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Abstract: Resistive random access memory (RRAM) devices with Ni/AlOx/Pt-structure were
manufactured by deposition of a solution-based aluminum oxide (AlOx) dielectric layer which
was subsequently annealed at temperatures from 200 ◦C to 300 ◦C, in increments of 25 ◦C. The devices
displayed typical bipolar resistive switching characteristics. Investigations were carried out on the
effect of different annealing temperatures for associated RRAM devices to show that performance
was correlated with changes of hydroxyl group concentration in the AlOx thin films. The annealing
temperature of 250 ◦C was found to be optimal for the dielectric layer, exhibiting superior performance
of the RRAM devices with the lowest operation voltage (<1.5 V), the highest ON/OFF ratio (>104),
the narrowest resistance distribution, the longest retention time (>104 s) and the most endurance
cycles (>150).

Keywords: bipolar resistive switching characteristics; annealing temperatures; solution-based
dielectric; resistive random access memory (RRAM)

1. Introduction

As one of the promising candidates for next-generation nonvolatile memories, resistive random
access memory (RRAM) has received considerable attention due to significant advantages concerning
simplicity of structure, low power consumption, fast read & write speed, high scalability and
3-D integration feasibility compared to the industry standard silicon-based flash memories [1–7].
Current candidate materials for the resistive switching (RS) layer of RRAM devices include perovskite,
ferromagnetic and metal oxide-based materials [1,3–5,8–11]. In particular, metal oxide-based materials
such as AlOx, NiOx, TiOx and HfOx are currently extensively discussed because of the simplicity
of the material [10,12–14]. Among these materials, AlOx has been widely applied in gate insulator
layers [15–18] and has attracted extensive attention in the RRAM field owing to its wide band gap
(~8.9 eV), high thermal stability with Si and Pt, high dielectric constant (~8) and large breakdown electric
field [10,14,19–22] as Kim et al. has reported [19,20,23–26]. In addition, the superior elasticity [27]
and high toughness [28] make it possible for AlOx to be applied under various conditions including
vibration and pressure environments [29–31]. Cano et al. reported that AlOx-based dielectric layer
showed superior stability under environments with hydrofluoric acid pressure [29] and Choi et al.
reported large-scale flexible electronics application with AlOx thin film [31], which have demonstrated
that the AlOx thin film has great potential as a metal oxide layer in RRAM devices.
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A number of fabrication methods for incorporation of a metal oxide RS layer in AlOx-based
RRAM devices have been investigated. Methods based on solution processes for metal oxide
thin films have been extensively considered, namely spin [32–34] and dip coating [35–37],
drop casting [34,36–38] and different printing methods. Compared with traditional fabrication
methods such as atomic-layer-deposition (ALD) [17,39,40] and magnetron sputtering [28,40,41],
the solution-based method has advantages of low fabrication cost with the elimination of vacuum
deposition processes [42], ease of preparation for precursor materials [39,43,44] and high efficiency
of device throughput [27], which reveals the promising prospect of solution-based methods in RS
layer fabrication. Several factors including plasma cleaning time, deposition gaseous environment
and annealing temperature are considered to influence the performance of solution-based metal oxide
thin films. A limited number of investigations have been reported regarding the relationship between
annealing temperature and performance of RRAM device with solution-based RS layer [10,38].

In this work, the AlOx thin film was deposited with a spin-coating method and then annealed
at temperatures of 200 ◦C to 300 ◦C, in increments of 25 ◦C. The RRAM devices with solution-based
AlOx thin film were characterized electrically in terms of operation voltage, ON/OFF ratio between
the high resistance state (HRS) and low resistance state (LRS), resistance distribution, retention time
and endurance cycles. X-ray photoelectron spectroscopy (XPS) results indicate that these performance
metrics are associated with different gradients of hydroxyl group (-OH) concentrations in the AlOx

thin films with different annealing temperatures. Devices with AlOx thin films annealed at 250 ◦C
demonstrated superior performance with the lowest operation voltage (<1.5 V), the highest ON/OFF
ratio (>104), the narrowest resistance distribution, the longest retention time (>104 s) and the most
endurance cycles (>150).

