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Abstract: Two numerical methods based on the Finite Element Method are presented for calculating
the secondary acoustic radiation force between interacting spherical particles. The first model
only considers the acoustic waves scattering off a single particle, while the second model includes
re-scattering effects between the two interacting spheres. The 2D axisymmetric simplified model
combines the Gor’kov potential approach with acoustic simulations to find the interacting forces
between two small compressible spheres in an inviscid fluid. The second model is based on 3D
simulations of the acoustic field and uses the tensor integral method for direct calculation of the
force. The results obtained by both models are compared with analytical equations, showing good
agreement between them. The 2D and 3D models take, respectively, seconds and tens of seconds to
achieve a convergence error of less than 1%. In comparison with previous models, the numerical
methods presented herein can be easily implemented in commercial Finite Element software packages,
where surface integrals are available, making it a suitable tool for investigating interparticle forces in
acoustic manipulation devices.

Keywords: secondary acoustic radiation force; scattering effects; 2D and 3D modeling

1. Introduction

Acoustic radiation forces generated by standing wave fields are widely used for manipulation,
trapping, patterning, and sorting of microparticles and cells [1–4]. The theoretical investigation of the
primary acoustic radiation force on microparticles due to an external acoustic field was introduced
by King [5], who calculated the acoustic radiation force on a small rigid sphere in an ideal fluid for
both traveling and standing plane wave fields. His work was followed by the paper of Yosioka and
Kawasima [6], which considered the compressibility of the spheres. Gor’kov provided a potential
approach for calculation of this force in an arbitrary acoustic field [7]. Recent investigations included
viscous and thermal effects [8–10] and provided analytical formulae for more complex external
fields [11–13].

Considering multiple particles in a fluid medium, the scattering events between these particles give
rise to interparticle forces (also called secondary radiation force or Bjerknes force), which can result in
particle clump formation, adversely affecting device performance [14]. Desired arrangement of particles
in layers [15] or chains [16] is also suspected to occur due to the secondary radiation force [17]. Special
cases of this force were investigated thoroughly: the seminal work by Bjerknes [18] on bubble-bubble

Micromachines 2019, 10, 431; doi:10.3390/mi10070431 www.mdpi.com/journal/micromachines

http://www.mdpi.com/journal/micromachines
http://www.mdpi.com
https://orcid.org/0000-0003-3483-8947
https://orcid.org/0000-0002-1711-7358
https://orcid.org/0000-0002-2441-1598
https://orcid.org/0000-0002-0335-546X
http://dx.doi.org/10.3390/mi10070431
http://www.mdpi.com/journal/micromachines
https://www.mdpi.com/2072-666X/10/7/431?type=check_update&version=2


Micromachines 2019, 10, 431 2 of 18

interactions was followed by other theoretical studies [19–22] and validated experimentally [23].
Theoretical rigid-rigid particle interactions were developed both for short range [16] and long range
interactions [24], and validated by experiments with elastic latex solid particles in water medium [25]. A
general theoretical model both for compressible and rigid particles, with no restriction on interparticle
distance, was presented by Silva and Bruus recently [26]. They followed a monopole-dipole description
of the secondary force potential; this analytical formula being valid for particle sizes much smaller
than the wavelength. To alleviate this restriction, numerical approaches have been developed for
determining interparticle forces. Doinikov used a multipole series expansion technique for calculating
the interaction force between two air bubbles in water [27]. In 2015, a weighted residue method was
combined with the multipole expansion series for calculating the interparticle forces between spherical
particles in an ideal fluid [28]. Recently, a boundary element method was applied for calculating the
interparticle force between spheroidal particles [29]. Although different numerical methods have been
developed, they are complex to use and require a laborious implementation, restricting their use to a
few research groups. Analytical methods, in contrast, are limited to small particle sizes and objects of
simple geometry.

In this paper, we present two numerical approaches to calculate the secondary acoustic radiation
force on small spheres in a plane standing wave field. One uses a 2D axisymmetric model and the
Gor’kov potential approach for calculation of the force [7], while the second model uses a tensor
integral approach [6,30] in 3D and therefore can include re-scattering events between the particles as
well. Both approaches use the Finite Element Method (FEM) to calculate the acoustic pressure and
particle velocity distributions in the fluid medium. The obtained numerical results are compared with
those obtained by an analytical expression for the secondary force acting on particles much smaller
than the acoustic wavelength [26]. The 2D axisymmetric model has the advantage of being simple to
implement while the 3D model can be extended for particles with arbitrary shapes and sizes.

2. Methods

This section presents the analytical expressions of the primary and secondary radiation forces on
small spheres in an ideal fluid medium. Assuming time-harmonic fields of angular frequency ω, the
wave propagation can be described in terms of the velocity potential φ(r, t) = φ(r)e−iωt [26], where r is
the position vector, t is the time and i =

√
−1 is the imaginary unit. Given φ(r, t), the acoustic pressure

p(r, t) and velocity v(r, t) fields can be fully specified using a complex amplitude [31]:

v(r, t) = ∇φ(r, t) = ∇φ(r)e−iωt = v(r)e−iωt, (1a)

v(r) = ∇φ(r), (1b)

p(r, t) = −ρ0
∂φ(r, t)
∂t

= −ρ0φ(r)
∂e−iωt

∂t
= ρ0φ(r)iωe−iωt = p(r)e−iωt, (2a)

p(r) = iωρ0φ(r), (2b)

where ρ0 is the density of the unperturbed fluid.
An expression for calculating the acoustic radiation force produced by an arbitrary acoustic field

