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Abstract: A multifunction detection sensor for hydraulic oil contaminants based on a microfluidic
chip is proposed, which consists of double solenoid coils and a straight microchannel. The inductance
detection model of metal particles and capacitance detection model of nonmetal particles are
constructed theoretically. In order to further improve detection sensitivity, experiments of effects
of silicon steel sheets on the sensitivity of detection are carried out. Experimental results show
that the silicon steel sheets can significantly improve the detection sensitivity of metal particles.
The inductance amplitude and signal-to-noise (SNR) of iron particles ranging from 60–130 µm and
copper particles ranging from 120–180 µm can be increased by at least 7.0–2.4 and 4.5–2.0 times,
respectively. We demonstrate the successful detection of 30 µm iron particles and 90 µm copper
particles using double solenoid coils with silicon steel sheets. In capacitance detection experiments,
the silicon steel sheets can improve the sensitivity of capacitance detection, but the improvement
effect is not obvious. We demonstrate the successful detection of 140 µm water droplets and
240 µm bubbles using double solenoid coils with and without silicon steel sheets. The capacitance
amplitude and SNR of detecting water droplets ranging from 140–150 µm and bubbles ranging from
240–250 µm can be increased by 37.4–21.9% and 18.5–8.0% using double solenoid coils with silicon
steel sheets, respectively.

Keywords: oil contaminant; solenoid coil; multifunctional sensor; microfluidic chip

1. Introduction

Oil contamination has become one of the most important causes of wear and failure of hydraulic
components [1,2]. Oil contaminants mainly include water, air bubbles, and metal particles, each of
which has different hazards to the hydraulic system [3,4]. The mixing of water droplets in hydraulic
oil will increase the emulsification rate of oil [5]. The air mixed in hydraulic oil will generate cavitation,
accompanied by an increase in vibration and noise [6]. The size of metal wear debris in hydraulic
oil can reflect the degree of wear of hydraulic components. The metal wear debris in oil is about
10–20 µm in size under normal conditions, and it will increase to 50~100 µm in size when abnormal
wear occurs [7]. The properties of metal wear debris can also reflect the wear position of hydraulic
components. In addition to the use of ferromagnetic metals in hydraulic component manufacturing,
the friction pairs of hydraulic components are often coated with a layer of nonferromagnetic metals
to reduce friction, such as a sliding shoe, a cylinder block, an oil distribution plate, etc., in the axial
piston pump and are mostly made of copper alloy. Therefore, the realization of on-line discrimination
detection of oil contaminants can provide technical support for health status monitoring and fault
diagnosis of hydraulic systems.
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Oil contaminant detection technology is mainly divided into off-line detection and on-line
detection [8]. It is difficult for off-line detection to reflect the actual oil physical and chemical properties
of the hydraulic system during operation, as it is subject to many sampling procedures and low timeliness
in the laboratory [9,10]. At present, oil on-line detection technology includes ultrasonic detection,
optical detection, capacitance detection, and inductance detection. Although ultrasonic detection
can distinguish between metal particles and bubbles, it cannot distinguish between ferromagnetic
metal particles and nonferromagnetic metal particles, and it is susceptible to external environments
such as oil temperature and mechanical equipment noise [11,12]. Although optical detection has high
detection accuracy, it is easily affected by oil clarity and permeability, and it is impossible to distinguish
solid particles [13,14]. Capacitance detection can distinguish between water droplets and air bubbles
because of different permittivity but is insensitive to detecting metal particles [15–19]. Inductance
detection has high linearity in distinguishing ferromagnetic and nonferromagnetic metal particles.
Flanagan et al. conducted oil particle detections with a coil 6 mm length and successfully detected
100 µm iron particles and 200 µm copper particles [20]. Hongzhi et al. designed a metal particle
detection sensor with three solenoid coils, which could detect particles with a size of 125 µm [21].
Hongbo et al. designed a double-coil metal particle detection sensor, which realized the detection of
100 µm iron particles and 500 µm copper particles [22]. The low-detection sensitivity of inductance
sensors mentioned above is due to the low magnetic field intensity of coil in the large flow channel.
The application of microfluidic technology in oil detection improves the sensitivity of inductance
detection. Du et al. realized on-line differential detection of iron and copper particles ranging in
size from 50 to 150 mm using a two-layer planar coil with amplification circuit and noise shielding
techniques [23], and they detected 32 µm iron particles and 75 µm copper particles by parallel
connection of inductance coil and capacitor [24]. However, these methods for detection sensitivity
improvement require the aid of an external circuit or capacitor, which makes the fabrication process
more complex. Zhu et al. developed a high-sensitivity wear debris sensor with two planar coils wound
around a pair of ferrite cores that could detect 50 µm ferrous debris in 7 mm diameter fluidic pipes
but not droplets and bubbles in oil [25]. Our group designed a sensor integrated with inductance and
capacitance detection using double planar coils, which can distinguish iron particles, copper particles,
water droplets, and bubbles in oil, but the detection sensitivity needs to be improved [26–28].