2. Device Fabrication

The fabricated Ni(top)/AlOx/Pt(bottom) memory device structure with dimensions 2 mm × 2 mm
is shown in Figure 1a. Firstly, the substrate comprising layers Pt (200 nm)/Ti/SiO2/Si was ultrasonically
cleaned in acetone, ethanol and deionized (DI) water, sequentially. Then an aluminum nitrate
nonahydrate (Al(NO3)3·9H2O) solution consisting of ~9.353 g Al(NO3)3·9H2O and 10 mL deionized
water was prepared as the 2.5 M AlOx precursor. The precursor solution was stirred vigorously for
20 min under ambient air conditions. The Pt substrate surface layer was given a hydrophilic treatment
in a plasma cleaner in an atmospheric environment. The AlOx precursor solution, filtered through
a 0.45 µm polyether sulfone (PES) syringe, was spin-coated onto the substrate at a spin rate of 4500 rpm
for 40 s and subsequently annealed at the different desired temperatures of 200 ◦C, 225 ◦C, 250 ◦C,
275 ◦C and 300 ◦C for 60 min under ambient conditions. A ~40 nm-thick top electrode (TE) layer of
Ni and a ~40 nm-thick capping layer of Al were both deposited by e-beam evaporation. Figure 1b
shows a scanning electron microscope (SEM) cross-sectional image of the device, confirming the target
thicknesses of ~40 nm, ~30 nm and ~100 nm for Ni, AlOx and Pt layers respectively.
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Figure 1. (a) Schematic of an Al/Ni/solution-based AlOx/Pt RRAM device; (b) a scanning electron 
microscope (SEM) cross-sectional image of the Al/Ni/solution-based AlOx/Pt RRAM device. 
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[45,46]. Therefore, RRAM devices with dielectric layers annealed at 225 °C, 250 °C, 275 °C were 
considered for further evaluation. Compared with unipolar I-V characteristics of other RRAM devices 
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characteristics without forming operation. The current compliance (CC) is set at 1 mA to prevent 
catastrophic breakdown of the RRAM devices. During cycling, the HRS was transferred to LRS 
abruptly in the SET process and the resistance of the LRS began to increase abruptly toward HRS in 
the RESET process. The SET and RESET process controls the RRAM device transition to ON and OFF 
states. It is observed that the majority of values of SET voltages (VSET) for the three samples are around 
1.5 V while some are up to 4 V. In the RESET process, nearly all RESET voltages (VRESET) are around 
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temperature is apparent at LRS. However, an obvious variation can be observed at RHRS. The 
uniformity and narrowness of the resistance distribution are key metrics for stability and quality of 
RRAM devices. A narrow resistance distribution is considered to be a good demonstration of  the 
stability and performance of devices [7,48–50]. In this work, the narrowest resistance distribution of 
Al/Ni/solution-based AlOx/Pt RRAM devices is found for the 250 °C annealing temperature, which 
therefore presents the best uniformity of the devices. 

Figure 1. (a) Schematic of an Al/Ni/solution-based AlOx/Pt RRAM device; (b) a scanning electron
microscope (SEM) cross-sectional image of the Al/Ni/solution-based AlOx/Pt RRAM device.

An Agilent B1500A high-precision semiconductor analyzer (Agilent Santa Rosa, CA, USA) was
employed to measure the I-V characteristics with a two-probe configuration. All electrical measurements
were performed in the dark and at room temperature within a Faraday cage. In addition, to investigate
the effect of annealing temperatures on device performance, X-ray photoelectron spectroscopy (XPS)
spectra of constituent Al and O core level (CL) elements were measured.

