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Primary radiation force potential 

To obtain Equation (8) in the main body of the article, the following steps can 
be performed: 

𝑈 (𝒓) =
𝑉

2

1

2
𝑓 , 𝜅 (𝑐 𝜌 𝑣 ) sin [𝑘(𝑧 − ℎ )] −

3

4
𝑓 , 𝜌 𝑣 cos [𝑘(𝑧 − ℎ )]  

𝑈 (𝒓) = 𝑓 , sin [𝑘(𝑧 − ℎ )] − 𝑓 , cos [𝑘(𝑧 − ℎ )]   

and using the identity sin 𝑥 + cos 𝑥 = 1 we have 

 𝑈 (𝒓) = 𝑓 , − 𝑓 , + 𝑓 , cos [𝑘(𝑧 − ℎ )] = 𝑓 , −

Φ cos [𝑘(𝑧 − ℎ )]  

Secondary radiation force potential 

The derivation of this section follows the steps of Silva and Bruus. 

According to Gorkov’s potential theory, the acoustic radiation potential of any 
arbitrary field, except a plane travelling wave, can be obtained as:  

 𝑈 𝒓 = 𝑎 𝜋𝜌
,

𝑘 𝜙 𝒓 −
,

∇ 𝜙 𝒓   (S1) 

Moreover, in our case, the total velocity potential is the sum of the velocity 
potential of the external field and the rescattered field: 

 𝜙 (𝒓, 𝑡) = 𝜙 (𝒓, 𝑡) + 𝜙 (𝒓, 𝑡) (S2) 

For complex fields 

𝜙 𝒓 = 𝜙 𝒓 + 𝜙 𝒓 = 𝜙 𝒓 + 𝜙 𝒓
∗

𝜙 𝒓 + 𝜙 𝒓 =

𝜙 𝒓
∗
𝜙 𝒓 + 𝜙 𝒓

∗
𝜙 𝒓 + 𝜙 𝒓

∗
𝜙 𝒓 +  𝜙 𝒓

∗
𝜙 𝒓  (S3) 

Here the first term corresponds to the primary radiation potential, the last term 
is small compared to the second and third terms. Moreover, 



 Re[𝑎∗𝑏] = Re[𝑎𝑏∗] (S4a) 

and therefore the second and third terms can be contracted 

 𝜙 𝒓
∗
𝜙 𝒓 + 𝜙 𝒓

∗
𝜙 𝒓 = 2Re 𝜙 𝒓

∗
𝜙 𝒓  (S4b) 

and the potential of the secondary acoustic field can be approximated as 

𝑈 𝒓 = 𝑎 𝜋𝜌
,

𝑘 Re 𝜙∗ 𝒓 𝜙 𝒓 |𝒓 −
,

Re ∇ 𝜙∗ 𝒓 𝜙 𝒓 |𝒓  (S5a) 

or equivalently 

𝑈 𝒓 |𝒓 = 𝜋𝑘 𝑎 𝜌 Re
,

𝜙∗ 𝒓 𝜙 𝒓 |𝒓 − 𝑓 , ∇ 𝜙∗ 𝒓 ⋅ ∇ 𝜙 𝒓 |𝒓 =

𝑈 , − 𝑈 ,   (S5b) 

The scattered wave due to an external field can be given as 

 𝜙 𝒓 |𝒓 = 𝑖𝑓 ,
(𝒓 )

− 𝑓 , ∇ ⋅
𝒗 (𝒓 )

+ 𝑂
( )  (S6) 

where 

 𝜌 (𝒓) = 𝑖 𝜙 (𝒓) (S7a) 

and  

 𝒗 (𝒓) = ∇𝜙 (𝒓) (S7b) 

Direct substitution of the velocity field and density gives the scattered velocity 
potential. To ease the treatment of the scattered velocity potential, we denote the 
two separate terms with index 0 and 1, and neglect the argument 𝒓 |𝟎  in the 
following 

 𝜙 𝒓 |𝟎 = 𝜙 , 𝒓 |𝟎 − 𝜙 , 𝒓 |𝟎  (S8) 

Since the velocity potential of the external field is a real number, its complex 
conjugate is itself 

 𝜙 = 𝜙∗ = sin[𝑘(𝑟 cos 𝜃 − ℎ )] (S9) 

and therefore, its gradient is 

 ∇ 𝜙∗ 𝒓 = 𝑣 cos[𝑘(𝑟 cos 𝜃 − ℎ )] cos 𝜃 𝒓 − sin 𝜃 𝜽  (S10) 

Therefore, the first term of Equation (S8) is 

 𝜙 , = 𝑖𝑓 ,
(𝟎)

= 𝑓 ,  (S11a) 

and its real part 

 Re 𝜙 , = 𝑓 ,  (S11b) 



For the second term of Equation (S8), first 

∇ ⋅
𝒗 (𝒓 )

