wi = 6.2, El = 0.10), Wi increases and Re decreases due to the increased relaxation time
and viscosity, leading to increased El. As the elasticity is enhanced in 0.2% HA solution, the focusing
positions of the particles (6 and 13 µm) were shifted to the center of the channel, while 27 µm particles
were still focused into two streams at the equilibrium positions. In 0.3% HA solution, all particles
(6, 13, and 27 µm) were tightly focused at the center of the channel. Flow patterns of 27 µm particles in
PBS and 0.3% HA solution seemed to be identical, however, flow characteristics induced by inertial
effect (PBS) and elastic effect (0.3% HA solution) were different, which can be seen in Figure S1.

Flow rate-dependent fluorescent particle distributions in the expansion region were examined at
different flow rates of 100, 300, and 500 µL/min using 13 µm (β = 0.26) and 27 µm (β = 0.54) particles
in 0.2% HA solution. Figure 3 shows normalized fluorescence intensities in the expansion region of



Micromachines 2019, 10, 0462 7 of 12

13 and 27 µm particles during the flow at 100, 300, and 500 µL/min, respectively. As the flow rate
increases from 100 µL/min to 500 µL/min, the values of non-dimensional numbers (Re and Wi) increases,
which results in a large elastic force. The focusing position of 13 µm particles remains identical
over flow rates ranging from 100 µL/min (Re = 22.9, Wi = 1.87, El = 0.08) to 500 µL/min (Re = 114.5,
Wi = 9.3, El = 0.08). Meanwhile, 27 µm particles that were focused near the center of the channel at
100 µL/min showed an outward migration into two separate streams as the flow rate increased to
300 and 500 µL/min. This shift of equilibrium positions may be explained by the strong dependence of
side wall-bound elastic force on the flow rate and particle size. Based on this trend of 13 and 27 µm
particles suspended in 0.2 % HA solution, our device can be applied to sheathless, label-free separation
of cells.Micromachines 2019, 10, x FOR PEER REVIEW 7 of 12 
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Figure 3. Effect of the flow rate on the particle size-dependent flow characteristics of fluorescent
polystyrene particles with 13 and 27 µm diameters at the flow rates of 100, 300, and 500 µL/min. Stacked
microscopic images (left) and normalized fluorescent intensities (right) of particles in an expansion
region suspended in 0.2% HA solution. White dotted lines indicate the channel sidewalls.

To evaluate the applicability of the device for clinical application of detecting CTCs in lysed blood
samples, the separation of MCF-7 cells from WBCs was performed using optimized experimental
conditions. The concentration of polymer solution (0.2% HA solution) and the flow rate (500 µL/min)
were determined based on the results in Figure 3. Figure 4a,b shows the stacked microscopic images at
the inlet and outlet of the microchannel during the separation process, which was recorded with a
high-speed camera. A binary mixture containing both cells (MCF-7 cells and WBCs) was injected at
the inlet without sheath fluids and the cells were randomly distributed in the microchannel, as shown
in Figure 4a. At the outlet, MCF-7 cells and WBCs were separated into different streamlines, which
flowed to different outlets (Figure 4b) (see supplementary video Movie S1). WBCs were tightly focused
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at the center of the channel due to their relatively small size (mean ± SD = 11.0 ± 5.0, SD is standard
deviation, 0.12 5 β 5 0.32), while MCF-7 cells (mean ± SD = 23.1 ± 3.9, 0.38 5 β 5 0.54) migrated to two
equilibrium positions between the channel center and the side walls, which shows good agreement
with the flow characteristics of particles shown in Figure 2 and 3. Size distribution of both MCF-7 cells
and WBCs can be found in Figure S2.
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Figure 4. Cell separation of MCF-7 cells and WBCs at the flow rate of 500 µL/min using 0.2% HA
solution. (a) At the inlet, both cells were randomly injected into the microchannel. (b) MCF-7 cells and
WBCs were separated into two different streams along the center (WBCs) and off-center (MCF-7 cells).
To identify (c) WBCs and (d) MCF-7 cells, fluorescent images and merged images were compared after
staining with EpCAM and DAPI (4′,6-DiAmidino-2-PhenylIndole). (e) Separation efficiency at each
outlet by using the collected sample after the separation process. Inset figures show the fluorescent
images of cells collected at outlets A and B, respectively, after the separation process.

