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Abstract: Bose–Chaudhuri–Hocquenghem (BCH) codes are broadly used to correct errors in flash
memory systems and digital communications. These codes are cyclic block codes and have their
arithmetic fixed over the splitting field of their generator polynomial. There are many solutions
proposed using CPUs, hardware, and Graphical Processing Units (GPUs) for the BCH decoders.
The performance of these BCH decoders is of ultimate importance for systems involving flash memory.
However, it is essential to have a flexible solution to correct multiple bit errors over the different
finite fields (GF(2m)). In this paper, we propose a pragmatic approach to decode BCH codes over the
different finite fields using hardware circuits and GPUs in tandem. We propose to employ hardware
design for a modified syndrome generator and GPUs for a key-equation solver and an error corrector.
Using the above partition, we have shown the ability to support multiple bit errors across different
BCH block codes without compromising on the performance. Furthermore, the proposed method to
generate modified syndrome has zero latency for scenarios where there are no errors. When there
is an error detected, the GPUs are deployed to correct the errors using the iBM and Chien search
algorithm. The results have shown that using the modified syndrome approach, we can support
different multiple finite fields with high throughput.
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1. Introduction

NAND flash memories are widely used in many electronic devices. These devices face reliability
issues because of the densely-populated memory cells [1]. In fact, the 3D method used to manufacture
flash memories, discussed in detail by Spinelli et al. [2], enforces the necessity to have high throughput
error correction techniques. Bose–Chaudhuri–Hocquenghem (BCH) codes [3] are the most common
error correction mechanisms for flash memory devices and other digital communications like optical
networks. The increasing efficiency and throughput of the flash memory systems have drawn
researchers to provide highly-efficient BCH decoders. The three major categories of the BCH decoders
proposed are Central Processing Units (CPUs), hardware circuits, and Graphical Processing Units
(GPUs). Cho proposed an efficient CPU-based implementation in [4], and Poolakkaprambil discussed
multi-bit error using Hamming, BCH, and Low-Density Parity Check (LDPC) codes in [5]. Later,
Lee et al. proposed a high throughput hardware architecture in [6]. Moreover, Zhang discussed
different hardware implementation techniques in [7]. Qi et al. [8] proposed a GPU-based BCH decoder;
later, we proposed an efficient algorithm for BCH decoders using GPUs in [9]. In addition to the
requirement of high throughput, modern BCH decoders are required to support multiple bit error
correction across various block sizes, which is the focus of this paper. Technology scaling has rendered
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the ability to integrate multiple GPUs within a System On Chip (SOC), which has enabled researchers
to use GPU for non-graphical applications. In fact, the term General Purpose Graphical Processing
Unit (GPGPU) refers to the application of GPU for nongraphical applications. We use the term GPU
instead of GPGPU since these terms are interchangeable in practice. Streaming Multiprocessors (SMs)
are the building blocks of these GPUs, which has multiple CPUs within them. Each of the instantiated
SMs is capable of handling multiple threads, which are scheduled by a warp scheduler. Therefore, we
need an exclusive compiler like the Computer Unified Device Architecture (CUDA) C [10] software to
program these SMs. The CUDA software creates the necessary grid of kernel routines, which in turn
create the same instruction that operates on a different data path; this technique is referred to as the
single instruction multiple data (SIMD) stream. The kernel subroutines are executed across multiple
cores and in a multiple thread fashion. The GPU-based BCH decoders [9] are flexible, and they can
support multiple BCH block sizes.

We have organized this paper as follows: Section 2 discusses the background and previous works.
Section 3 describes our proposed hybrid method using GPUs and hardware design. Section 4 presents
the results observed, and we conclude in Section 5.

2. Background

BCH codes are cyclic block codes encoded by the generator polynomial g(x) over the GF(2).
The roots of this polynomial equation reside in the extended field, also known as the splitting field,
GF(2m). Let φi(x) be the minimal polynomial of an arbitrary element βi, then the generator polynomial
for BCH code with t error correction capability is given by the following equation:

g(x) = LCM(φ1(x), φ2(x), ..., φ2t(x)) (1)

Narrow sense BCH codes use primitive element αi for the minimal polynomial with i starting from
one. For simplicity, the narrow sense BCH code decoder is discussed and implemented in this paper,
and it could be easily extended for other general BCH codes [3]. The parity bits are then generated
using the equation p(x) = m(x)mod g(x), and these parity bits are concatenated to form the message
polynomial m(x). This concatenation is given as:

c(x) = m(x) · xdeg(g(x)) + m(x)mod g(x) (2)

The generated parity bits are then stored in the spare area allocated in the page within the flash
memory device. In general, the hard decision BCH decoder has three steps in the decoding process:
syndrome generation, key-equation solver, and an error locator.