As a planar coil with many turns, the outer coil turns of the planar coil are not effective in enhancing
the magnetic flux density at the sensing zone [23]. In order to improve the sensitivity of multiparameter
detection of oil contaminants, we developed in this paper an impedance sensor with double solenoid
coils that had the functions of inductance and capacitance detection. Detection sensitivity was further
improved by embedding silicon steel sheets in the solenoid coils.

2. Chip Design and Detection Model

2.1. Chip Design

The multifunction detection chip design is shown in Figure 1. The chip was mainly composed of
a straight microchannel and a pair of solenoid coils on both sides of straight microchannel. The diameter
of microchannel D1 was 300 µm. The diameter of solenoid coil wire core D2 was 70 µm (an insulating
paint with a thickness of 10 µm covered the core). The diameter of solenoid coil outer hole D3 was
1.9 mm. The axial length of solenoid coil L1 was 2.8 mm. In order to focus the magnetic field strength
and the electric field intensity generated by solenoid coils in the microchannel detection region, a silicon
steel sheet was inserted into each of the two solenoid coils (see Figure 1b—as the shape of silicon steel
sheet is tapered, L2 is the length of the whole silicon steel sheet, L3 is the length of the rectangular
part of silicon steel sheet, h1 is the width of rectangular part of silicon steel sheet, and h2 is the
thickness of the whole silicon steel sheet. L2 = 3.2 mm, L3 = 1.8 mm, h1 = 0.6 mm, and h2 = 0.1 mm).
The inductance detection function and the capacitance detection function can be realized by changing
the connection manner of the two solenoid coil leads. When the lead wires a and d of the solenoid coils
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were connected, the lead wires b and c were connected; that is, the two solenoid coils were connected
in series, and thereby the inductance detecting mode could be realized. When the lead wires a and b of
the solenoid coil were connected, the lead wires c and d were connected; that is, the two solenoid coils
were respectively used as two plates, and thereby the capacitance detecting mode could be realized.

Figure 1. The design of the multifunction sensor: (a) the overall design of the chip, and (b) a sketch of
the detection unit.

2.2. Inductance Detection Mode

As the double solenoid coils were the same, it was assumed that the axial length of each solenoid
coil was l, the number of turns was n, the inner diameter and outer diameter were r and R, respectively,
and the number of solenoid coil layers per unit thickness was a. The midpoint o1 of the axis of the
solenoid coil 1 and the midpoint o of the midline of the microchannel detection area were respectively
taken to establish a two-dimensional coordinate system as shown in Figure 2.

Figure 2. Two-dimensional coordinate system of double solenoid coils.

For a single-layer solenoid coil in the coordinate system o1x1z1, the magnetic induction intensity of any
point P on the central axis of the single-layer solenoid coil can be obtained according to Biot–Savar’s law [29]:
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where µ0 is the magnetic permeability of the vacuum, and I is the coil current. Since the double
solenoid coils used were multilayer solenoid coils, the axial magnetic induction intensity of the coil
could be regarded as a superposition of the magnetic induction intensity of single-layer solenoid coil
on the axis. As the thickness of the solenoid coil was R − r, the magnetic induction intensity of the
point P of solenoid coil 1 could be obtained as follows by integrating Equation (1) along the thickness
of the coil:
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For ease of calculation, the coordinate system o1x1z1 was translated to the coordinate system oxz,
and its translation relationship is:

x1 = x−
l
2
−

d
2

. (3)

Substituting Equation (3) into Equation (2), the expression of the magnetic induction intensity of
point P in the coordinate system oxz of solenoid coil 1 is:
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Similarly, expression of the magnetic induction intensity of point P in the coordinate system oxz of
solenoid coil 2 is:

