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Abstract: This paper presents a shear-mode piezoelectric current sensing device for two-wire power cords
in electric power grids. The piezoelectric heterostructure consists of a cymbal structure and a permalloy
plate. The cymbal structure is constructed from a permanent magnet, a brass cap, and shear-mode
piezoelectric materials. The permalloy plate concentrates the magnetic field generated by the two-wire
power cord on the magnet. Under the force amplification effect of the cymbal structure, the response of
the device is improved. A prototype has been fabricated to conduct the experiments. The experimental
average sensitivity of the device is 12.74 mV/A in the current range of 1–10 A with a separating distance
of d = 0 mm, and the resolution reaches 0.04 A. The accuracy is calculated to be ±0.0177 mV at 1.5 A
according to the experimental voltage distribution. The current-to-voltage results demonstrate that the
proposed heterostructure can also be used as a magnetoelectric device without bias.

Keywords: piezoelectric current sensing device; two-wire power cord; cymbal structure; force
amplification effect; sensitivity

1. Introduction

Electricity monitoring of power lines based on current sensing devices is of great significance to
improve the security and reliability of the electric power systems. The traditional current sensing devices,
such as Hall sensors [1], magnetoresistance sensors [2,3], and current transformers [4], have been
investigated. But there are some limitations for these devices. The Hall sensors require external power
and place high demands on signal conditioners due to the weak Hall voltage. Magnetoresistance sensors
also need external power supply and exhibit large thermal drifts. Current transformers have the
disadvantage of magnetic saturation and relay maloperation might be induced. Magnetoelectric (ME)
structures based on magnetostrictive materials and piezoelectric materials have been reported for
current measuring [5–8], but the devices need to encircle the wire in operation, which may limit their real
applications. Furthermore, most of the previously proposed ME structures require DC bias magnetic
field, and the demand for DC bias magnetic field greatly increases the occupied space. Cantilever-based
non-invasive piezoelectric current sensors are proposed [9–11]. The devices are designed to resonate at
the power frequency (50 Hz or 60 Hz) to obtain maximal responses. However, due to the nonlinearity
of the piezoelectric materials [12], it is difficult to maintain the resonant state of the devices for
varying current amplitudes, and non-resonant structures are more suitable for current sensing.
Recently, non-resonant piezoelectric current sensing devices were developed for a single wire in
electric power grids [13,14], which operate non-invasively and exhibit high linearity, but the proposed
structures are not suited for a two-wire power cord carrying identical currents in opposite directions.

In the past several years, the shear effect of the piezoelectric materials has attracted great
attention due to the high piezoelectric constant and electromechanical coupling coefficient [15–21].
Ren et al. [15] presented a shear-mode piezoelectric vibration energy harvesting device with a maximum
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output power of 4.16 mW. Carrera et al. [16,17] analyzed multilayered piezoelectric structures in
shear-mode using finite element models (e.g., LW models with different theory approximation orders).
Liu et al. [21] theoretically investigated the ME effect of a magnetoelectric laminated composite
working in shear–shear (S–S) mode, which exhibits stronger ME coupling coefficients. In this paper,
a shear-mode non-resonant piezoelectric heterostructure for current sensing of two-wire power cords is
designed. The brass cap, the shear-mode piezoelectric materials, and the permanent magnet constitute
a cymbal structure, which results in force amplification and potential enhancement of the response to
the currents. Theoretical study was conducted, and a prototype was fabricated to investigate the output
characteristics of the device. The least squares method is used to analyze the linearity, and the accuracy
is investigated for a given electric current. The prototype exhibits high linearity and sensitivity, which
are favorable for current sensing in electric power grids. The experimental results verify the theoretical
model and the feasibility of the proposed heterostructure. Meanwhile, a conversion factor of 0.77 V/A
is obtained for the current-to-voltage conversion experiment, which indicates the latent advantages of
the proposed device in practical applications compared with the magnetoelectric laminated composites
using DC bias magnetic field [21–24].