= 𝑣 cos 𝜃 cos 𝑘ℎ + 𝑒 − 𝑒 =

𝑣 cos 𝜃 cos 𝑘ℎ − 𝑒   (S12a) 

such that the second term of Equation (S8) is 

 𝜙 , 𝒓 |𝟎 = 𝑓 , 𝑣 cos 𝜃 cos 𝑘ℎ − 𝑒  (S12b) 

Its real part being 

Re 𝜙 , = −𝑓 , 𝑘 𝑣 cos 𝜃 cos 𝑘ℎ +                                                 (S12c) 

As the first term of the secondary radiation potential, Equation (S5b), depends 
on the velocity potential of the external field, which is real, and the real parts of the 
scattered velocity potential are given by Equations (S11b) and (S12c), 𝑈 ,  can be 
obtained: 

𝑈 , = 𝜋𝑘 𝑎 𝜌 Re
,

𝜙∗ 𝜙 = 𝜋𝑘 𝑎 𝜌
,

𝜙∗ Re 𝜙 , − 𝜙 , =

𝜋𝑘 𝑎 𝜌
,

sin[𝑘(𝑟 cos 𝜃 − ℎ )] 𝑓 , +

𝑓 , 𝑘 𝑣 cos 𝜃 cos 𝑘ℎ + = 𝜋𝑘 𝑎 𝑎 𝜌 𝑣
,

sin[𝑘(𝑟 cos 𝜃 −

ℎ )] 𝑓 , + 𝑓 , cos 𝜃 cos 𝑘ℎ +  (S13) 

The second term of the secondary potential, Equation (S5b), can be calculated 
by splitting the scattered potential: 

 𝑈 , = 𝜋𝑎 𝜌 𝑓 , Re ∇ 𝜙∗ 𝒓 ⋅ ∇ 𝜙  (S14a) 

Re ∇ 𝜙∗ 𝒓 ⋅ ∇ 𝜙 = Re ∇ 𝜙∗ 𝒓 ⋅ ∇ 𝜙 , − Re ∇ 𝜙∗ 𝒓 ⋅ ∇ 𝜙 ,  (S14b) 

Equation (S14b), requires the calculation of some auxiliary terms (the gradient 
of the scattered velocity potential): 

 ∇ 𝜙 , 𝒓 |𝟎 = 𝑓 , 𝑣 sin 𝑘ℎ 𝑒 𝒓 (S15a) 

 ∇ 𝜙 , 𝒓 |𝟎 = 𝑓 , 𝑣 cos 𝑘ℎ − cos 𝜃 𝑘𝑟 + 2𝑖𝑘𝑟 − 2 𝒓 − sin 𝜃 𝑖𝑘𝑟 − 1 𝜽

  (S15b) 

and consequently, the first term of Equation (S14b) 

∇ 𝜙∗ 𝒓 ⋅ ∇ 𝜙 , = 𝑣 cos 𝜃 cos[𝑘(𝑟 cos 𝜃 − ℎ )] 𝑓 , 𝑣 sin 𝑘ℎ 𝑒  (S16a) 

with its real part  



Re ∇ 𝜙∗ 𝒓 ⋅ ∇ 𝜙 , = −𝑣 𝑓 , cos[𝑘(𝑟 cos 𝜃 − ℎ )] cos 𝜃 sin 𝑘ℎ +

( )
  (S16b) 

and the second term of Equation (S14b) 

∇ 𝜙∗ 𝒓 ⋅ ∇ 𝜙 , = 𝑣 cos[𝑘(𝑟 cos 𝜃 − ℎ )] 𝑓 , 𝑣 cos 𝑘ℎ − cos 𝜃 𝑘𝑟 +

2𝑖𝑘𝑟 − 2 + sin 𝜃 𝑖𝑘𝑟 − 1   (S17a) 

with its real part 

 Re ∇ 𝜙∗ 𝒓 ⋅ ∇ 𝜙 , = 𝑣 cos[𝑘(𝑟 cos 𝜃 − ℎ )] 𝑓 , 𝑣 cos 𝑘ℎ − 𝑘𝑟 −

2 − + −   (S17b) 

after simplification and using 

 2 cos 𝜃 − sin 𝜃 =  (S17c) 

Equation (S17b) can be written as 

Re ∇ 𝜙∗ 𝒓 ⋅ ∇ 𝜙 , = 𝑣 𝑓 , 𝑘 cos[𝑘(𝑟 cos 𝜃 − ℎ )] cos 𝑘ℎ
( )

(1 + 3 cos 2𝜃) −

+
( )

( )
  (S17d) 

At this point everything is known to obtain 𝑈 , , by Equations (S16b) and (S17d): 

𝑈 , = −𝑣 𝜋𝑎 𝑎 𝜌 𝑓 , 𝑘 cos[𝑘(𝑟 cos 𝜃 − ℎ )] , cos 𝜃 sin 𝑘ℎ +
( )

+

, cos 𝑘ℎ
( )

(1 + 3 cos 2𝜃) − +
( )