(except a plane traveling wave) on a small sphere was derived by Gor’kov [7]. According to Gor’kov’s
potential theory, the acoustic radiation force Frad on a small spherical object of radius a, below the
Rayleigh scattering limit (a � λ), can be expressed in the form of a time-averaged potential [32],
given by

Urad(r) = Vi

[1
2

f0,iκ0〈
∣∣∣pin(r, t)

∣∣∣2〉 − 3
4

f1,iρ0〈
∣∣∣vin(r, t)

∣∣∣2〉], (3a)

Frad(r) = −∇Urad(r), (3b)
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where pin and vin are the incident pressure and velocity fields at the position where the spherical object
is located. In Equation (3a), Vi = 4πa3

i /3 is the particle volume, κ0 = 1/
(
ρ0c2

0

)
is the compressibility of

the fluid medium, 〈〉 denotes time averaging for one period, and

f0,i = 1− κ̃i with κ̃i = κi/κ0, (4a)

f1,i =
2(ρ̃i − 1)
2ρ̃i + 1

with ρ̃i = ρi/ρ0, (4b)

are the monopole and dipole scattering factors, respectively, with κi being the compressibility, ρi the
density of the particle [32].

2.1. Theoretical Expression for the Primary Acoustic Radiation Force

Let us assume a small probe particle in an external standing plane wave field, as illustrated in
Figure 1. The velocity potential φext of a plane standing wave field at the location of the probe particle
can be described by [26]:

φext(z) =
v0

k
sin[k(z− hn)], (5)

where k = 2π/λ is the wavenumber, v0 is the velocity amplitude, and hn is the distance between the
scatterer particle and the pressure node. Substituting the velocity potential given by Equation (5) into
Equations (1b) and (2b), we find the particle velocity vext(z) and the acoustic pressure pext(z):

vext(z) = ∇φext(z) = v0 cos[k(z− hn)]ẑ, (6)

pext(z) = iωρ0φext(z) = iωρ0
v0

k
sin[k(z− hn)], (7)

Substituting Equations (6) and (7) into Equation (3a), and as the time averages of the squares of the
fields are half of the amplitude squared, moreover ω = kc0 the potential of the primary radiation
force is

Uprim(r) =
ViE0

2

[
f0,i −ΦAC cos2[k(z− hn)]

]
, (8)

where E0 = 1
2ρ0v2

0 = 1
2κ0p2

0 is the acoustic energy density and ΦAC is the acoustic contrast factor,
given by:

ΦAC = f0,i +
3
2

f1,i =
5ρ̃i − 2
2ρ̃i + 1

− κ̃i. (9)Micromachines 2019, 10, x  4 of 18 

 

 

Figure 1. Two small particles in a plane standing wave field. The total acoustic radiation force on the 
probe particle is the result of a primary radiation force and a secondary force. The primary force 
originates from the interaction of the external wave field with the probe particle, while the secondary 
force is generated by the scattered wave from the scatterer particle. 

2.2. Theoretical Expression for the Potential of the Secondary Force 

In addition to the primary force, a particle located in the neighborhood of another particle 
experiences a secondary force, which is caused by the wave scattering from the neighboring particle. 
A general expression for the secondary force potential 𝑈ୱୣୡ acting on the probe particle due to a 
scatterer particle located at the origin of the coordinate system (See Figure 1) was derived by Silva 
and Bruus [26]: 

𝑈ୱୣୡሺ𝑟, 𝜃ሻ = 𝜋𝐸଴𝑘ଷ𝑎୮ଷ𝑎ୱଷ ቀcosሾ𝑘ሺ𝑟 cos 𝜃 − ℎ୬ሻሿ ௙భ,౦ଶ ቄ𝑓ଵ,ୱ cosሺ𝑘ℎ୬ሻሺ1 + 3 cos 2𝜃ሻ ୡ୭ୱ ௞௥ሺ௞௥ሻయ +
ቂସଷ 𝑓଴,ୱ sinሺ𝑘ℎ୬ሻ cos 𝜃 cos 𝑘𝑟 + 𝑓ଵ,ୱ cosሺ𝑘ℎ୬ሻሺ1 + 3 cos 2𝜃ሻ sin 𝑘𝑟ቃ ଵሺ௞௥ሻమ −
ቂ𝑓ଵ,ୱ cosሺ𝑘ℎ୬ሻሺ1 + cos 2𝜃ሻ cos 𝑘𝑟 − ସଷ 𝑓଴,ୱ sinሺ𝑘ℎ୬ሻ cos 𝜃 sin 𝑘𝑟ቃ ଵ௞௥ቅ + sinሾ𝑘ሺ𝑟 cos 𝜃 −
ℎ୬ሻሿ ଶ௙బ,౦ଷ ቄ𝑓ଵ,ୱ cosሺ𝑘ℎ୬ሻ cos 𝜃 ୡ୭ୱ ௞௥ሺ௞௥ሻమ + ቂଶଷ 𝑓଴,ୱ sinሺ𝑘ℎ୬ሻ cos 𝑘𝑟 +
𝑓ଵ,ୱ cosሺ𝑘ℎ୬ሻ cos 𝜃 sin 𝑘𝑟ቃ ଵ௞௥ቅቁ, 