3. Results and Discussion

3.1. Memoristic Characteristics Based on Al/Ni/Solution-Based AlOx/Pt RRAM

The RRAM devices were operated under 1 mA compliance current (CC) and observed to exhibit
typical bipolar RS behavior, as illustrated by the I-V characteristics in Figure 2. The devices with
the dielectric layer annealed at 200 ◦C exhibit typical RRAM breakdown characteristics at very low
voltage <0.3 V while breakdown characteristics of 300 ◦C annealed devices are not usually observed
even for voltages higher than 18 V, which is of course, unsuitable for RRAM device application [45,46].
Therefore, RRAM devices with dielectric layers annealed at 225 ◦C, 250 ◦C, 275 ◦C were considered for
further evaluation. Compared with unipolar I-V characteristics of other RRAM devices [47], all RRAM
devices with Al/Ni/solution-based AlOx/Pt structure demonstrate typical bipolar I-V characteristics
without forming operation. The current compliance (CC) is set at 1 mA to prevent catastrophic
breakdown of the RRAM devices. During cycling, the HRS was transferred to LRS abruptly in the
SET process and the resistance of the LRS began to increase abruptly toward HRS in the RESET
process. The SET and RESET process controls the RRAM device transition to ON and OFF states.
It is observed that the majority of values of SET voltages (VSET) for the three samples are around
1.5 V while some are up to 4 V. In the RESET process, nearly all RESET voltages (VRESET) are around
−1 V approximately. As illustrated in Figure 3, in the SET operation, the average values of VSET

are around 3.2 V, 1.0 V and 2.4 V at 225 ◦C, 250 ◦C and 275 ◦C, respectively. RRAM devices with
dielectric layer annealed at 250 ◦C exhibit the lowest SET voltages (Figure 3a) with the highest ON/OFF
ratio (>104) between LRS (ON state) and HRS (OFF state). Similar results can be observed in the
RESET operation (Figure 3b) although the variation of VRESET average values is not as obvious as
that of VSET. Figure 2d shows the cumulative probability for resistance distribution of the RRAM
devices annealed at various temperatures. All values of memory resistance at HRS (RHRS) and
LRS (RLRS) of consecutive forming-free DC switching cycles were read at 0.1 V. As illustrated in
Figure 2d, curves of resistance distribution almost overlap at LRS, indicating that no significant
dependence on annealing temperature is apparent at LRS. However, an obvious variation can be
observed at RHRS. The uniformity and narrowness of the resistance distribution are key metrics for
stability and quality of RRAM devices. A narrow resistance distribution is considered to be a good
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demonstration of the stability and performance of devices [7,48–50]. In this work, the narrowest
resistance distribution of Al/Ni/solution-based AlOx/Pt RRAM devices is found for the 250 ◦C annealing
temperature, which therefore presents the best uniformity of the devices.
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Figure 2. I-V curves of Al/Ni/solution-based AlOx/Pt RRAM devices with (resistive switching) RS layer
annealed at (a) 225 ◦C; (b) 250 ◦C and (c) 275 ◦C. (d) Resistance distribution of Al/Ni/solution-based
AlOx/Pt RRAM device with RS layer deposited at various temperatures.
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Figure 3. Voltage distribution of (a) SET operation and (b) RESET operation for Al/Ni/solution-based
AlOx/Pt RRAM devices with RS layer annealed at different temperatures.

3.2. Endurance and Retention Properties of Al/Ni/Solution-Based AlOx/Pt RRAM

Figure 4 demonstrates the retention and endurance properties at HRS and LRS for the RRAM
devices with RS layers annealed at various temperatures. With the results of resistance distribution
above, the resistance values of retention and endurance belong to the range of HRS and LRS values
in Figure 2d. Resistance values both at HRS and LRS are read at 0.2 V. Figure 4a–c show DC cycles
vs resistance at 1 mA CC of devices annealed at 225 ◦C, 250 ◦C and 275 ◦C, which show similar
characteristics to those observed in the resistance distribution of Figure 2d. The best resistance
distribution can be observed in 250 ◦C annealed RRAM devices and the worst uniformity of resistance
can be observed in 225 ◦C annealed RRAM devices. Similarly, the endurance property with the best
uniformity is demonstrated in the RRAM device annealed at 250 ◦C while the worst performance is
observed in the RRAM device annealed at 225 ◦C. The same retention property can be observed in
Figure 4d, which shows that the device can sustain data for more than 104 s.
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Figure 4. Endurance property of Al/Ni/solution-based AlOx/Pt RRAM devices with RS layer annealed
at (a) 225 ◦C; (b) 250 ◦C and (c) 275 ◦C. (d) Retention property of RRAM devices annealed at
various temperatures.