( )
 (S18) 

and now Equations (S5b), (S13) and (S18) yield the secondary radiation potential: 

𝑈 (𝑟, 𝜃) = 𝜋𝐸 𝑘 𝑎 𝑎 cos[𝑘(𝑟 cos 𝜃 − ℎ )] ,
𝑓 , cos(𝑘ℎ )(1 + 3 cos 2𝜃)

( )
+

𝑓 , sin(𝑘ℎ ) cos 𝜃 cos 𝑘𝑟 + 𝑓 , cos(𝑘ℎ )(1 + 3 cos 2𝜃) sin 𝑘𝑟
( )

− 𝑓 , cos(𝑘ℎ )(1 +

cos 2𝜃) cos 𝑘𝑟 − 𝑓 , sin(𝑘ℎ ) cos 𝜃 sin 𝑘𝑟 + sin[𝑘(𝑟 cos 𝜃 −

ℎ )] ,
𝑓 , cos(𝑘ℎ ) cos 𝜃

( )
+ 𝑓 , sin(𝑘ℎ ) cos 𝑘𝑟 +

𝑓 , cos(𝑘ℎ ) cos 𝜃 sin 𝑘𝑟   (S19) 

Secondary radiation force in the radial direction for a general case 

The derivatives of terms containing r: 

where [ ] denotes [𝑘(𝑟 cos 𝜃 − ℎ )] used for shorter notation 

𝜕

𝜕𝑟
cos[𝑘(𝑟 cos 𝜃 − ℎ )]

cos 𝑘𝑟

(𝑘𝑟)

= −
3𝑘 cos 𝑘𝑟 cos[ ]

(𝑘𝑟)
−

𝑘 sin 𝑘𝑟 cos[ ]

(𝑘𝑟)
−

𝑘 cos 𝜃 cos 𝑘𝑟 sin[ ]

(𝑘𝑟)
 



𝜕

𝜕𝑟
cos[𝑘(𝑟 cos 𝜃 − ℎ )]

cos 𝑘𝑟

(𝑘𝑟)

= −
2𝑘 cos 𝑘𝑟 cos[ ]

(𝑘𝑟)
−

𝑘 sin 𝑘𝑟 cos[ ]

(𝑘𝑟)
−

𝑘 cos 𝜃 cos 𝑘𝑟 sin[ ]

(𝑘𝑟)
 

𝜕

𝜕𝑟
cos[𝑘(𝑟 cos 𝜃 − ℎ )]

sin 𝑘𝑟

(𝑘𝑟)

= −
2𝑘 sin 𝑘𝑟 cos[ ]

(𝑘𝑟)
+

𝑘 cos 𝑘𝑟 cos[ ]

(𝑘𝑟)
−

𝑘 cos 𝜃 sin 𝑘𝑟 sin[ ]

(𝑘𝑟)
 

𝜕

𝜕𝑟
cos[𝑘(𝑟 cos 𝜃 − ℎ )]

cos 𝑘𝑟

𝑘𝑟

= −
𝑘 cos 𝑘𝑟 cos[ ]

(𝑘𝑟)
−

𝑘 sin 𝑘𝑟 cos[ ]

𝑘𝑟
−

𝑘 cos 𝜃 cos 𝑘𝑟 sin[ ]

𝑘𝑟
 

𝜕

𝜕𝑟
cos[𝑘(𝑟 cos 𝜃 − ℎ )]

sin 𝑘𝑟

𝑘𝑟

= −
𝑘 sin 𝑘𝑟 cos[ ]

(𝑘𝑟)
+

𝑘 cos 𝑘𝑟 cos[ ]

𝑘𝑟
−

𝑘 cos 𝜃 sin 𝑘𝑟 sin[ ]

𝑘𝑟
 

𝜕

𝜕𝑟
sin[𝑘(𝑟 cos 𝜃 − ℎ )]

cos 𝑘𝑟

(𝑘𝑟)

= −
2𝑘 cos 𝑘𝑟 sin[ ]

(𝑘𝑟)
−

𝑘 sin 𝑘𝑟 sin[ ]

(𝑘𝑟)
+

𝑘 cos 𝜃 cos 𝑘𝑟 cos[ ]

(𝑘𝑟)
 

𝜕

𝜕𝑟
sin[𝑘(𝑟 cos 𝜃 − ℎ )]

cos 𝑘𝑟

𝑘𝑟

= −
𝑘 cos 𝑘𝑟 sin[ ]

(𝑘𝑟)
−

𝑘 sin 𝑘𝑟 sin[ ]

𝑘𝑟
+

𝑘 cos 𝜃 cos 𝑘𝑟 cos[ ]

𝑘𝑟
 

𝜕

𝜕𝑟
sin[𝑘(𝑟 cos 𝜃 − ℎ )]

sin 𝑘𝑟

𝑘𝑟

= −
𝑘 sin 𝑘𝑟 sin[ ]

(𝑘𝑟)
+

𝑘 cos 𝑘𝑟 sin[ ]