B2 =
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For Equations (4) and (5), taking x = 0, the magnetic induction intensities of solenoid coils 1 and 2
at the midpoint of the axis of microchannel detection area can be obtained:

B1 = B2 =
µ0anI
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Since the directions of magnetic induction intensities of solenoid coils 1 and 2 were the same,
the total magnetic induction intensity of double solenoid coils in the detection area is:

B = B1 + B2. (7)

Combining with the definition of coil inductance, the total self-inductance of double solenoid
coils in the detection area is as follows:

L = L1 + L2 =
n(B1 + B2)S

I
, (8)

where S is the cross-sectional area of the inner hole of solenoid coil, and S = πr2. According to the
definition of mutual inductance, the mutual inductance of double solenoid coils is:

M =
nB1S

I
=

nB2S
I

. (9)
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Since the double solenoid coils are connected in series, an equivalent inductance can be obtained
according to Kirchhoff’s law as follows:

Leq = L1 + L2 + 2M. (10)

The equivalent inductance of double solenoid coils in the detection area was obtained by combining
Equations (4)–(10):

Leq = 2µ0an2πr2
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From Equation (11), the inductance variation was directly related to the relative magnetic
permeability of the detected particles when the sizes of solenoid coils and the microchannel were
determinate. When a ferromagnetic particle passed through the detection area, its magnetization
played a major role; thus, the magnetic induction intensity of the coil and the coil inductance will
increase. In contrast, there was almost no magnetization effect for a nonferromagnetic metal particle
passing through the detection area; its eddy current would reduce the magnetic flux, which in turn
would decrease the inductance of the coil. Therefore, ferromagnetic and nonferromagnetic metal
particles can be distinguished by the directions of inductance pulse signals. At the same time, the size
of metal particles can be judged by the height of inductance pulse signals. Compared with Equation (8),
it can also be found that the inductance variation of metal particles passing through the detection area
of double solenoid coils can be greatly increased compared to that of a single solenoid coil.

2.3. Capacitance Detection Mode

By changing the connection manner of double solenoid coils, the two solenoid coils can be
regarded as the two plates, which can be equivalent to the cylindrical flat plate capacitor, as shown
in Figure 3.

Figure 3. Schematic diagram of capacitance detection.

According to the calculation formula of a plate capacitor [30], the capacitance expression of
an equivalent capacitor can be obtained:

C =
Q
U

=
ε0εrS

d
=
ε0εrπ(R2

− r2)

r
, (12)

where ε0 is the vacuum permittivity, εr is the relative permittivity of the media, and S is the plate area
of the equivalent capacitance plate.

From Equation (12), we know that when the arrangement of the double solenoid coils and
microchannel is determinate, the capacitance is directly related to the permittivity of media in the
detection zone. As the excitation source was a high-frequency, alternating current, the permittivity
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of the medium was also related to the excitation frequency. Therefore, the complex permittivity of
a material is introduced:

ε̃ = ε− j
σ

2π f
, (13)

where ε is the permittivity, σ is the conductivity, j2 =−1, and f is the frequency. The complex permittivity
of hydraulic oil and particles are ε̃o and ε̃p, respectively.

ε̃o = εo − j
σo

2π f
; (14)

ε̃p = εp − j
σp

2π f
; (15)

where σo is the conductivity of hydraulic oil, and σp is the conductivity of particles in the detection
zone. According to Maxwell’s mixture equation, combined with the previous theoretical derivation of
our group, the equivalent complex permittivity of the mixture containing the particles and oil is [31]:

ε̃mix = ε̃o
Vd

(
ε̃p + 2ε̃o

)
+ Vp

(
ε̃p − ε̃o

)
Vd

(
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)
−Vp

(
ε̃p − ε̃o

) , (16)

where Vp is the particle volume, and Vd is the detection volume in the detection zone. Substituting
Equation (16) into Equation (12), we can get the expression of the equivalent capacitance of double
solenoid coils:

C =
πε0ε̃o(R2
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]
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From Equation (10), capacitance is related to the relative permittivity and the volume of particles
when the structural parameters of double solenoid coils and the excitation alternating current are
determinate. In detecting the same kind of particles, the larger the particle volume, the larger the
capacitance change. Therefore, the amount of capacitance change can directly reflect the size of
particles. Since the relative permittivity of air (ε̃p,a ≈ 1) is less than the relative permittivity of oil
(ε̃o ≈ 2.6), and the relative permittivity of water (ε̃p,w ≈ 80) is greater than the relative permittivity
of oil, the output capacitance will generate a downward and upward pulse signal for detecting air
bubbles and water droplets. So, the capacitance detection mode could distinguish between water
droplets and air bubbles in oil based on the difference in relative permittivity.