(11) 

where 𝑎୮ and 𝑎ୱ are the radius of the probe and scatterer particles, respectively. This potential can 
be inserted into Equation (3b) to obtain the total secondary radiation force (refer to Figure 1 for the 
components of the force): 

𝑭௥ = 𝜋𝐸଴𝑘ଷ𝑎୮ଷ𝑎ୱଷ ቊ௙భ,౦ଶ cosሾ𝑘ሺ𝑟 cos 𝜃 − ℎ୬ሻሿ ቄ𝑓ଵ,ୱ cos 𝑘ℎ୬ ሺ1 + 3 cos 2𝜃ሻ ቂଷ௞ ୡ୭ୱ ௞௥ሺ௞௥ሻర +
ଷ௞ ୱ୧୬ ௞௥ሺ௞௥ሻయ − ௞ ୡ୭ୱ ௞௥ሺ௞௥ሻమ ቃ + ସଷ 𝑓଴,ୱ sin 𝑘ℎ୬ cos 𝜃 ቂଶ௞ ୡ୭ୱ ௞௥ሺ௞௥ሻయ + ଶ௞ ୱ୧୬ ௞௥ሺ௞௥ሻమ − ௞ ୡ୭ୱ ௞௥௞௥ ቃ − 𝑓ଵ,ୱ cos 𝑘ℎ୬ ሺ1 +
cos 2𝜃ሻ ቂ௞ ୡ୭ୱ ௞௥ሺ௞௥ሻమ + ௞ ୱ୧୬ ௞௥௞௥ ቃቅ + ଶ௙బ,౦ଷ cosሾ𝑘ሺ𝑟 cos 𝜃 −
ℎ୬ሻሿ ቄ𝑓ଵ,ୱ cos 𝑘ℎ୬ cos 𝜃 ቂ− ௞ ୡ୭ୱ ఏ ୡ୭ୱ ௞௥ሺ௞௥ሻమ − ௞ ୡ୭ୱ ఏ ୱ୧୬ ௞௥௞௥ ቃ + ଶଷ 𝑓଴,ୱ sin 𝑘ℎ୬ ቂ− ௞ ୡ୭ୱ ఏ ୡ୭ୱ ௞௥௞௥ ቃቅ +

(12) 

Figure 1. Two small particles in a plane standing wave field. The total acoustic radiation force on
the probe particle is the result of a primary radiation force and a secondary force. The primary force
originates from the interaction of the external wave field with the probe particle, while the secondary
force is generated by the scattered wave from the scatterer particle.
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Finally, the primary acoustic radiation force acting on the probe particle is obtained by substituting
Equation (8) in Equation (3b):

Fprim = −∇Uext(r) = −
ViE0ΦACk

2
sin[2k(z− hn)]ẑ. (10)

The primary radiation force points towards the pressure node if the contrast factor is positive and
points towards the antinode if the contrast factor is negative.

2.2. Theoretical Expression for the Potential of the Secondary Force

In addition to the primary force, a particle located in the neighborhood of another particle
experiences a secondary force, which is caused by the wave scattering from the neighboring particle. A
general expression for the secondary force potential Usec acting on the probe particle due to a scatterer
particle located at the origin of the coordinate system (See Figure 1) was derived by Silva and Bruus [26]:
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(13) 

The radial force for the transversal direction (𝜃 = 𝜋/2) simplifies to 

𝑭ሺ𝜚ሻ = 𝜋𝐸଴𝑘ଷ𝑎୮ଷ𝑎ୱଷ ቂ𝑓ଵ,୮𝑓ଵ,ୱ cosଶሺ𝑘ℎ୬ሻ ቀ− ଷ௞ ୡ୭ୱ ௞దሺ௞దሻర − ଷ௞ ୱ୧୬ ௞దሺ௞దሻయ + ௞ ୡ୭ୱ ௞దሺ௞దሻమ ቁ +
ସଽ 𝑓଴,୮𝑓଴,ୱ sinଶሺ𝑘ℎ୬ሻ ቀ− ௞ ୡ୭ୱ ௞దሺ௞దሻమ − ௞ ୱ୧୬ ௞ద௞ద ቁቃ 𝝔ෝ, 

(14) 

where the first term corresponds to the dipole scattering and the second term corresponds to the 
monopole scattering. Choosing the nodal line to align with the transverse plane, the monopole 
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where the first term corresponds to the dipole scattering and the second term corresponds to the 
monopole scattering. Choosing the nodal line to align with the transverse plane, the monopole 

The radial force for the transversal direction (θ = π/2) simplifies to

F(%) = πE0k3a3
pa3

s [ f1,p f1,s cos2 (khn)(−
3k cos k%
(k%)4 −

3k sin k%
(k%)3 +

k cos k%
(k%)2 )+

4
9 f0,p f0,s sin2 (khn)(−

k cos k%
(k%)2 −

k sin k%
k% )]%̂,

(14)

where the first term corresponds to the dipole scattering and the second term corresponds to the
monopole scattering. Choosing the nodal line to align with the transverse plane, the monopole
scattering term vanishes, and for the antinodal line the dipole term vanishes. Therefore, in the short
and long range the force is

F(%) = −πE0k3a3
pa3

s f1,p f1,s
3k

(k%)4
%̂with k%� 1, (15a)

F(%) = πE0k3a3
pa3

s f1,p f1,s
k cos k%

(k%)2 %̂with k%� 1, (15b)

for the nodal plane.
For the antinodal plane the force in the two ranges is:

F(%) = −
4
9
πE0k3a3

pa3
s f0,p f0,s

k

(k%)2 %̂with k%� 1, (16a)

F(%) = −
4
9
πE0k3a3

pa3
s f0,p f0,s

k sin k%
k%

%̂with k%� 1. (16b)
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The radial force in the z direction (θ = 0) becomes somewhat more complicated for a general case:

F(z) = πE0k3a3
pa3

s

{
f1,p
2 cos[k(z− hn)]

{
4 f1,s cos khn

[
3k cos kz
(kz)4 + 3k sin kz

(kz)3 −
k cos kz
(kz)2

]
+

4
3 f0,s sin khn

[
2k cos kz
(kz)3 + 2k sin kz

(kz)2 −
k cos kz

kz

]
− 2 f1,s cos khn

[
k cos kz
(kz)2 + k sin kz

kz

]}
+

2 f0,p
3 cos[k(z− hn)]

{
f1,s cos khn

[
−

k cos kz
(kz)2 −

k sin kz
kz

]
+ 2

3 f0,s sin khn
[
−

k cos kz
kz

]}
+

f1,p
2 sin[k(z− hn)]

{
4 f1,s cos khn

[
k cos kz
(kz)3 + k sin kz

(kz)2

]
+ 4

3 f0,s sin khn

[
k cos kz
(kz)2 + k sin kz

kz

]
− 2 f1,s cos khn

[
k cos kz

kz

]}
+

2 f0,p
3 sin[k(z− hn)]{ f1,s cos khn

[
2k cos kz
(kz)3 + 2k sin kz

(kz)2 −
k cos kz

kz

]
+ 2

3 f0,s sin khn

[
k cos kz
(kz)2 + k sin kz

kz

]
}

}
ẑ

(17)

which simplifies to

F(z) = πE0k4a3
pa3

s f1,s

{
f1,p cos kz

[
6 cos kz
(kz)4 + 6 sin kz

(kz)3 −
3 cos kz
(kz)2 −

sin kz
kz

]
−

2 f0,p
3 cos kz

[
cos kz
(kz)2 + sin kz

kz

]
+

(
f1,p +

2 f0,p
3

)
sin kz

[
2 cos kz
(kz)3 + 2 sin kz

(kz)2 −
cos kz

kz

]}
ẑ,

(18)

when the nodes are aligned with the scatterer particle (hn = 0). Please note that this force is directly
proportional to the dipole scattering coefficient of the scatterer particle.

When the scatterer sphere is located at the pressure antinode (hn = λ/4), the secondary force in
the z direction is

F(z) = πE0k4a3
pa3

s f0,s

{
2
3 f1,p sin kz

[
2 cos kz
(kz)3 + 2 sin kz

(kz)2

]
−

(
2
3 f1,p +

4 f0,p
9

)
sin kz

[
cos kz

kz

]
−(

2
3 f1,p +

4 f0,p
9

)
cos kz

[
cos kz
(kz)2 + sin kz

kz

]}
ẑ.

(19)

Please note that this force is directly proportional to the monopole scattering coefficient of the scatterer
particle.

Similar simplifications can be performed for the force in the polar direction. Please note that all
terms in Equation (13b) either contain sinθ or sin 2θ and therefore the force goes to zero for θ = 0.
However, for probe particles located along the transversal plane (θ = π/2), this force will have the form

Fθ = πE0k4a3
pa3

s
sin 2khn

18

(6 f1,p f0,s − 9 f1,p f1,s − 6 f0,p f1,s
)cos kr

(kr)3 +
sin kr

(kr)2

+ 4 f0,p f0,s
cos kr

kr

θ̂ (20)

whose value is zero when the scatterer particle is either at a node or antinode, since sin 2khn = 0 in
these cases.

2.3. Determination of the Secondary Force by the Finite Element Method

The secondary acoustic radiation force acting on a small probe particle was determined by two
types of FEM simulations. The first one, presented in Section 3.1, uses a 2D axisymmetric FEM model
to simulate the first order acoustic pressure and velocity distribution in the neighborhood of a scatterer
particle. These fields are substituted in the Gor’kov expression to find the radiation force on a small
probe particle. The second strategy combines a 3D FEM model and a tensor integral approach to
calculate the radiation force on the probe particle. This strategy, presented in Section 3.2, considers
re-scattering events between the particles as well. Both types of simulations were implemented in the
FEM software COMSOL Multiphysics (version 5.2a, COMSOL AB, Stockholm, Sweden).

2.4. Simplified Numerical Approach

The first numerical approach, based on the Gor’kov expression, is presented in Figure 2. The
scatterer sphere is located at the origin of the coordinate system and we are interested in determining
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the secondary force on a small probe particle, located at the position r = zẑ + %%̂, due to an external
plane standing wave field.Micromachines 2019, 10, x  8 of 18 
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Figure 2. Axisymmetric linear acoustic model used to calculate the secondary force on the probe
particle. The model, based on the Gor’kov expression, is used to calculate the incident acoustic pressure
and velocity fields at the probe particle located at r = zẑ + %%̂.

As the probe particle is neglected in the simulations and only the incident fields are calculated at
its location, the model has rotational symmetry and was set up as a 2D axisymmetric problem.