𝑘𝑟
+

𝑘 cos 𝜃 sin 𝑘𝑟 cos[ ]

𝑘𝑟
 

these can be used with Equation (3b) and Equation (10) of the main body to obtain 
the full expression for the radial force: 



𝐹 = 𝜋𝐸 𝑘 𝑎 𝑎
𝑓 ,

2
cos[𝑘(𝑟 cos 𝜃 − ℎ )] 𝑓 , cos 𝑘ℎ (1 + 3 cos 2𝜃)

3𝑘 cos 𝑘𝑟

(𝑘𝑟)

+
3𝑘 sin 𝑘𝑟

(𝑘𝑟)
−

𝑘 cos 𝑘𝑟

(𝑘𝑟)

+
4

3
𝑓 , sin 𝑘ℎ cos 𝜃

2𝑘 cos 𝑘𝑟

(𝑘𝑟)
+

2𝑘 sin 𝑘𝑟

(𝑘𝑟)
−

𝑘 cos 𝑘𝑟

𝑘𝑟

− 𝑓 , cos 𝑘ℎ (1 + cos 2𝜃)
𝑘 cos 𝑘𝑟

(𝑘𝑟)
+

𝑘 sin 𝑘𝑟

𝑘𝑟

+
2𝑓 ,

3
cos[𝑘(𝑟 cos 𝜃 − ℎ )] 𝑓 , cos 𝑘ℎ cos 𝜃 −

𝑘 cos 𝜃 cos 𝑘𝑟

(𝑘𝑟)

−
𝑘 cos 𝜃 sin 𝑘𝑟

𝑘𝑟
+

2

3
𝑓 , sin 𝑘ℎ −

𝑘 cos 𝜃 cos 𝑘𝑟

𝑘𝑟

+
𝑓 ,

2
sin[𝑘(𝑟 cos 𝜃 − ℎ )] 𝑓 , cos 𝑘ℎ (1 + 3 cos 2𝜃)

𝑘 cos 𝜃 cos 𝑘𝑟

(𝑘𝑟)

+
𝑘 cos 𝜃 sin 𝑘𝑟

(𝑘𝑟)
+

4

3
𝑓 , sin 𝑘ℎ cos 𝜃

𝑘 cos 𝜃 cos 𝑘𝑟

(𝑘𝑟)
+

𝑘 cos 𝜃 sin 𝑘𝑟

𝑘𝑟

− 𝑓 , cos 𝑘ℎ (1 + cos 2𝜃)
𝑘 cos 𝜃 cos 𝑘𝑟

𝑘𝑟

+
2𝑓 ,

3
sin[𝑘(𝑟 cos 𝜃 − ℎ )] 𝑓 , cos 𝑘ℎ cos 𝜃

2𝑘 cos 𝑘𝑟

(𝑘𝑟)
+

2𝑘 sin 𝑘𝑟

(𝑘𝑟)

−
𝑘 cos 𝑘𝑟

𝑘𝑟
+

2

3
𝑓 , sin 𝑘ℎ

𝑘 cos 𝑘𝑟

(𝑘𝑟)
+

𝑘 sin 𝑘𝑟

𝑘𝑟
 

Expression of the force in the transversal plane can be obtained by substituting 
𝜃 = 𝜋/2 in the above. Also note that in this case 

cos 𝜃 = 0 

1 + 3 cos 2𝜃 = −2 

1 + cos 2𝜃 = 0 

cos[𝑘(𝑟 cos 𝜃 − ℎ )] = cos 𝑘ℎ  

sin[𝑘(𝑟 cos 𝜃 − ℎ )] = − sin 𝑘ℎ  

and therefore 

𝐹 = 𝜋𝐸 𝑘 𝑎 𝑎
𝑓 ,

2
cos[ ] 𝑓 , cos 𝑘ℎ (1 + 3 cos 2𝜃)

3𝑘 cos 𝑘𝑟

(𝑘𝑟)
+

3𝑘 sin 𝑘𝑟

(𝑘𝑟)

−
𝑘 cos 𝑘𝑟

(𝑘𝑟)
+

2𝑓 ,

3
sin[ ]

2

3
𝑓 , sin 𝑘ℎ

𝑘 cos 𝑘𝑟

(𝑘𝑟)
+

𝑘 sin 𝑘𝑟

𝑘𝑟

= 𝜋𝐸 𝑘 𝑎 𝑎 𝑓 , 𝑓 , cos 𝑘ℎ −
3𝑘 cos 𝑘𝑟

(𝑘𝑟)
−

3𝑘 sin 𝑘𝑟

(𝑘𝑟)
+

𝑘 cos 𝑘𝑟

(𝑘𝑟)

−
4

9
𝑓 , 𝑓 , sin 𝑘ℎ

𝑘 cos 𝑘𝑟

(𝑘𝑟)
+

𝑘 sin 𝑘𝑟

𝑘𝑟
 

which is equivalent to Equation (12) of the main text. 



