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Abstract: In this paper, we demonstrate that 20 µm microbeads can be preferentially assembled into
substrate trenches of similar width by employing a polymer (depletant) that induces the depletion
volume effect (depletion attraction). In previous works, we proved that this strategy is useful
to assemble mesoscale parts in a site-specific manner. Here, we show that it is also applicable
to assemble functional parts, such as fluorescent particles, into trenches engraved on the surface
of two- and three-dimensional template components. A convenient advantage of this strategy is
that it is independent of material properties for assembling mesoscale functional components into
desired patterns.

Keywords: self-assembly; mesoscale assembly; three-dimensional assembly; depletion volume effect;
excluded volume effect

1. Introduction

The assembly of small parts or components, which are not compatible with standard
photolithography-based fabrication technologies, onto a substrate to form desired patterns is a difficult
task that has been receiving considerable attention in recent years. The main widespread techniques
to assemble small components (i.e., microbeads) into regular patterns are microstamping [1,2] and
capillary- or template-based methods [3–7]. They have been used in several prospective applications
such as photonic crystals [8], micro lens array [9], display of structured color [10], micro/nano
lithography [11,12], and bio-separation/sensing [13,14]. In the microstamping approach, components
are first adhered typically on the convex part of the stamp, and then transferred by pressing onto a
substrate. In the capillary-based approach, a solution of suspended components is introduced into a
slit or a shallow channel, where they accumulate at the liquid–gas interface, forming a tightly packed
structure. To produce an arrayed pattern, either a patterned microchannel or dimples and trenches
made on the substrate, into which components are confined, is required. In addition, researchers
reported the way to spatially arrange colloidal particles without lithographic processes, namely by
using interparticle interactions in a nematic liquid crystal [15,16]. It has been proven that highly
ordered arrays can be readily formed with these methods, even though their applications have been
limited on planar substrates.

With recent advances of three-dimensional manufacturing techniques and apparatus,
a development of versatile methods for assembling small components onto three-dimensional surface
will be of particular interest in the fabrication of highly sophisticated devices [17–21]. Assembling on a
3D surface in a desired pattern may require the allocation of different material or the local modification
of the surface property. Furthermore, standard photolithographic processes were developed focusing in
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planar surfaces, making their application difficult when curves and facets are present. Recent additive
manufacturing techniques, such as stereolithography and fused deposition modeling (FDM), have
provided facile means to obtain 3D components with good resolution. They, however, are limited
for manufacturing employing single polymer materials. Thus, for patterning exogenous components
into desired locations using affinity-based principles, pre-patterning of different materials or surface
modification are still required. It is advantageous, therefore, to employ a three-dimensional (3D)
self-assembly approach for assembling heterogeneous components, using a method not dependent on
material’s physical properties.

In the field of colloid science, control of dispersion and aggregation of colloidal particles
is important, and interactions between them and with other macro-objects have been studied
extensively [22]. The van der Waals force and electrostatic interaction are major forces that depend on
the physical properties of the material. In contrast, the excluded volume effect (or depletion interaction)
has a different origin. This interaction becomes apparent when a large number of nanoparticles
or polymer molecules are present in a medium containing larger suspended components. In this
situation, a region in which those nano-objects cannot exist, within the thickness equivalent to their
radius, appears around the surface of large components due to the steric repulsion (excluded volume).
Since this region is as almost a pure solvent, the chemical potential is greater than the surrounding
bulk polymer solution. Consequently, the contact of large components is enhanced to reduce the total
excluded volume due to mutual overlapping to lower the free energy of the system [23,24].

The excluded volume effect is unique in a sense that it does only depend on the number and
spatial arrangement of molecules/components present in the system. Up to now, the thermodynamic
characteristics of this effect have been verified experimentally to assemble components up to several
micrometers. Dinsmore and Yodh [25] investigated not only the aggregation control among them, but
also the reason behind their preferential confinement at the substrate’s groove’s corner. At this region,
the surface area in contact with the component increases, enhancing attraction due to the excluded
volume effect when compared to a flat plane or an edge of the protruded structure. By carefully
choosing nano-objects’ molecular size and concentration, therefore, tuning the extent of the interaction
so that components are specifically located at the recessed part of the substrate becomes possible.