3. Chip Fabrication and Experimental Preparation

3.1. Chip Fabrication

According to the detection chip fabrication methods proposed by our group [32], a pair of
two identical solenoid coils (300 turns, the inner diameter was 0.7 mm, the outer diameter was
1.9 mm, and the axial length was 2.8 mm) were fabricated first as the double solenoid coils model.
Then, the same two silicon steel sheets were respectively applied with glue and inserted into the
solenoid coils with a tweezer. A copper rod with a diameter of 0.3 mm was used as the straight
microchannel model and was fixed on a glass substrate. The double solenoid coils inserted into the
silicon steel sheets were fixed on the glass substrate and pressed against the copper rod. After that,
the solenoid coils, microchannel model, and glass substrate formed a chip mold, upon which prepared
liquid polydimethylsiloxane (the ratio of polydimethylsiloxane to curing agent was 10:1) was poured.
The chip mold was then placed in a thermostat with a temperature of 80 ◦C for 1 h. Finally, after the
liquid polydimethylsiloxane was solidified, a copper rod with a diameter of 0.3 mm was extracted from
the solidified PDMS using pliers, and fabrication of the multifunctional detection chip was completed.
In order to investigate the influence of silicon steel sheets on the detection sensitivity of the design
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sensor, the double solenoid coils with and without silicon steel sheets were fabricated in a microfluidic
detection chip for comparative analysis.

3.2. Construction of the Detection System

After fabrication of the multifunction detection chip, the oil detection system was built as shown
in Figure 4. It consisted of a LabVIEW data acquisition unit, an LCR meter (Keysight E4980A, Agilent
Technologies Inc., Bayan Lepas, Malaysia), a microinjection pump (Harvard Apparatus B-85259,
Harvard Apparatus, Holliston, MA, USA), a microscope (Nikon AZ100, Nikon, Tokyo, Japan), and the
multifunction detection chip. The LabVIEW data acquisition unit and the LCR meter could record
and display the equivalent inductance or equivalent capacitance of the detection chip coil in real
time, and the microscope could be used to help determine whether signal fluctuation was caused
by particles.

Figure 4. Schematic diagram of the impedance detection system.

3.3. Sample Preparation

For inductance detection experiments, it was necessary to prepare hydraulic oil samples containing
iron particles and copper particles of different sizes. Firstly, the sizes of iron particles ranging from
60 to 70 µm, 90 to 100 µm, and 120 to 130 µm were sieved with different sieves. Iron particles (5 mg)
of each size were weighed with a precision balance, mixed with 100 mL hydraulic oil, and oscillated
uniformly with an oscillator. The same process was also used for 5 mg copper particles ranging from
120 to 130 µm, 130 to 140 µm, and 170 to 180 µm. Then, each particle sample of 1 mL was placed in
a plastic test tube for the experiments.

For capacitance detection experiments, an oscillating method was used to prepare the oil samples
containing water droplets and air bubbles with different sizes. To prepare 140 to 150 µm water droplets
in the hydraulic oil, 5 µL of distilled water and 995 µL of hydraulic oil were first mixed in a 1 mL
sealed plastic tube, and then the plastic tube was oscillated by an oscillator and an ultrasonic oscillator
for 1 min and 5 min to generate 140 to 150 µm water droplets. Using a similar method to prepare 240
to 250 µm bubbles in the hydraulic oil, 5 µL air and 995 µL hydraulic oil were sealed in a 1 mL plastic
tube, and the tube was oscillated in the oscillator for 1 min, then it was oscillated by the ultrasonic
oscillator for 1.5 min to generate 240 to 250 µm bubbles.



Micromachines 2019, 10, 377 8 of 13

4. Results and Discussion

4.1. Inductance Detection Results and Discussion

In the experiments, the line was connected according to the inductance detection mode, and the
excitation voltage and frequency of the LCR meter were set to 2 MHz and 2 V, respectively. The flow
rate of the microinjection pump was set to 350 µL/min, then the pump started to inject the sample oil
into the multifunction detection chip. A partial detection signal was extracted as shown in Figure 5.