Similarly, for 𝜃 = 0, i.e. along the z direction 

cos 𝜃 = 1 

1 + 3 cos 2𝜃 = 4 

1 + cos 2𝜃 = 2 

and therefore 

𝐹 = 𝜋𝐸 𝑘 𝑎 𝑎
𝑓 ,

2
cos[ ] 4𝑓 , cos 𝑘ℎ

3𝑘 cos 𝑘𝑟

(𝑘𝑟)
+

3𝑘 sin 𝑘𝑟

(𝑘𝑟)
−

𝑘 cos 𝑘𝑟

(𝑘𝑟)

+
4

3
𝑓 , sin 𝑘ℎ

2𝑘 cos 𝑘𝑟

(𝑘𝑟)
+

2𝑘 sin 𝑘𝑟

(𝑘𝑟)
−

𝑘 cos 𝑘𝑟

𝑘𝑟

− 2𝑓 , cos 𝑘ℎ
𝑘 cos 𝑘𝑟

(𝑘𝑟)
+

𝑘 sin 𝑘𝑟

𝑘𝑟

+
2𝑓 ,

3
cos[ ] 𝑓 , cos 𝑘ℎ −

𝑘 cos 𝑘𝑟

(𝑘𝑟)
−

𝑘 sin 𝑘𝑟

𝑘𝑟

+
2

3
𝑓 , sin 𝑘ℎ −

𝑘 cos 𝑘𝑟

𝑘𝑟

+
𝑓 ,

2
sin[ ] 4𝑓 , cos 𝑘ℎ

𝑘 cos 𝑘𝑟

(𝑘𝑟)
+

𝑘 sin 𝑘𝑟

(𝑘𝑟)

+
4

3
𝑓 , sin 𝑘ℎ

𝑘 cos 𝑘𝑟

(𝑘𝑟)
+

𝑘 sin 𝑘𝑟

𝑘𝑟
− 2𝑓 , cos 𝑘ℎ

𝑘 cos 𝑘𝑟

𝑘𝑟

+
2𝑓 ,

3
sin[ ] 𝑓 , cos 𝑘ℎ

2𝑘 cos 𝑘𝑟

(𝑘𝑟)
+

2𝑘 sin 𝑘𝑟

(𝑘𝑟)
−

𝑘 cos 𝑘𝑟

𝑘𝑟

+
2

3
𝑓 , sin 𝑘ℎ

𝑘 cos 𝑘𝑟

(𝑘𝑟)
+

𝑘 sin 𝑘𝑟

𝑘𝑟
 

which simplifies to  

𝐹 = 𝜋𝐸 𝑘 𝑎 𝑎 𝑓 ,

𝑓 ,

2
cos[𝑘𝑟] 4

3𝑘 cos 𝑘𝑟

(𝑘𝑟)
+

3𝑘 sin 𝑘𝑟

(𝑘𝑟)
−

𝑘 cos 𝑘𝑟

(𝑘𝑟)

− 2
𝑘 cos 𝑘𝑟

(𝑘𝑟)
+

𝑘 sin 𝑘𝑟

𝑘𝑟
+

2𝑓 ,

3
cos[𝑘𝑟] −

𝑘 cos 𝑘𝑟

(𝑘𝑟)
−

𝑘 sin 𝑘𝑟

𝑘𝑟

+
𝑓 ,

2
sin[𝑘𝑟] 4

𝑘 cos 𝑘𝑟

(𝑘𝑟)
+

𝑘 sin 𝑘𝑟

(𝑘𝑟)
− 2

𝑘 cos 𝑘𝑟

𝑘𝑟

+
2𝑓 ,

3
sin[𝑘𝑟]

2𝑘 cos 𝑘𝑟

(𝑘𝑟)
+

2𝑘 sin 𝑘𝑟

(𝑘𝑟)
−

𝑘 cos 𝑘𝑟

𝑘𝑟

= 𝜋𝐸 𝑘 𝑎 𝑎 𝑓 , 𝑓 , cos 𝑘𝑟
6 cos 𝑘𝑟

(𝑘𝑟)
+

6 sin 𝑘𝑟

(𝑘𝑟)
−

3 cos 𝑘𝑟

(𝑘𝑟)
−

sin 𝑘𝑟

𝑘𝑟

−
2𝑓 ,

3
cos 𝑘𝑟

cos 𝑘𝑟

(𝑘𝑟)
+

sin 𝑘𝑟

𝑘𝑟

+ 𝑓 , +
2𝑓 ,

3
sin 𝑘𝑟

2 cos 𝑘𝑟

(𝑘𝑟)
+

2 sin 𝑘𝑟

(𝑘𝑟)
−

2 cos 𝑘𝑟

𝑘𝑟
 

when the nodes are aligned with the scatterer particle (h = 0). Note that this force is 
directly proportional to the dipole scattering coefficient of the scatterer particle. 