In the acoustics module of COMSOL Multiphysics, the external incident field was introduced as a
background pressure field and the model was used to calculate the acoustic pressure and the velocity
distribution caused by the superposition of the external field with the scattered field from the scatterer
particle. As shown in Figure 2, a perfectly matched layer (PML) was used for absorption of the acoustic
waves at the edge of the fluid domain. In COMSOL, the total pressure is described by its amplitude pt,
while the total velocity by its root mean square value vrms. Consequently, for the harmonic field, the
total potential at the probe particle is given by

Utotal(r) = Uprim(r) + Usec(r) =
Vi
4

[
f0,iκ0

∣∣∣pt(r)
∣∣∣2 − 3 f1,iρ0v2

rms(r)
]

(21)

where Uprim is the potential due to the external field, and Usec is the potential due to the re-scattered
field.

From the total potential, given by Equation (21), and the potential of the primary force, given by
Equation (9), the secondary potential and force acting on the probe particle are given by

Usec(r) = Utotal(r) −Uprim(r), (22a)

Fsec(r) = −∇Usec(r). (22b)

The maximum mesh size was chosen to be λ/23, and the discretization was set to quartic to
efficiently increase the degrees of the freedom and capture the problem. This resulted in around 50,000
to 100,000 degrees of freedom for the model. More details on the meshing and its convergence is
provided in the Supplementary Materials. As a single simulation can be used to obtain the effect of one
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scatterer particle on all probe particles, a total of M simulations are required for the full characterization
of the interparticle forces between M particles.

The computational requirement on a general purpose PC equipped with 8 GB RAM was between
2 to 10 s for 2000 and 200,000 Degrees of Freedom (DOFs), respectively. However, as shown in the
Supplementary Materials, convergence error less than 0.1% is achieved even for 60,000 DOFs.

2.5. Complete Finite Element Model Incorporating Re-Scattering Effects

Both the monopole-dipole-based theoretical and the previous simulation approach neglect the
re-scattering effects between particles. Therefore, to assess the importance of these events, the following
3D model was implemented in COMSOL. As the FEM simulation is a direct numerical solution of the
Helmholtz equation with appropriate boundary conditions at the surfaces, re-scattering effects are
directly included when the solutions are obtained [33]. First, the pressure field is simulated including
both the scatterer and the probe particles, followed by the evaluation of the force using the tensor
integral method over a bounding surface. As in the previous case, the incident standing wave is
represented by the background field given by Equation (7). The total acoustic radiation force acting on
the probe particle is [30]:

Ftotal = −
x

S0


 p2

2ρ0c2
0

−
ρ0|v|2

2

n + ρ0(n · v)v

dS, (23)

where S0 is a closed surface surrounding the particle and n is the unit vector pointing outwards
the surface S0 (see Figure 3). The approximation is valid to the second order. Although
Glynne-Jones et al. [30] use Equation (23) only to obtain the primary radiation force acting on
the particle, it is valid for calculating the total acoustic radiation force for arbitrary shapes, sizes and
acoustic background fields. The primary radiation force arises due to the interaction of scattered waves
from the particle and the background pressure field; similarly, the secondary radiation force is a result
of the interaction of the scattered waves from particles i and j [9]. Therefore, using Equation (23) for a
multiparticle configuration, the total force, including secondary effects, is computed.
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mesh size was chosen to be the same. For this model, it resulted in several degrees of freedom ranging 
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adequate convergence below 1% error was already achieved with 200,000 DOFs, which required 
simulation time of 30 s. 

This 3D model cannot be applied to touching spheres. We believe this is due to the discontinuity 
of the density at the touching point between the two spheres. However, as Figure S7 of the 
Supplementary Materials shows, simulations down to separation distances as low as 0.001λ are 
possible. 
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Figure 3. Schematics of the models used in COMSOL with the geometrical dimensions indicated. The
models used in the 3D simulations, making use of different symmetries of the problem. The perfectly
matched layer is indicated in blue and the main fluid domain is shaded in grey. All grey faces have
symmetry boundary conditions applied (a) For simulations along the z direction, (b) For simulations
along the radial direction, for hn = λ/4, (c) For simulations along the radial direction, for hn = 0.

As with the previous model, the secondary force on the probe particle can be found by subtracting
the primary force from the total force:

Fsec = Ftotal − Fprim, (24)
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where the primary force is calculated by Equation (11). As the convergence of the secondary radiation
force was slow with this approach, we also calculated the primary radiation force using the same
tensor integral method, but first changing the material of the scatterer particle to the liquid. We
believe, the reason behind the slow convergence is the inadequately spaced mesh on the surface of
the probe particle, as opposed to the multipole scattering methods [27,28], where the quadrature
is a well-spaced Gauss-Langrangian quadrature. Carrying out the integral of the total force, and
then changing the material of the scatterer to the fluid, the exact same mesh is used in both cases,
significantly reducing computational errors and increasing convergence speed, which is shown in
the Supplementary Materials. As a result, one simulation is required to obtain the total force on all
particles, followed by one simulation for each particle to obtain the primary radiation force, resulting
in a total number of M+1 simulations for M particles.

To reduce the computational burden, we used the symmetry of the different cases as follows. For
obtaining the secondary force along the z-axis, we only modeled a quarter of the domain (Figure 3b)
and multiplied the integration value by 4 to account for the original problem. Similarly, along direction
%, we only modeled half or quarter of the domain, as shown in Figure 3b,c. For an antinode at z = 0,
both xy and xz planes are symmetry planes (Figure 3b), while a symmetry boundary condition was
applied over the xz-plane for a node being present at z = 0 (Figure 3c).