The best performance was found for an annealing temperature of 250 ◦C with the lowest operation
voltage (<1.5 V), the highest ON/OFF ratio (>104), the narrowest resistance distribution, the longest
retention time (>104 s) and the most endurance cycles (150).

3.3. Switching Mechanism of Al/Ni/Solution-Based AlOx/Pt RRAM

With typical bipolar RS performance demonstrated by Al/Ni/solution-based AlOx/Pt RRAM
devices, the RS modeling with fitting curves (250 ◦C annealed devices) illustrated in Figure 5a is used
to investigate the conduction mechanism. Figure 5a shows evidence for space-charge limited current
(SCLC) as the dominant conduction mechanism in 250 ◦C annealed devices. The fitting results show
positive and negative bias regions of I-V characteristics in double logarithmic plots. A large area
overlap of SET and RESET can be observed due to the approximately equal values of CC and RESET
current. The currents are seen to follow Ohmic conduction (I ∝ V) in the low voltage regime [51,52].
At higher bias voltages, the OFF-state slope shows a transition to about 2.0, consistent with Child’ s
square law [53,54]. By further increasing the applied voltage, the slope increased to approximately 8.7,
again consistent with the SCLC mechanism [53–56].
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indicating SCLC conduction. (b) Diagrams to describe the switching mechanism of Al/Ni/solution-based
AlOx/Pt RRAM devices at (i) the initial state, (ii) the ON state and (iii) the OFF state, respectively.

Bipolar RS performance of all RRAM devices with different annealing temperatures are considered
to be associated with the formation and rupture process of conductive filaments (CF) associated with
oxygen vacancies, in the SET/RESET process [2–4,15,57]. Figure 5b shows a schematic representation
of this process consisting of ON and OFF states, which is considered as the switching mechanism of
these devices. The formation and rupture process of CF is associated with the distribution of oxygen
ions and oxygen vacancies in the TE and RS layer [22,48,57–59]. Figure 5b(i) shows the initial state
of RRAM devices without applied voltage, indicating oxygen atoms present in the AlOx thin film.
With application of a positive voltage to the Ni electrode in the SET operation, electrons are captured by
oxygen atoms in the AlOx thin film [15,27,60–62], to yield oxygen ions which drift to TE. The generation
process of oxygen ions can be represented as:

O + 2e− → O2−

The oxygen vacancies remain in the AlOx thin film and constitute the dominant components of
CF. This formation process of CF consisting of oxygen vacancies in the AlOx thin film is considered
to be responsible for the resistance state transition (HRS to LRS) of RRAM devices at the ON state,
as depicted in Figure 5b [48,58,60]. Conversely, in the RESET operation, with a negative voltage
applied to TE, oxygen ions stored in the electrode drift back to the AlOx thin film under the influence
of the negative electrical field and therefore reduce the density of oxygen vacancies in the AlOx thin
film [48,63]. This action dominates the rupture process of CF [15,22,48] and the RRAM devices perform
at the OFF state (LRS to HRS).

The formation and rupture mechanism of CF is confirmed to be associated with the characteristics
of the RS layer in filamentary RRAM devices with the dependency on film thickness, measurement
temperature and deposition temperature [64–67]. In this work, the device performance is found to be
dependent on annealing temperature of the dielectric layer and the best performance is observed in
the device with a dielectric layer annealed at 250 ◦C.