Similarly, for the antinodal case (ℎ = 𝜆/4) 

cos[𝑘(𝑟 − ℎ )] = cos 𝑘𝑟 −
𝜋

2
= sin 𝑘𝑟 

sin[𝑘(𝑟 − ℎ )] = sin 𝑘𝑟 −
𝜋

2
= − cos 𝑘𝑟 

Arriving at 

𝐹 = 𝜋𝐸 𝑘 𝑎 𝑎 𝑓 ,

𝑓 ,

2
sin[𝑘𝑟]

4

3

2𝑘 cos 𝑘𝑟

(𝑘𝑟)
+

2𝑘 sin 𝑘𝑟

(𝑘𝑟)
−

𝑘 cos 𝑘𝑟

𝑘𝑟

+
2𝑓 ,

3
sin[𝑘𝑟]

2

3
−

𝑘 cos 𝑘𝑟

𝑘𝑟
−

𝑓 ,

2
cos[𝑘𝑟]

4

3

𝑘 cos 𝑘𝑟

(𝑘𝑟)
+

𝑘 sin 𝑘𝑟

𝑘𝑟

−
2𝑓 ,

3
cos[𝑘𝑟]

2

3

𝑘 cos 𝑘𝑟

(𝑘𝑟)
+

𝑘 sin 𝑘𝑟

𝑘𝑟

= 𝜋𝐸 𝑘 𝑎 𝑎 𝑓 ,

2

3
𝑓 , sin 𝑘𝑟

2 cos 𝑘𝑟

(𝑘𝑟)
+

2 sin 𝑘𝑟

(𝑘𝑟)

−
2

3
𝑓 , +

4𝑓 ,

9
sin 𝑘𝑟

cos 𝑘𝑟

𝑘𝑟

−
2

3
𝑓 , +

4𝑓 ,

9
cos 𝑘𝑟

cos 𝑘𝑟

(𝑘𝑟)
+

sin 𝑘𝑟

𝑘𝑟
 

Note that this force is directly proportional to the monopole scattering 
coefficient of the scatterer particle. 



Secondary radiation force in the polar direction 

The derivatives of the different terms containing 𝜃: 

𝜕

𝜕𝜃
cos[𝑘(𝑟 cos 𝜃 − ℎ )] (1 + 3 cos 2𝜃)

= −6 sin 2𝜃 cos[ ] + 𝑘𝑟 sin 𝜃 (1 + 3 cos 2𝜃) sin[ ] 

𝜕

𝜕𝜃
cos[𝑘(𝑟 cos 𝜃 − ℎ )] cos 𝜃 = − sin 𝜃 cos[ ] + 𝑘𝑟 sin 𝜃 cos 𝜃 sin[ ] 

𝜕

𝜕𝜃
cos[𝑘(𝑟 cos 𝜃 − ℎ )] (1 + cos 2𝜃) = −2 sin 2𝜃 cos[ ] + 𝑘𝑟 sin 𝜃 (1 + cos 2𝜃) sin[ ] 

𝜕

𝜕𝜃
sin[𝑘(𝑟 cos 𝜃 − ℎ )] cos 𝜃 = −𝑘𝑟 sin 𝜃 cos 𝜃 cos[ ] − sin 𝜃 sin[ ] 

𝜕

𝜕𝜃
sin[𝑘(𝑟 cos 𝜃 − ℎ )] = −𝑘𝑟 sin 𝜃 cos[ ] 

and on substitution to Equation (3b) and Equation (10): 

𝐹 =
1

𝑟
𝜋𝐸 𝑘 𝑎 𝑎

𝑓 ,

2
cos[𝑘(𝑟 cos 𝜃 − ℎ )] 𝑓 , cos 𝑘ℎ

cos 𝑘𝑟

(𝑘𝑟)
[6 sin 2𝜃]

+
4

3
𝑓 , sin 𝑘ℎ

cos 𝑘𝑟

(𝑘𝑟)
[sin 𝜃] + 𝑓 , cos 𝑘ℎ

sin 𝑘𝑟

(𝑘𝑟)
[6 sin 2𝜃]

− 𝑓 , cos 𝑘ℎ
cos 𝑘𝑟

𝑘𝑟
[2 sin 2𝜃] +

4

3
𝑓 , sin 𝑘ℎ

sin 𝑘𝑟

𝑘𝑟
[sin 𝜃]

+
2𝑓 ,

3
cos[𝑘(𝑟 cos 𝜃 − ℎ )] 𝑓 , cos 𝑘ℎ

cos 𝑘𝑟

(𝑘𝑟)
[𝑘𝑟 sin 𝜃 cos 𝜃]

+
2

3
𝑓 , sin 𝑘ℎ

cos 𝑘𝑟

𝑘𝑟
[𝑘𝑟 sin 𝜃] + 𝑓 , cos 𝑘ℎ

sin 𝑘𝑟

𝑘𝑟
[𝑘𝑟 sin 𝜃 cos 𝜃]