2.1. Encoder

The main issue when using large BCH codes, i.e., t greater than 30, is the fan-out issue created by
implementing the Linear Feedback Shift Register (LFSR) method of the generator polynomial. Parhi
has addressed this fan-out issue by breaking down the LFSR register into multiple cascaded LFSRs
by realizing the circuit in the Z-domain [11]. Hao addressed the same issue by using the Chinese
Remainder Theorem (CRT) method [12], but this method requires more computation on the encoder
and is applicable for encoders that have t higher than 100. Later, Tang et al. proposed a hybrid
approach for long BCH encoders that is area efficient [13]. The authors of this paper had proposed an
area efficient method by sharing the hardware between the encoder and syndrome generator [14].

2.2. Decoder

The BCH decoders can be categorized as hard decision and soft decision decoders [15,16]. These
decoders’realization can be broadly classified into three categories: Central Processing Unit (CPU) [4],
Very Large Scale implementation (VLSI) [17], and GPU implementation [8]. Various hardware
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implementations of BCH decoders were discussed by Zhang [7]. BCH decoders can be categorized
by the place of the decoders. The decoders can be either located on-chip within memory device [18]
or outside the memory device [19]. The focus of this paper is on the decoder being outside the
memory device.

The syndrome generator is the first step of the BCH decoding process [6,20]. The syndromes Si of
the received vector r(x) are given as:

Si = r(αi) (3)

In other words, the syndrome generator checks if the received code vector r(x) = rn−1xn−1 +

... + r1 + r0 has the roots as α1, α2, ..., α2t. If so, then there are no errors in the received code vector. In
the case of an error, the key-equation solver and the error locator steps are executed. For t bit error
correction on a narrow sense BCH code, it is sufficient to find t syndromes, because the elements of a
conjugacy class have the same minimal polynomial φi(x). We have discussed an alternate approach
to share the syndrome generator and encoders in [14]; Figure 1 depicts the area sharing between the
encoder and the syndrome generator presented in [14]. This method requires separate error protection
to the parity bits, and one proposal is to use a Single-Level Cell (SLC) for the parity bits to reduce error
probability.

Figure 1. Area-efficient syndrome generator.

An error locator polynomial Λ(x), which has dependency on the error location, gives a hint about
the error location, and it is given by the equation:

Λ(x) =
t

∑
i=0

Λixi = (1− X1x)(1− X2x)...(1− Xtx) (4)

where Xi represents the error location of the vector r(x). The key equation:

S(x).Λ(x) = Ω(x)mod 2t (5)

shows the relationship between the error locator polynomial and the error evaluator polynomial;
moreover, Newton identities [3] show the relation between the error locator polynomial Λ(x) and the
syndromes Si. There have been many algorithms like Berlekamp–Massey (BM), Peterson, and others
proposed to solve the key equation [3,7], but the inversion-less BM (iBM) algorithm is predominantly
used in high throughput architectures [6,21]. Park et al. [22] proposed a novel folded method to
reduce the area in the hardware architecture, but the proposed method takes more clock cycles and is
proportional to the folding factor. For the final step, the Chien Search (CS) algorithm is used to locate
the error position from the error locator polynomial equation. Yoo et al. proposed a low power and
high throughput parallel CS algorithm in [23].

2.3. Motivation

This paper intends to propose a solution that can address two configurable parameters of a BCH
decoder. First, the solution should be scalable across different GF fields, i.e., it should be able to support
different GF field extensions (GF(2m)). Second, the solution should be able to scale across different
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bit errors t. Different configurable BCH decoder solutions have been proposed [20,24], but they lack
support for both configurable parameters of the BCH decoders. Inspired by the attempt to solve BCH
decoders for multiple GF dimensions in [20], we propose an alternate hybrid approach to have a
flexible solution. In [20], a hardware solution was proposed to support multiple BCH codes; however,
the circuit area increases in order to support multiple GF dimensions because of the dual-mBCH
decoders’ requirement. We have proposed a method to share the hardware logic between the BCH
encoder and BCH syndrome generator by modifying the encoding method in [14]. In this paper, we
extend our previous work by using a programmable modified syndrome generator algorithm and
GPU to have a decoder that works with multiple GF dimensions.