Figure 4c,d shows the fluorescent images of MCF-7 cells and WBCs after staining using DAPI (4′,6-
DiAmidino-2-PhenylIndole) and EpCAM, respectively. EpCAM-phycoerythrin (PE (Phycoerythrin);
red) was used as a surface marker for MCF-7 cells and a nuclear stain (DAPI; blue) was used to
determine both MCF-7 cells and WBCs. Here, WBCs are negative to EpCAM. As a quantitative analysis
of the device capability, separation efficiency was used, which can be defined as the ratio of the number
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of target cells at the target outlet to the total number of cells found at both outlets. As shown in
Figure 4e, 99.7% of WBCs were collected at outlet A, while 94.8% of MCF-7 cells were collected at outlet
B. This may be due to the wide size distribution of MCF-7 cells. The purity is defined as the ratio of the
number of target cells to the total number of cells collected at the target outlet. The purity of MCF-7
cells collected at outlet B was approximately 98%. Inset figures show the fluorescent images of stained
cells at outlet A and B collected after the separation. After the separation process, blue fluorescent cells
were found in the samples collected from both outlets A and B, while only red fluorescent MCF-7 cells
were collected from outlet B. After the separation process, cell viability was validated by the lactate
dehydrogenase (LDH) assay, and no significant damage was observed in comparison with the cells
before the separation process (Figure S3).

The breast cancer cells used for the current separation process are cultured MCF-7 cells (mean ±
SD = 23.1 ± 3.9). The size distribution of MCF-7 cells and WBCs overlapped between 14 and 18 µm in
diameter, in which 26% of WBCs and 7% of MCF-7 cells were included. Therefore, approximately 5.2%
of MCF-7 cells were collected at outlet A along with WBCs, as shown in Figure 4e. In actual clinical
samples from cancer patients, the size overlap of CTCs and WBCs can be even greater due to the cell
heterogeneity [5]. To address the limitation of size overlap, microbeads that are coated with capture
agent anti-EpCAM can be used to amplify the size difference between tumor cells and other blood cells
for high-efficiency size-dependent separation in our proposed device [50].

The device throughput can be further enhanced to be greater than 500 µL/min by using a rigid
plastic-based microfluidic device to address the present limitation of deformation of the PDMS
microchannel at high flow rates. Microfluidic fittings and adapters can also be used for leak-tight
connections. Moreover, because our device is a simple straight channel with a single inlet without
any sheath flows, ultra-high throughput CTC separation can be achieved by stacking or multiplexing
the devices [24,51,52]. In addition, compressed pneumatic pressure can be conveniently used for flow
generation, negating the use of precise flow control system with external power source [27].

5. Conclusions

In summary, we described a slit microchannel with low AR for a sheathless, high-throughput
cell separation device using a viscoelastic fluid. Polystyrene particles with different sizes of 6, 13,
and 27 µm were used to evaluate the flow rate- and size-dependent flow characteristics in viscoelastic
fluids with various concentrations (0.1%, 0.2%, and 0.3%). In 0.2% HA solution, particles smaller
than 13 µm (β 5 0.26) were tightly focused at the center of the microchannel, while 27 µm particles
(β = 0.54) were patterned into two fluorescent streams. Therefore, 13 and 27 µm particles in 0.2% HA
solution can be separated at 500 µL/min, which was the optimized condition for CTC separation from
WBCs. MCF-7 cells were finally separated with a 94.8% separation efficiency and 98% purity. Our slit
microchannel device, therefore, enables the high-throughput separation process of extremely rare
disease-related cells from a heterogeneous biological mixture sample.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-666X/10/7/0462/s1.
Figure S1: Flow characteristics of 6, 13 and 27 µm particles in PBS and 0.3% HA solution, respectively, depending
on the flow rates. Figure S2: Initial size distribution of mixed sample of MCF-7 cells and leukocytes. Figure S3:
The lactate dehydrogenase (LDH) assay that assess LDH released by MCF-7 cells before and after the separation
process. After the separation in the viscoelastic fluid, no significant damage was found compared to the cells
before the separation process (n.s. = not significant based on Student T-test). Video S1: Separation of MCF-7 cells
from WBCs at 500 µL/min at the outlet.
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