To be able to capture the numerical results with a similar precision as in the other model, the
mesh size was chosen to be the same. For this model, it resulted in several degrees of freedom ranging
between 300,000 and 450,000. The computational time for these models reached 60 s; however adequate
convergence below 1% error was already achieved with 200,000 DOFs, which required simulation time
of 30 s.

This 3D model cannot be applied to touching spheres. We believe this is due to the discontinuity of
the density at the touching point between the two spheres. However, as Figure S7 of the Supplementary
Materials shows, simulations down to separation distances as low as 0.001λ are possible.

In the results section, we investigate two cases of the secondary radiation force: particle in air and
particle in water. As the range of the interaction force is significantly different for these, we decided
to normalize both the secondary potential and force by their primary counterpart to allow for direct
comparison of the two cases by the relative values.

The primary radiation force (given by Equation (9)) amplitude is ViE0ΦACk/2. Using this value
as normalization, the relative strength of the different cases to follow can be compared with ease.

3. Results

To underpin the versatility of the model, we show two significantly different scales and frequencies,
and suspend the particles in different media. All potential and force values were normalized by the
primary counterpart to be able to directly compare the results for the different cases.

3.1. Polystyrene Particle in Air

As a first case, we investigated polystyrene (PS) particles in air with the parameters shown
in Table 1. The selected 10 kHz frequency is of the same order of that found in acoustic levitation
devices [34], and results in wavelength of 34.3 mm in air. Both the scatterer and probe particles are
1.715 mm in diameter, as they were chosen to have diameter λ/20 for direct comparison with the
case detailed in the Section 3.2 For polystyrene particles in air, the density of the particle is much
larger than the density of the surrounding air (ρPS = 1050 kg/m3

� 1.225 kg/m3 = ρAIR), and
according to Equation (4b) the dipole scattering factor is approximately unity ( f1 ≈ 1). Similarly, the
adiabatic compressibility of the air is much larger than the compressibility of the polystyrene particle
(κPS = 172 TPa−1

� 694 MPa−1 = κAIR), and therefore the particle can be taken as rigid in this case,
with monopole scattering coefficient close to unity ( f0 ≈ 1), according to Equation (4a). To observe
the effect of monopole and dipole coefficients, we show the normalized potential and force values
both at the nodal line (hn = 0) in Figures 4 and 5 for the antinodal case (hn = λ/4). The monopole
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scattering dominates the secondary force near the antinode, while the dipole scattering dominates
near the node [17]. The potential maps in Figures 4a and 5a were plotted using Equation (12), and the
arrows show the direction of the force, which points away from the minima, towards the maxima, as
the particles have positive contrast factor ΦAC. The force was obtained by numerical differentiation,
and a logarithmic scaling was used for plotting.

Table 1. Parameters used for the simulation of rigid particle in air case.

Symbol Description Value

f Frequency 10 kHz
c0 Speed of sound in air a 343 m/s
λ Wavelength in air 34.3 mm
ρ0 Density of air 1.225 kg/m3

as, ap Radius of scatterer and probe particle (λ/20) 1.715 mm
ρs, ρp Density of scatterer and probe particle b 1050 kg/m3

cs, cp Speed of sound of scatterer and probe b 2350 m/s
f 0,s, f 0,p Monopole scattering coefficient c 0.99998
f 1,s, f 1,p Dipole scattering coefficient d 0.99825

p0 Acoustic pressure amplitude 50 kPa
ΦAC Acoustic contrast factor 2.4974

a From [35]. b From [36]. c,d Calculated according to Equations (4a) and (4b).
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Figure 4. Simulation results for a polystyrene particle in air, when the nodal line aligns with the
scatterer position (hn = 0). (a) Normalized secondary acoustic potential, and radiation force (arrows
in logarithmic scale) (b) Normalized secondary radiation force along direction z. (c) Normalized
secondary radiation force along direction %.

In the two cases, the normalized potential map has a similar pattern and magnitude. This is due
to both the monopole and dipole scattering coefficients being approximately unity for a polystyrene
particle in air, which can be considered rigid. The normalized secondary radiation force follows similar
behavior along the z direction and r direction for the nodal and antinodal cases, the only significant
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difference observed for the near-field of the z direction. Moreover, it shows some directivity as in the z
direction being a magnitude stronger than along the radial direction.Micromachines 2019, 10, x  12 of 18 
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Good agreement between theory, 2D model and 3D model can be observed for both nodal and
antinodal cases, in both directions, however, the 2D model fails to capture the magnitude of the
interaction force in the vicinity of the antinodal line, along z direction (Figure 5b). We note here
that the three results (theory, 2D and 3D) include different approximations and therefore differences
are expected. The theoretical results consider only monopole and dipole scattering mechanisms;
however, quadrupole or higher order scattering are important as well [27]. The 2D model does not
put a limitation on the number of multipoles but neglects re-scattering effects. Finally, the 3D model,
captures arbitrary number of poles (depending on the fineness of discretization) and also accounts
for re-scattering. For the radial direction, near the antinodal line, the error between the near-field
approximation and the theoretical values is below 50% for normalized distances of less than 0.3. The
far-field approximation converges much faster towards the theoretical solution: less than 12% error for
normalized distances above 0.65. For the nodal line, the error between the near-field approximation
and theoretical values is less than 20% for normalized distances below 0.3. The error of far-field
approximation goes below 10% when the normalized distance is larger than 0.65.