Figure 5. Inductance detection results of 120 to 130 µm iron particles and 170 to 180 µm copper particles:
(a) iron particle detection results of the solenoid coils with silicon steel sheets; (b) iron particle detection
results of the solenoid coils without silicon steel sheets; (c) copper particle detection results of the
solenoid coils with silicon steel sheets; and (d) copper particle detection results of the solenoid coils
without silicon steel sheets.

In Figure 5, the directions of the inductance pulses caused by the iron particles and the copper
particles were opposite, which verified the inductance detection model. The inductance amplitudes
of detecting iron particles and copper particles were extremely improved by inserting the silicon
steel sheets into the solenoid coils. For the detection of 120 to 130 µm iron particles, the average
inductance amplitude with silicon steel sheets was about 8.6 times that of without silicon steel sheets
(the average pulse amplitudes of detecting iron particles with and without silicon steel sheets were
about 3.21 × 10−8 H and 3.76 × 10−9 H, respectively). For the detection of 170 to 180 µm copper
particles, the average inductance amplitude of the solenoid coils with silicon steel sheets was 22.7 times
that without silicon steel sheets (the average pulse amplitudes of detecting copper particles with and
without silicon steel sheets were about −1.98 × 10−8 H and −8.73 × 10−10 H, respectively).
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In order to more intuitively analyze the influence of silicon steel sheets on detection sensitivity,
the inductance pulse amplitude, average noise, and SNR (signal-to-noise ratio) were selected as three
sensitivity evaluation indexes. In order to ensure accurate comparisons of the evaluation indexes,
the average of the five groups of experimental results was taken as the evaluation index value.
The statistical comparison results are shown in Figure 6.

Figure 6. Comparative experimental results of iron particles and copper particles of different sizes:
(a) iron particle detection comparative results ranging from 60 to 70 µm, 90 to 100 µm, and 120 to
130 µm; (b) copper particle detection comparative results ranging from 120 to 130 µm, 130 to 140 µm,
and 170 to 180 µm. SNR = signal-to-noise ratio.

From Figure 6a, with the increase of iron particle sizes ranging from 60 to 70 µm, 90 to 100 µm,
and 120 to 130 µm, the inductance amplitudes of the detection signals were greatly increased by the
existence of silicon steel sheets, which were about 7.0, 9.5, and 8.6 times greater, respectively, compared
to the solenoid coils without silicon steel sheets. Moreover, existence of silicon steel sheets did not
cause a significant increase in noise, so the SNRs were also greatly improved, which were about 2.4,
2.9, and 3.0 times greater, respectively, compared to the solenoid coils without silicon steel sheets.
From Figure 6b, with the increase of copper particle sizes ranging from 120 to 130 µm, 130 to 140 µm,
and 170 to 180 µm, the inductance amplitude and SNR of the detection signals were also greatly
increased by the existence of silicon steel sheets, which were about 4.5, 20.1, and 22.7 and 2.0, 5.7,
and 8.9 times greater than those without silicon steel sheets, respectively. Therefore, silicon steel sheets
significantly improved the sensitivity of detecting metal particles. As the magnetization of silicon
steel sheets was nonlinear, the improvement of detection sensitivity by the silicon steel sheets was
also different.

For the lower limit test of the double solenoid coils with silicon steel sheets, preparation of
hydraulic oil samples was the same as described above. The lower limit test was carried out by using
iron particles with diameters below 60 µm and copper particles with diameters below 120 µm. The sizes
of the particles were gradually reduced in the test, and iron particles with sizes ranging from 30 to 40 µm
and copper particles with sizes ranging from 90 to 100 µm were successfully detected. Combining the
results of the iron particles test with that of the copper particles test in Figure 7, iron particles ranging
from 30 to 40 µm and copper particles ranging from 90 to 100 µm could still be distinguished by the
direction of the inductance amplitude.
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Figure 7. Inductance detection results of 30 to 40 µm iron particles and 90 to 100 µm copper particles
with silicon steel sheets.