In the past literature, polymers with molecular weight of 10,000 or less and gyration radius
lower than 4 nm, or nanoparticles of up to 100 nm in size, have been employed as nano-objects
(depletants) for assembling components of ~1 µm [25–28]. The same strategy is not effective, however,
for components larger than tens of µm [29] since the mechanism that drives collision between particles
also changes. For components about 1 µm in size, the Brownian motion acts as a random driving force,
carrying particles into close proximity, while for meso-scale components, it becomes less effective and
forced agitation, such as tumbling or convection, is required. Previously, we showed that by using
polyethylene glycol (PEG) with a molecular weight of several megadalton (gyration radius > 100 nm),
microfabricated components of up to 100 µm can be coupled or allocated into specific places by shape
complementarity [29,30].

In this study, using the same principle, we show that functional exogenous components with
the size of several tens of µm can be specifically allocated inside grooves engraved on a template
component. The components were immersed into a PEG aqueous solution, which was stirred for a long
time. The extent of the bonding force can be readily controlled by adjusting the concentration of the
polymer. Using this approach, we show that fluorescent particles, as a functional model component,
can be assembled into trenches engraved on a sub-millimeter-sized 3D template fabricated with
micro stereolithography. As this method does not depend on material properties of the assembled
elements, we expect that it can be applied in the allocation of various hard and soft components such
as semi-conductor, LED, cells, and gel-particles on 3D templates.
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2. Principle and Methods

2.1. Principle and Design

The principle and fundamental design of the present experiment is depicted in Figure 1. Figure 1a
shows a general representation of colloidal particle attraction based on the depletion volume (Vdep)
effect. In the environment where the depletant is present at a high concentration around spherical
particles, two or more particles aggregate, creating regions of overlapping Vdep. The extent of reduction
of Vdep (∆Vdep) is represented in the figure by the cross hatched area. On the other hand, for the
interaction between a sphere and a flat surface (Figure 1b, left), reduction of Vdep is greater when
compared to the previous case. Furthermore, at the corner of a concave trench (Figure 1b, right),
the overlapping volume is more than two times greater than the sphere-flat surface interaction case.
Thus, by adjusting the strength of the depletion attraction and agitation, these particles’ exclusive
accumulation into concave trenches becomes possible [25].
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Figure 1. Schematic representation of the depletion volume effect. (a) Aggregation of spherical beads.
(b) Attachment on flat surface (left) and confinement in the trench (right) of beads. Nano-objects
(depletants) are present in abundance in the surrounding medium, but only one is depicted in the figure.

2.2. Fabrication and Experimental Procedure

All template components used in this study, presented in Figure 2a–c (also see Supplementary
Materials Figure S1), are designed using CAD software (Rhinoceros 5.0; AppliCraft, Tokyo, Japan).
The data, converted to bitmap image slices with spacing of 10 µm by employing a data preparation
software (Magics, Materialise Japan, Tokyo, Japan), are processed by a 3D stereolithography tool
(Acculas SI-C1000, D-MEC, Tokyo, Japan) with epoxy-based UV curable resin (KC-1257, D-MEC, Tokyo,
Japan). After completion of consecutive layering and exposure steps, a glass substrate, on which
stereolithography products are present, is cut into a smaller piece by a diamond cutter. Then, this piece
is put inside a 50 mL plastic tube and immersed in a solvent (EE-4210, Olympus, Tokyo, Japan) for at
least 30 min to remove uncured resin. After replacing the solvent with ethanol, an ultrasonic wave is
applied in the bath for 10 min to release the fabricated parts from the glass substrate. Finally, ethanol is
replaced by Milli-Q water to store the template components. The scanning electron microscope (SEM)
images are, thereafter, obtained by VE-8800 (Keyence, Osaka, Japan).