2. Structure and Analysis

Figure 1 shows the schematic diagram and photograph of the proposed piezoelectric
heterostructure. The device comprises a cymbal structure and a permalloy plate. The cymbal structure
is constructed from a magnet, two shear-mode piezoelectric plates, and a brass cap. The piezoelectric
ceramic Pb(Zr,Ti)O3 (PZT5H) is chosen as the material of the piezoelectric plates. The dimension of
each PZT5H plate is 1 mm (dp) × 6 mm (wp) × 3 mm (lp). The material of the permanent magnet
is NdFeB (N35), and the size of the magnet is 5 mm (dm) × 6 mm (wm) × 22 mm (lm). The magnet
also acts as a retaining plate for the cymbal structure. Under the action of the AC magnetic field
produced by the two-wire power cord, the magnet is acted upon by an AC magnetic force due to the
nonuniform AC magnetic field acting on the magnet. The magnetic force results in amplified shear
stress on the piezoelectric plates. Then, a voltage is produced, due to the piezoelectric effect of the
piezoelectric material.
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The magnetic force on the magnet Fm can be expressed as

Fm = σm

x

Sm

∆HdSm, (1)

∆H = H1a −H1b, (2)

where σm is the magnetic charge density, σm = Br [25], Br is the remnant flux density, Sm is the surface
area of one pole of the magnet, and H1a and H1b are the magnetic fields on the bottom and top surfaces
of the magnet, respectively. Fm can be expressed as a power series of the electric current I, and the
coefficients of the power series can be determined by fitting curve. Assuming that the vertical force (in
1-direction) acting on one piezoelectric plate by the magnet is Fm/2, the vertical force acting on the
magnet by one piezoelectric plate is the same in amplitude and opposite in direction (−Fm/2).

Figure 2 shows the force Ft exerted by the brass cap on one piezoelectric plate. Based on the
decomposition of the force Ft, the following equation is obtained

Fv = −
Fm

2
(3)
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Figure 2. The force Ft exerted by the brass cap on a piezoelectric plate.

The shear force Fs (in 3-direction) can be expressed as

Fs = −
Fv

tgϕ
, (4)

where tgϕ is determined by

tgϕ =
2(h− dp)

lm − 2lp − lt
, (5)

where h is the distance between the magnet (N pole) and the top part (inner surface) of the brass cap,
dp and lp are respectively the thickness (in 1-direction) and length (in 3-direction) of one piezoelectric
plate, lm is the length of the magnet (wm and dm are respectively the width and the thickness of the
magnet), and lt is the length of the top part of the brass cap. Then, the shear stress acting on one
piezoelectric plate is

Ts =
Fs

wplp
= −

Fv

wplptgϕ
, (6)

where wp is the width of one piezoelectric plate. Based on piezoelectric constitutive equations in
shear-mode [26], the electric field in 1-direction of the piezoelectric material is given by

E1 = −h15S5 = h15
Fv

wplptgϕcD
55

, (7)
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where h15 is the shear stiffness constant, and cD
55 is the elastic stiffness coefficient (at constant D1) in

shear-mode. In open-circuit condition, the electric displacement D1 = 0. Thus, the output voltage of
one piezoelectric plate is obtained as

V1 = E1dp = −
Fmh15dp

2wplptgϕcD
55

(8)

Based on Equation (8), it is obvious that the voltage is proportional to the magnetic force Fm for
determined material and geometric parameters of the device, which depends on the magnetic field
magnetic field gradient ∆H on the NdFeB magnet. For current-to-voltage conversion application,
the conversion factor can be defined as

γ =
V1

Icoil
= −

Fmh15dp

2wplpIcoiltgϕcD
55

(9)

If the output voltage exhibits a linear response to the input current of the coil, the conversion
factor λ will show a flat response to the current.

3. Results and Discussions

A prototype was fabricated to study the current sensing performances of the device. The fabrication
process is as follows. (1) The brass cap, the piezoelectric plates (PZT5H), the permalloy plate, and the
permanent magnet (NdFeB) were dipped in propanone to clean. (2) The brass cap, the piezoelectric
plates, and the NdFeB magnet were bonded to constitute the cymbal structure using insulate epoxy
adhesive, and the cymbal structure was naturally dried in the air. (3) The permalloy plate was bonded
with the cymbal structure. The prototype was then used to current sensing for a two-wire power cord.
The configuration and the experimental set-up for the presented device are illustrated in Figure 3 (the
power cord carries opposite currents). The electric currents of the two-wire power cord were generated
by a current generator, and the output voltages were monitored by a lock-in amplifier. The current
sensing device was placed above the two-wire power cord. The permalloy plate concentrates the
magnetic field produced by the two wires of the power cord to the NdFeB magnet, which can potentially
enhance the response of the device to electric currents. In Figure 3, the parameter d represents the
distance between the bottom surface of the permalloy plate and the top surface of the power cord.
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Figure 4 shows the output peak voltage versus the current in the power cord (f = 50 Hz). It can
be seen from Figure 4 that the experimental voltage increases from 13.91 mV to 128.59 mV when the
current is increased from 1 A to 10 A for d = 0 mm, and the average sensitivity is 12.74 mV/A in the
given current range (1–10 A). For d = 3 mm, there is an obvious drop for the induced voltages, and the
voltage varies from 7.23 mV to 59.48 mV with an average sensitivity of 5.81 mV/A. The theoretical
voltages obtained from Equation (8) for 4 A, 6 A, and 8 A at d = 0 mm were plotted in Figure 4
(respectively 60.5 mV, 88.1 mV, and 114.2 mV), which validate the developed model. In order to analyze
the linearity of the proposed device, the least squares method was adopted. The equation of the fitting
curve can be expressed as