4.2. Capacitance Detection Results and Discussion

In the experiments, the line of double solenoid coils was connected according to the capacitance
detection mode, and the excitation voltage and frequency of the LCR meter were set to 0.3 MHz and
2 V, respectively. The flow rate of the microinjection pump was set to 350 µL/min, then the pump
started to inject the sample oil to the multifunction detection chip. We successfully detected 140 to
150 µm water droplets and 240 to 250 µm bubbles using double solenoid coils with and without silicon
steel sheets. The detection signals are shown in Figure 8.

Figure 8. Capacitance detection results of 140 to 150 µm water droplets and 240 to 250 µm bubbles:
(a) detection results of 140 to150 µm water droplets; (b) detection results of 240 to 250 µm bubbles.
The red line is the detection results without silicon steel sheets, and the blue line is the detection results
with silicon steel sheets.

In Figure 8, we can see that the directions of the capacitance pulses caused by the water droplets
and bubbles were opposite, which verified the capacitance detection model. At the same time,
we found that there were two pulse signals when detecting a single water droplet or bubble using
double solenoid coils without silicon steel sheets. This was because the double solenoid coil was
equivalent to a circular capacitor, which had two intersections with the microchannel and captured
two capacitance pulse signals for the same particle; however, the generation of two pulse signals was
also related to particle size and flow velocity. There were no two pulses in the capacitance detection
using double solenoid coils with silicon steel sheets. This mainly was due to the additional electric
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field produced by polarization of silicon steel sheets, which compensated the electric field strength in
the inner hole area of double coils.

Similar to the inductive detection comparison analysis, the capacitance amplitude, average noise,
and SNR were selected to evaluate the influence of the silicon steel sheet on the sensitivity of the
capacitance detection. The results of the five groups of experiments were statistically analyzed, and the
statistical results are shown in Table 1.

Table 1. Capacitance detection results of double solenoid coils.

Particles Chip Structure Average Amplitude
(F)

Average Noise
(F) SNR

water droplets
(140–150 µm)

with silicon steel sheets 1.26 × 10−15 4.71 × 10−16 2.67
without silicon steel sheets 9.17 × 10−16 4.19 × 10−16 2.19

Bubbles
(240–250 µm)

with silicon steel sheets 4.73 × 10−15 1.83 × 10−16 2.58
without silicon steel sheets 3.99 × 10−15 1.67 × 10−16 2.39

In Table 1, the existence of silicon steel sheets in double solenoid coils improved the sensitivity of
capacitance detection, but the improvement effect was not obvious with respect to detecting metal
particles. The capacitance detection noise was also slightly increased by the silicon steel sheets.
The capacitance amplitude and SNR of detecting water droplets increased by 37.4% and 21.9%,
respectively, compared to the solenoid coils without silicon steel sheets. The capacitance amplitude
and SNR of detecting bubbles increased by 18.5% and 8.0%, respectively, compared to the solenoid
coils without silicon steel sheets.

5. Conclusions

In order to enrich the detection ability of the solenoid coil sensor for hydraulic oil contaminants,
a multifunction detection sensor based on a microfluidic chip is proposed and fabricated. Firstly,
the metal particle inductance detection model and the capacitance detection model of nonmetal particles
are theoretically derived. The experimental results show that the sensor can detect iron particles, copper
particles, water droplets, and bubbles in hydraulic oil. The detection sensitivity of double solenoid coils
by inserting silicon steel sheets is further improved. The inductance (capacitance) amplitude, average
noise, and SNR are selected as indicators of sensor sensitivity. The comparative experimental results
show that the silicon steels sheets can significantly improve the sensitivity of inductance detection
and can improve the sensitivity of capacitance detection, but the improvement effect is not obvious
compared to inductance detection. This is probably because the relative permeability of the silicon
steel sheet is higher. Compared to the polarization effect, the magnetization effect is dominant in
this experiment. We demonstrate the successful detection of 30 µm iron particles and 90 µm copper
particles using double solenoid coils with silicon steel sheets as well as the successful detection of
140 µm water droplets and 240 µm bubbles using double solenoid coils with and without silicon steels
sheets. Therefore, improving the sensitivity of capacitance detection is our next priority research
work. The multifunction sensor presented in the paper integrates the functions of inductance detection
and capacitance, and it improves the sensitivity by embedding silicon steel sheets in solenoid coils,
which has great significance for health status monitoring and fault diagnosis of hydraulic systems.
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