Three different template types with trenches with designed patterns are fabricated for assembling
the experiment of 20 µm fluorescent polystyrene beads (Fluorobrite YG Microspheres 20 µm with
20% C.V., Polysciences, Inc., Warrington, PA, USA). First, an appropriate PEG concentration for the
present assembling system is identified by using a simple trenches’ pattern: Four straight trenches
of 22 µm width engraved into a ~0.3 mm × 0.3 mm × 0.1 mm template (Figure 2a). Based on the
concentration determined, assemblies of the beads onto more complex templates with dimensions
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of 1.38 mm × 0.6 mm or 1.52 mm× 1.12 mm, as depicted in Figure 2b, are tested. To evaluate if the
procedure is possible on 3D surfaces, a 0.4 mm cubic template with different trenches’ patterns on five
out of six faces is fabricated. The trench cannot be formed on the bottom face owing to the limitation
of the manufacturing principle. These template components were used in the following assembling
experiments after being released from the substrate.
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Figure 2. Design and real images of template components fabricated by micro stereolithography.
(a) Square template with four straight trenches used for determining polyethylene glycol (PEG)
concentration. (b) Rectangular flat plates with designed trenches (alphabetic letters and a game
character). (c) A cube structure of different faces on five sides.

The assembling procedure is carried out by immersing, one or several template parts together
with ~105 polystyrene beads (20 µm), into an aqueous solution of 4MDa PEG and molar concentrations
of 0, 5, 50, or 500 nM (weight concentrations of 0, 0.02, 0.2, 2 mg/mL) in a 0.2 mL plastic PCR tube.
Sodium dodecyl sulfate (SDS), an anionic amphiphile, at a concentration of 0.5% (w/w), is included in
the solution to avoid hydrophobic interaction among beads and templates. This system is agitated by
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stirring the tube with a rotational mixer (Magic Mixer TMM-5L, Kenis, Osaka, Japan) at 30 rpm for
designated time periods. The assembly of beads in trenches is, afterwards, inspected by an inverted
microscopy (Nikon-Ti, Tokyo, Japan) and placing the flat face of the PCR tube down on the stage.
The flow of the experimental procedure is illustrated in Supplementary Materials Figure S2.

3. Results

3.1. Dependence on the Polymer Concentration

First, the assembling experiments are conducted on four square plates, depicted in Figure 2a,
with PEG at different concentrations (cPEG). Figure 3 shows typical microscope images of them after
30 min agitation. For a solution with no PEG, only a small number of beads are correctly assembled
in trenches (Figure 3a). They are merely sitting in trenches by chance, so that they easily came in
and out of trenches during agitation. From Figure 3b–d it is possible to observe that the number of
allocated beads increase with respect to cPEG varying from states where trenches are not fully filled
(cPEG = 5 nM, Figure 3b), almost fully filled (cPEG = 50 nM, Figure 3c), and almost fully filled plus beads
aggregates on their surroundings (cPEG = 500 nM, Figure 3d). At higher concentration, the depletion
attraction become so strong, that 20 µm beads even remains attached on flat surfaces. Above this PEG
concentration, beads in the medium aggregate spontaneously [29], so that localized assembly cannot
be achieve.

The average number of beads confined in the trench region per template is plotted in Figure 3e.
As the trench’s length is 200 µm, only 10 beads of 20 µm diameter can be packed in one line; however,
due to the slight shrinkage of resin in manufacturing, only 9 beads in one line could be packed (e.g.,
Figure 3c; top line). Thus, 36 beads are required to tightly and completely fill all four trenches. At cPEG

= 0 and 5 nM, the average numbers of confined beads among four plates are 13.5 and 26.5, respectively,
with relatively large variation (C.V. ~ 22% and 10%, respectively). Meanwhile, at cPEG = 50 nM, the
average number of confined beads reaches ~29 (81% of the complete packing) and C.V. is reduced to ~5%,
indicating reproducible results. We decided to employ cPEG = 50 nM in all of the following experiments.
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Figure 3. Microscope images of square templates with straight trenches agitated with polystyrene
beads. Concentrations of 4MDa PEG in solutions are (a) 0 nM, (b) 5 nM, (c) 50 nM, and (d) 500 nM,
respectively. Scale bars = 100 µm. (e) Average number of the beads confined in trenches among four
template components. Data at cPEG = 500 nM were omitted because of aggregation.