Physical characterization was undertaken using XPS. Figure 6a–c show XPS spectra of O 1s
core levels for the AlOx thin films annealed at 225 ◦C, 250 ◦C and 275 ◦C. The O 1s CL spectrum
can be de-convoluted into two sub-peaks with binding energies located at 531.1 eV (O1) and 532.2
eV (O2) [40,64–67]. The O1 and O2 peaks are associated with the metal-oxygen bonds (O1) and
hydroxyl group (O2), respectively [5,66,67]. As illustrated in Figure 6a–c, the hydroxyl-related peak
(O2) increased with annealing temperatures from 225 ◦C to 250 ◦C and decreased from 250 ◦C to 275 ◦C.
Similar behavior has been observed by Xu et al. [68]. The highest and the lowest concentration of the
hydroxyl group is found for samples annealed at 250 ◦C and 225 ◦C, respectively. Figure 6d shows the
integrated intensity of the two sub-peaks referring to the concentration of hydroxyl group (M-OH) and
metal-oxygen bonds (M-O) for the three samples. The observed variation in concentration of hydroxyl
group has been found to show strong correlation to RRAM device performance. The best performing
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RRAM device annealed at 250 ◦C has the highest concentration of hydroxyl group, while the worst
performance is observed for device annealed at 225 ◦C which exhibits the lowest concentration of
hydroxyl group.
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Figure 6. XPS spectra of O 1s CLs for Al/Ni/solution-based AlOx/Pt RRAM devices annealed at
(a) 225 ◦C; (b) 250 ◦C and (c) 275 ◦C. (d) Integrated intensities of O 1s CL sub-peak referring to M-OH
bond and M-O bond for solution-based AlOx layers annealed at different temperatures.

With the different concentrations of M-O and M-OH in the dielectric layer, two main species
of compositions, namely AlOx and Al(OH)x, play dominant roles in switching behavior. We now
propose a hypothesis for the relationship between composition and surface roughness of the dielectric
layer. The more complex the compositions of the dielectric layer, the higher surface roughness will be
present [69–71]. The surface roughness assessed by Atomic Force Microscope (AFM) of dielectric layers
annealed at 225 ◦C, 250 ◦C and 275 ◦C are 0.682 nm, 0.230 nm and 0.524 nm, respectively. In 225 ◦C
annealed devices, the similar concentration (~50%) of M-O and M-OH can be detected in the film
indicating that the concentration of AlOx and Al(OH)x are almost equal. Hence the dielectric layer
performance might be affected concurrently by two main compositions. A smooth surface of the
dielectric layer is essential to achieve low leakage current and the realization of high-performance
dielectric thin films. A higher concentration of M-OH is observed in the 250 ◦C annealed AlOx

thin film, which indicates that Al(OH)x has a more dominant influence on the layer properties.
Compared with Al(OH)x, the influence of AlOx is less significant, which results in a lower surface
roughness. In addition, the existence of the hydroxyl group in the dielectric layer is associated
with water absorption, which affects the permittivity of AlOx with a slight fluctuation (~9.3–~11.5)
and hence the capacitance associated with the dielectric thin film. This part will be submitted to
further investigation.
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4. Conclusions

RRAM devices with Al/Ni/AlOx/Pt structure were fabricated by a solution-based process with the
RS layer annealed at 200 ◦C, 225 ◦C, 250 ◦C, 275 ◦C and 300 ◦C. The effect on RRAM device performance
for annealing temperatures of 225 ◦C, 250 ◦C, 275 ◦C was investigated in terms of the operation voltages
of RS characteristics, resistance distribution, endurance cycles and retention uniformity. The worst
device performance was observed for an annealing temperature of 225 ◦C and the better performance
was demonstrated in the device annealed at 275 ◦C. The best performance was found for an annealing
temperature of 250 ◦C with the lowest operation voltage (<1.5 V), the highest ON/OFF ratio (>104),
the narrowest resistance distribution, the longest retention time (>104 s) and the most endurance cycles
(150), which indicates the lowest energy consumption and the excellent stability of the RRAM devices.
An XPS study has been conducted to determine elements present in the AlOx thin films prepared at
different annealing temperature with the aim of explaining the variation of associated RRAM devices
performance. The device performance was considered to be related to the concentration gradient of
hydroxyl groups in the solution-based AlOx thin films for different annealing temperatures.
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