The secondary radiation force along the radial direction can be large enough to influence the
relative position of the particles. It has a crossover point around 0.63λ separation distance along the
nodal line; particles closer than this exhibit an attractive (negative) force, while above the crossover
point, the force is repulsive (positive). Due to this sign distribution of the force, the 0.63λ point is an
unstable equilibrium, particles are always forced to move away from it.

As a summary, for the rigid particle in air, the two simulation results are in good agreement with
the theory, except for forces along the z direction near an antinodal line. However, as the particles
naturally agglomerate at the nodes, the secondary radiation force can be obtained using a simplified
model and neglecting re-scattering effects.
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3.2. Polystyrene Particle in Water

A different investigation can be carried out when placing the polystyrene particle in water. As
the main goal of microfluidic lab-on-chip devices is miniaturization, the operating frequency has
to be increased, therefore the chosen 10 MHz reflects this typical average value [3,37]. For further
parameters, refer to Table 2. The resulting wavelength is 148 µm, and the particle diameter 7.4 µm.
More interesting to note the change in the scattering coefficients: the similarity in compressibilities of
the particle and water (κPS = 172 TPa−1, κWATER = 456 TPa−1) results in f0 = 0.623. More significant
is the drop in the dipole scattering coefficient: due to the similarity of the densities (0.998 and 1.05
g/cm3), f1 ≈ 0.03� 1. The potential maps in Figures 6a and 7a were again plotted using Equation (12),
and the arrows show the direction of the force, again pointing away from the minima towards the
maxima, as the particles have positive contrast factor ΦAC.
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Figure 6. Simulation results for a polystyrene particle in water, when the nodal line aligns with the
scatterer position (hn = 0). (a) Normalized secondary acoustic potential, and radiation force (arrows
in logarithmic scale) (b) Normalized secondary radiation force along direction z. (c) Normalized
secondary radiation force along direction %.

For the polystyrene particle in water, the potential map around the node and the antinode has
a significantly different shape and magnitude. This is due to the difference in monopole and dipole
scattering coefficient [17]. Referring to Equation (12), each term of the potential has either a dipole
coefficient, f 1, or a sin(khn) expression. At the nodes sin(khn) is zero, and the dipole coefficient is much
less than unity, as mentioned before, leading to the potential an order of magnitude smaller near the
nodes compared to the antinodes. This difference is even more pronounced for the force along the
radial direction: here the difference exceeds two orders of magnitude. Along z direction, the force is
repulsive for the nodes, attractive for the antinodes, but again as its magnitude is much smaller than
the primary force, no effect on particles is expected.

For the antinodal case excellent agreement between theory and the two types of simulations can
be observed. This shows that the theoretically assumed monopole and dipole approximation already
successfully captures the secondary radiation force with small error. Furthermore, the good agreement
between 2D and 3D models suggest that in this case, the re-scattering effects also contribute only
slightly to the secondary radiation force. For the radial direction, the near-field approximation shows
similar performance as for polystyrene in air, the error goes below 50% only when the normalized
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distances are less than 0.3. The far-field approximation shows slower convergence in this case: the
error is 40% even at 0.85 distance.Micromachines 2019, 10, x  14 of 18 
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secondary radiation force along direction %.

However, for the nodal case, the three results can be different up to 50% error. The magnitude
of the theoretical values is the largest, followed by the 2D model and the 3D model, seemingly the
re-scattering events decrease the secondary force, as also noted by Doinikov for a bubble in water
case [27]. The near-field and far-field approximations shown good agreement with the various models
and the theory (Figure 6c).

Although the particles both in air and water agglomerate at the nodal lines (ΦAC > 0), we believe
it is important to investigate the secondary radiation force for other cases. In a continuous flow
microfluidic device the particles enter at random positions and can be near an antinodal line when they
first experience the acoustic field. In addition, as Figure 7 suggests, in this case the attractive secondary
force (which is two orders of magnitude higher than around the nodal line) can trap particles together,
negatively affecting device performance [38].

Table 2. Parameters used for the simulation of a polystyrene particle in water case.

Symbol Description Value

f Frequency 10 MHz
c0 Speed of sound in water a 1480 m/s
λ Wavelength in air 148 µm
ρ0 Density of water 998 kg/m3

as, ap Radius of scatterer and probe particle (λ/20) 7.4 µm
ρs, ρp Density of scatterer and probe particle b 1050 kg/m3

cs, cp Speed of sound of scatterer and probe b 2350 m/s
f 0,s, f 0,p Monopole scattering coefficient c 0.623
f 1,s, f 1,p Dipole scattering coefficient d 0.034

p0 Acoustic pressure amplitude 50 kPa
ΦAC Acoustic contrast factor 0.6734

a From [39]. b From [36]. c,d Calculated according to Equations (4a) and (4b).
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3.3. Properties of the Secondary Radiation Force