V = aI + b, (10)

where a is the slope and b is the intercept of the equation. Using the experimental data in
Figure 4, the slope of the equation a = 12.82077 for d = 0 mm and a = 5.785861 for d = 3 mm.
Correspondingly, the intercept b = 1.546273 for d = 0 mm and b = 1.548193 for d = 3 mm. The correlation
coefficients are 0.999897 and 0.999945 for d = 0 mm and d = 3 mm, respectively. After plotting the
fitting curves in Figure 4, the linearity of the proposed device is calculated by

δ =
∆Vmax

Vmax
× 100%, (11)

where ∆Vmax is maximal deviation between the experimental results and the fitting results, and Vmax

represents the full-scale output of the device. The corresponding results are 0.9% and 0.67% for d =

0 mm and d = 3 mm, respectively. Compared with the resonant structures, the high linearity makes the
presented device very suitable for current sensing in electric power systems.
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The current remains unchanged at 1.5 A (f = 50 Hz). Figure 5a plots the induced experimental
voltage at different times. As can be seen from Figure 5a, the voltage changes with time. The average
voltage is 20.4 mA (measurement number n = 120) in the given time range (0–1200 s). The histogram of
the voltages is shown in Figure 5b. It can be seen from Figure 5b that the voltages approximately obey
normal distribution. Therefore, the accuracy of the device for current sensing can be calculated by
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A = v±
4σ
√

n
, (12)

where ν is the systematic error, σ is the standard deviation, and ±4σ/
√

n represents the uncertainty.
If we do not take into account the systematic error, the accuracy of the device is calculated to be
±0.0177 mV.
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A small current step (∆I = 0.04 A, f = 50 Hz) was applied in the two-wire power cord. Figure 6
shows the induced experimental voltage versus time for d = 0 mm. As can be seen from Figure 6,
by adjusting the current amplitudes within 140 s, the output voltage exhibits a step change. It is clear
that a current change (∆I) of 0.04 A can be distinguished. We predict further resolution improvement
could be achieved by replacing the PZT5H with shear-mode PMN-PT single crystal, which has a higher
piezoelectric coefficient d15.
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A copper wire coil was wound around the permalloy plate of the prototype, and a current of
40 mA–400 mA (Iin) was applied in the coil for current-to-voltage conversion. The experimental output
peak voltage increases from 33.18 mV to 270.85 mV with approximately linear response to the current
at the low-frequency of 1 kHz, as shown in Figure 7. It also can be seen from the inset of Figure 7 that
the factor λ exhibits an approximate flat response. It varies in the range of 0.68 V/A to 0.83 V/A, with
an average value of 0.77 V/A. The results show that the heterostructure has the potential to produce
large magnetoelectric effect without using magnetostrictive materials and bias magnetic field [27,28].
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The inset indicates the conversion factor in the current range of 40 mA to 400 mA.
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4. Conclusions

In this paper, a non-resonant piezoelectric current sensing device with high resolution is proposed,
which possesses the advantages of passivity, low cost, and simple structure. The device can operate
non-invasively for a two-wire power cord carrying opposite currents. The sensitivity of the structure is
improved due to the force amplification effect of the cymbal structure and the concentration effect of the
permalloy plate. A theoretical model has been developed and validated by the experiments. A large
current sensitivity of 12.74 mV/A (d = 0 mm) and a high linearity of 0.67% (d = 3 mm) are obtained.
The experimental current-to-voltage results demonstrate the potential of a large magnetoelectric effect
of the proposed piezoelectric device at low-frequency applications.
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