3.2. Assembly of Beads into the Designed Planar Trenches

Using the experimental condition determined in the previous experiment, new assembly of the
same beads are conducted onto the template of more complex designed patterns. Figure 4a,b shows
the confinement of beads after ~3 day of agitation, conducted in order to obtain high coverage of them.
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At the end of the experiment, aggregation on the flat area, especially around the letters Z, U, L, A,
and B, can be seen in the bright field image (Figure 4a). We speculate that it happens because of the
chance of mutual encountering of beads increases during a long agitation procedure. However, after
the template is picked up by tweezers and carefully and gently shaken in the solution, aggregated
beads on the flat region are readily dispersed. As a result, it is possible to recognize the shapes of all
letters in the fluorescence imaging (Figure 4b), even though an unfilled area still remains.

In a similar experiment, we can confine beads into trenches forming a game character shape
after ~5 days of agitation (Figure 4c). After assembly, the template is simply taken out of the PEG
solution and dried in the air at room temperature. SEM observations show that monodisperse beads
are allocated only in trenches (Figure 4d,e). Although no concentration’s variation tests are done for
this experiment, it is believed that the agitation time, required to cover all trenches distributed over a
large area, can be reduced by increasing the bead concentration.
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microscope image and (d,e) SEM images of beads assembled to the pattern of a character.

3.3. Assembly of Beads into the Trenches on 3D Structure

Using an identical experimental condition to previous experiments, we conducted the assembly of
the same beads onto a template with trenches in five faces of a 0.4 mm cube to prove the applicability
of this approach into 3D templates. During agitation, the cube illustrated in Figure 2c tumble in a tube
together with the beads. Afterward, the cube is taken out from a tube and placed in a petri dish with
PEG solution for observation. Figure 5 shows the confinement of beads in trenches on five faces after
20 h of agitation. All five faces are observed under an inverted microscope by rolling with tweezers.
In both bright field and fluorescent images, localized assembly of fluorescent beads in the shape of
five unique faces can be clearly identified. Moreover, these beads did not come off when the cube
was rotated.

In this and previous experiments, we conducted agitation for a long time (>1 day) to confirm that all
trench area is filled by beads. However, we found that more than 50% of the trench area is already filled
at 1.5 h in the separate experiment (Supplementary Materials Figure S3). This observation indicates as
the assembly proceeds, the chance of filling the remaining space becomes smaller. In addition, we
assume that increasing the concentration of beads will accelerate assembling. However, as a side
effect, too many beads easily aggregate and deteriorate the assembling results as well as the visibility.
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These issues arise from the stochastic nature of the self-assembling system, which has to be solved in
the future.
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4. Conclusions

Here, we demonstrated the assembly of 20 µm fluorescent beads into the trenches formed on
template components. In all cases (both for simple and complex 2D design patterns as well as 3D
surfaces), the resulting images have shown good quality of the process. This feature’s main advantage
is the surface-independent characteristic that arises from changing in the allocating mechanism from
surface tension/electrostatic forces to the depletion volume effect. The method can also be applied to
components made of different material properties, since any solid with non-specific interaction can be
assembled by simply adding depletant in the environment. The assembly can also be controlled by
altering the concentration of depletant. The present approach can be applied to weak and reversible
assemblies in a material-independent manner, such as assembly of soft materials and biological cells.
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is needed to further expand the possible unexpected applications [30].
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