+
𝑓 ,

2
sin[𝑘(𝑟 cos 𝜃 − ℎ )] 𝑓 , cos 𝑘ℎ

cos 𝑘𝑟

(𝑘𝑟)
[−𝑘𝑟 sin 𝜃 (1 + 3 cos 2𝜃)]

+
4

3
𝑓 , sin 𝑘ℎ

cos 𝑘𝑟

(𝑘𝑟)
[−𝑘𝑟 sin 𝜃 cos 𝜃]

+ 𝑓 , cos 𝑘ℎ
sin 𝑘𝑟

(𝑘𝑟)
[−𝑘𝑟 sin 𝜃 (1 + 3 cos 2𝜃)]

− 𝑓 , cos 𝑘ℎ
cos 𝑘𝑟

𝑘𝑟
[−𝑘𝑟 sin 𝜃 (1 + cos 2𝜃)]

+
4

3
𝑓 , sin 𝑘ℎ

sin 𝑘𝑟

𝑘𝑟
[−𝑘𝑟 sin 𝜃 cos 𝜃]

+
2𝑓 ,

3
sin[𝑘(𝑟 cos 𝜃 − ℎ )] 𝑓 , cos 𝑘ℎ

cos 𝑘𝑟

(𝑘𝑟)
[sin 𝜃]

+ 𝑓 , cos 𝑘ℎ
sin 𝑘𝑟

𝑘𝑟
[sin 𝜃]  

As all terms contain sin 𝜃 or sin 2𝜃, the above force goes to zero when 𝜃 = 0 

However, when 𝜃 = 𝜋/2, only terms cos 𝜃, sin 2𝜃 or 1 + cos 2𝜃 disappear, leaving 



 

𝐹 =
1

𝑟
𝜋𝐸 𝑘 𝑎 𝑎

𝑓 ,

2
cos[ ]

4

3
𝑓 , sin 𝑘ℎ

cos 𝑘𝑟

(𝑘𝑟)
[sin 𝜃]

+
4

3
𝑓 , sin 𝑘ℎ

sin 𝑘𝑟

𝑘𝑟
[sin 𝜃]

+
2𝑓 ,

3
cos[ ]

2

3
𝑓 , sin 𝑘ℎ

cos 𝑘𝑟

𝑘𝑟
[𝑘𝑟 sin 𝜃]

+
𝑓 ,

2
sin[ ] 𝑓 , cos 𝑘ℎ

cos 𝑘𝑟

(𝑘𝑟)
[−𝑘𝑟 sin 𝜃 (1 + 3 cos 2𝜃)]

+ 𝑓 , cos 𝑘ℎ
sin 𝑘𝑟

(𝑘𝑟)
[−𝑘𝑟 sin 𝜃 (1 + 3 cos 2𝜃)]

+
2𝑓 ,

3
sin[ ] 𝑓 , cos 𝑘ℎ

cos 𝑘𝑟

(𝑘𝑟)
[sin 𝜃] + 𝑓 , cos 𝑘ℎ

sin 𝑘𝑟

𝑘𝑟
[sin 𝜃]  

now evaluating the remaining terms, and simplifying: 

cos[𝑘(𝑟 cos 𝜃 − ℎ )] = cos 𝑘ℎ  

sin[𝑘(𝑟 cos 𝜃 − ℎ )] = − sin 𝑘ℎ  

𝐹 =
1

𝑟
𝜋𝐸 𝑘 𝑎 𝑎 sin 2𝑘ℎ

𝑓 ,

3
𝑓 ,

cos 𝑘𝑟

(𝑘𝑟)
+

sin 𝑘𝑟

𝑘𝑟
+

2𝑓 ,

9
𝑓 , cos 𝑘𝑟

−
𝑓 ,

2
𝑓 ,

cos 𝑘𝑟

(𝑘𝑟)
+

sin 𝑘𝑟

𝑘𝑟
−

𝑓 ,

3
𝑓 ,

cos 𝑘𝑟

(𝑘𝑟)
+

sin 𝑘𝑟

𝑘𝑟

= 𝜋𝐸 𝑘 𝑎 𝑎
sin 2𝑘ℎ

18
6𝑓 , 𝑓 , − 9𝑓 , 𝑓 , − 6𝑓 , 𝑓 ,

cos 𝑘𝑟

(𝑘𝑟)
+

sin 𝑘𝑟

(𝑘𝑟)

+ 4𝑓 , 𝑓 ,

cos 𝑘𝑟

𝑘𝑟
 

which is only zero at either the nodes or antinodes, where sin 2𝑘ℎ = 0. 



Mesh convergence analysis 

Mesh convergence analysis was carried out using a uniform and a non-uniform 
meshing to assess the convergence speed of the numerical method and verify its 
robustness. In both cases, we use a scaling parameter mesh_size to define the 
minimum and maximum discretization steps. For the uniform mesh, the maximum 
mesh size is given as 𝜆/mesh_size , while the minimum mesh size as 𝜆/(2 ⋅

mesh_size). For the non-uniform mesh, the scattering and probe particles are meshed 
using the above minimum and maximum values, but the other domains (the fluid 
domain and the PML) are meshed using a coarser mesh, with minimum and 
maximum size of 𝜆/(0.6 ⋅ mesh_size) and 𝜆/(1.2 ⋅ mesh_size), respectively.  