It is important to emphasize two properties of the secondary radiation force: it is neither
antisymmetric nor central in a general case. As the two acoustic fields re-scattered by the source and
probe particles are usually different (unless they are positioned such that the background pressure field
is in phase at these locations), the effect of the two particles on each other is not interchangeable, or the
secondary radiation force is not antisymmetric. To illustrate this, we used two polystyrene particles
in water (with the parameters presented in Table 2 and h = 20 µm) and plotted the magnitude of the
secondary radiation force on both particles, while we moved the probe particle on an arc of radius
λ/5, from θ = 0 to θ = π. To obtain the secondary radiation force on the scatterer particle (i.e., when
the roles of the two particles are interchanged) we shifted both the particles and the external field by
−λ/5 cosθ in the z, and by −λ/5 sinθ in the % direction, so in this case the probe particle was located
at the origin and acted as if it was the scatterer. As Figure 8 shows, the magnitude of the two forces
differ at each point of the arc, except the two intersection points of the curves.Micromachines 2019, 10, x  15 of 18 
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Figure 8. The magnitude of the secondary radiation force on the probe particle (blue) and on the
scatterer particle (red) as a function of the polar angle (θ). For an antisymmetric force, the magnitude
on the scatterer and the probe would be the same for any polar angle.

To show that the secondary radiation force is not central, i.e., the force does not usually act along
the axis of the two particles, we performed the following examination: the probe particle was again
moved on the same arc as before, and now the angle between the secondary force and the radial unit
vector was recorded. For central forces, this angle is either zero or π, depending on whether the force
is repulsive or attractive. However, as shown in Figure 9, the force acts along the axis of the particles
only at three locations (marked by crosses). In general, the secondary force is of arbitrary angle with
respect to the axis of the particles, and can be even perpendicular to it (marked by circles).

Specifically, for hn = 20 µm (Figure 9b), as the scatterer is not at either the nodes or antinodes
(h , 0 and h , λ/4), the force does not even act along the axis of the particles in the transversal plane,
but has a polar non-zero component (for θ = π/2 the angle is neither zero or π).

The same test was also carried out when the scatterer particle was aligned with the natural
trapping pressure node (hn = 0, Figure 9a). In this case, the force is central when the probe particle is
along the transversal plane (θ = π/2), as shown by the cross in the middle of Figure 9a. We marked
again the positions corresponding to perpendicular secondary force to the particle axis by red circles.
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Figure 9. The angle between the secondary radiation force and the axis of the particles, as a function
of the polar angle (θ), (a) corresponds to hn = 0 µm, (b) shows hn = 20 µm case. This angle should
either be zero or π, when the force is perfectly central. These points are marked with crosses. Circles
represent perpendicular secondary forces to the particle axis.

4. Discussion and Conclusions

In this paper, we presented two finite element models to obtain the secondary radiation force
between spheres suspended in air or water. For the polystyrene particle in air, the investigation
revealed no significant difference between the analytical and numerical approaches. However, for
polystyrene particle in water, the difference between theory and models can be up to 50%. As the
analytical equation results in the largest magnitude of force, it can be used for safe overestimation of the
secondary interaction force. The 3D model, including re-scattering between the two particles, showed
no difference to the simpler 2D model for most cases; therefore, the 2D axisymmetric model can be
used for fast determination of acoustic radiation force, with sufficient precision. The only significant
difference was for the polystyrene particle in water case, when the scatterer is aligned with the node,
forces along both the r- and z-axis. Here all the theoretical, 2D and 3D models showed different results
with up to 50% variance, indicating the significance of the re-scattering effects in these cases. Moreover,
for the polystyrene in air, scatterer at the antinode case, a similar, but less pronounced difference could
be seen. For this case, along the z axis, the 2D model was not able to capture accurately the radiation
force for small separation distances (< λ/4); a full 3D model for small distances is required. When
there are only a few particles to be investigated, with large separation distances, even the 2D simulation
can be swapped for the simpler analytical pairwise force determination.
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The advantage of both these techniques is the easy implementation and simple adjustment to
parameter change. Moreover, the numerical method based on the tensor integral is not restricted to
particles much smaller than the acoustic wavelength and can be applied to particles with arbitrary
shapes and sizes. Computational requirement to achieve 1% convergence error or less was in the order
of seconds for the 2D model and in the order of tens of seconds for the 3D model. The presented
models can be complementary when theoretical equations are difficult to obtain, for example arbitrary
shaped bodies. Moreover, although the models were verified for a plane standing wave field they can
be easily extended to calculate the interacting forces in an arbitrary acoustic field.

A limitation of the technique that it cannot be applied directly for touching spheres, but the
surface-to-surface separation can be as low as 0.001λ for successful simulation. Viscous effects can
be incorporated within the model using a thermoviscous acoustics module for the acoustic field
simulations [40]. Moreover, investigation of streaming effects is possible by extending the model with
a laminar flow module for simulation of streaming velocity fields [36,41].

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-666X/10/7/431/s1,
Figure S1: Convergence analysis results when the scattering particle is aligned with the pressure antinode and
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aligned with the pressure node and the probe particle is along the z direction; Figure S3: Convergence analysis
results when the scattering particle is aligned with the pressure antinode and the probe particle is along the r
direction; Figure S4: Convergence analysis results when the scattering particle is aligned with the pressure node
and the probe particle is along the r direction; Figure S5: Convergence analysis results when the scattering particle
is aligned with the pressure node and the probe particle is along either the r or z direction; Figure S6: Convergence
analysis results when the scattering particle is aligned with the pressure antinode and the probe particle is along
either the r or z direction; Figure S7: Secondary radiation force when the scattering particle is aligned with the
pressure antinode and the probe particle is along the z direction; Table S1: Relation between number of degrees of
freedom and mesh scale parameter for the 2D mesh convergence analysis.
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