As the polystyrene particle in water has a lower contrast compared to the 
polystyrene particle in air, and consequently its relative secondary radiation force is 
lower, we chose this former case to analyze the mesh convergence. The results for 
various cases (node, antinode) and along different directions (radial and z) can be 
seen in the following Figs. S1-S4. The convergence error is defined as 

error =  
𝐹 − 𝐹

𝐹
 

where Fm denotes the secondary radiation force obtained using the mth mesh_size 
parameter. In all cases, the probe particle was placed 0.35𝜆  distance from the 
scatterer, this distance is approximately halfway between the node and antinode and 
therefore has a non-zero force. 

 

Figure S1. Convergence analysis results when the scattering particle is aligned with the 
pressure antinode and the probe particle is along the z direction. The convergence error is 



plotted as a function of the mesh size parameter (top graph) and as a function of the number 
of degrees of freedom (bottom graph). 

 

Figure S2. Convergence analysis results when the scattering particle is aligned with the 
pressure node and the probe particle is along the z direction. The convergence error is plotted 
as a function of the mesh size parameter (top graph) and as a function of the number of 
degrees of freedom (bottom graph). 

 

Figure S3. Convergence analysis results when the scattering particle is aligned with the 
pressure antinode and the probe particle is along the r direction. The convergence error is 



plotted as a function of the mesh size parameter (top graph) and as a function of the number 
of degrees of freedom (bottom graph). 

 

Figure S4. Convergence analysis results when the scattering particle is aligned with the 
pressure node and the probe particle is along the r direction. The convergence error is plotted 
as a function of the mesh size parameter (top graph) and as a function of the number of 
degrees of freedom (bottom graph). 

Except for the last case (Figure S4), the convergence is fast, and no significant 
difference between the uniform and non-uniform mesh can be observed, as far as 
the number of degrees of freedom is concerned. For non-uniform mesh, for all four 
cases the error is below 1%, when mesh_size > 35, meaning that the particles are 
meshed between 0.0143𝜆 < mesh < 0.0286𝜆  and the other domains between 
0.0238𝜆 < mesh < 0.0476𝜆. 

For the uniform mesh, the error is below 1% for all cases when mesh_size > 23, 
meaning that for all domains the discretization size is 0.0217𝜆 < mesh < 0.0435𝜆. 

As for the 2D case, increasing the number of degrees of freedom in the same 
order of magnitude as for the 3D case would require an inefficiently large mesh, we 
decided to use a quartic discretization in this case compared to the cubic 
discretization of the 3D case. The quartic discretization allows expansion of a 
medium-sized mesh into a large number of degrees of freedom using fourth order 
approximation of the solutions over each mesh element. Moreover, as for the 3D case 
no significant difference was observed between a uniform and non-uniform mesh, 
for the 2D investigations we only applied a simple uniform mesh with the same 
characteristics as before. 



These results are summarized in Figures S5 and S6.  

 

Figure S5. Convergence analysis results when the scattering particle is aligned with the 
pressure node and the probe particle is along either the r or z direction. The convergence 
error is plotted as a function of the mesh size parameter. 

 

Figure S6. Convergence analysis results when the scattering particle is aligned with the 
pressure antinode and the probe particle is along either the r or z direction. The convergence 
error is plotted as a function of the mesh size parameter. 

In both cases an extremely fast convergence can be observed irrespective of the 
particle position: the error is already less than 0.01% when the mesh scale parameter 
is 20. For the 2D case, the relationship between the mesh size parameter and the 
number of degrees of freedom is summarized in Table S1. 

Table S1. Relation between number of degrees of freedom and mesh scale parameter for 
the 2D mesh convergence analysis 

mesh scale 
parameter 

degrees of 
freedom 

mesh scale 
parameter 

degrees of 
freedom 

5 2304 29.97421 20714 
6.457748 4070 38.71318 25338 
8.340503 5166 50 38710 
10.77217 6286 64.57748 60140 

13.9128 11138 83.40503 95790 
17.96907 15974 107.7217 156320 
23.20794 18560 139.128 256354 

 



Simulations for nearly touching spheres 

Although the methods are not applicable for simulations of touching spheres, 
we show that the separation distance (the surface-to-surface distance) of the two 
spheres can be arbitrary low. In Figure S7, secondary radiation force results for PS 
particle in water, where the scatterer is at the antinode can be seen, showing 
separation distances as low as 0.001λ with successful simulation. 

 

Figure S7. Secondary radiation force when the scattering particle is aligned with the 
pressure antinode and the probe particle is along the z direction. The distance in this case 
corresponds to surface-to-surface distance of the particles. 