3. Hybrid Method

We propose a high throughput system that can correct t bit errors over different BCH codes
(n, k, t), i.e., error correction over different finite field dimensions, using hardware design and GPU
kernel routines. Figure 2 depicts the architectural block diagram for our proposed hybrid method.
The flash memory interface is a physical interface to a flash memory device, and the host interface
is a standard bus interface, which communicates with the GPU. The GPU could either reside inside
the host interface (system on chip) or external to the host system. It is important to note that the GPU
system in the system is used for dual purposes, i.e., for the graphical display and error correction.
Furthermore, in our proposed method, the GPUs are only deployed when there is an error detected
in the page, and the GPUs are not used for pages without error. It is assumed that the host system
exercises a memory copy routine to transfer data whenever there is an interaction between the host
system and the GPU system. The syndrome generation, proposed in [14], is split into two modules:
the Syndrome Residual Unit (SRU) and the syndrome kernel. Then, we propose to implement the
modules SRU and the FIFO (shaded area) in hardware and to use GPU kernel routines for the modules’
syndrome calculator, key-equation solver, and an error corrector.

Figure 2. Hybrid BCH decoder block diagram.

3.1. Flowchart

Figure 3 depicts the flow of our proposed hybrid method. Initially, the GPUs create a LUT memory
for faster GF multiplication; this method has been proven to be faster on GPUs than threads spawning
sub-kernel routines [9]. Next, a page read command is initiated to the flash memory interface. The SRU
calculates the t residuals of the minimal polynomial, while the data are written into the FIFO. If all the
residuals are zero, then we conclude that there are no errors detected in the received vector, and the
host shall transfer the data to the application layer. If there are non-zero residuals, then the host
calls the Syndrome Calculation Kernel (SK) routine to calculate the syndrome and then calls the Key
Equation Kernel (KEK) to form the error locator polynomial Λ(x). Once the Λ(x) is formed, the Chien
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Search Kernel (CSK) is executed for each bit location. The final error vector is then added to the data in
the FIFO to correct the bit errors and then copied to the host memory. Until all the intended data from
the flash memory are read, we repeat the previously mentioned steps (Node 1 in Figure 3).

Figure 3. Flow chart for the hybrid system.

3.2. Modified Syndrome Generator

The conventional syndrome generator as discussed in Section 2.2 can be split into two steps:
First, the residual polynomial resi(x), of the received code word r(x), is generated by the equation
resi(x) = r(x)mod φi(x), where the minimal polynomial φi(x) = gi,mxm + ... + gi,0 and residual
polynomial resi(x) = resi,m−1xm−1 + ...+ resi,0. Second, the syndrome can be calculated by substituting
the primitive element αi in the residual polynomial and is expressed as:

Si =
deg(φi(x))−1

∑
k=0

resi,k.(αi)k (6)

It is clear that by splitting the syndrome generation, resi(x) does not have any dependency on the
field extensions. In fact, the polynomial division used in resi(x) is identical to a Linear Feedback Shift
Register (LFSR) with its coefficient from φi(x). We introduce the idea to have the coefficients of the
LFSR as programmable. Figure 4 represents a hardware realization of the SRU array in a serial fashion
with programmable feedback coefficients. In most cases, depending on the data interface width of
the flash memory interface, we can unfold the serial interpretation of the SRU to process more bits
in parallel. Because of the relationship between the conjugacy class and φi(x) [7], it is sufficient to
generate t SRU units. These SRUs can compute resi(x) of different minimal polynomials in tandem.
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Once the residuals are computed, the values of the resi(x) are compared for non-zero values. An error
is triggered if any of the resi(x) has non-zero coefficients in them, and the GPU kernel routines for the
other stages of the BCH decoder are executed.

Figure 4. Array of the syndrome residual unit.

3.3. GPU Kernel Routines

Kernel routines are the fundamental sub routines, representing the SIMDtype of parallelism,
executed by the GPU for our proposed decoder. Figure 5 illustrates a systematic execution of the
kernel routines where PG2 and PG4 represent pages with errors. PG0, PG1, and PG3 represent pages
without error. When there are no errors, the latency incurred is the computation time consumed by the
SRU systolic array, as shown in Figure 5. Furthermore, to achieve better throughput, the SRU units
can compute resi(x) for the next page, while the GPU kernel routines are triggered during an error
scenario. For GF multiplication in the algorithm, the multiplicand and multiplier are converted to the
power basis by referring to the LUT in the global memory. Thus, the multiplication is transformed into
a simple XOR operation in the power basis domain. After the multiplication is computed, a reverse
transformation is performed by referring to another basis converter LUT in the global memory.
The three basic GPU kernel routines used in our approach are explained in detail below.
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Figure 5. Decoder execution sequence. PG, Page.

3.3.1. Syndrome Kernel

In this routine, the Si is calculated by substituting the αi in the equation resi(x). Since there are
no dependencies on the syndromes, t parallel SK routines are launched within the GPU. Algorithm 1
represents the pseudocode for the syndrome routine. The atomicXor operation is required to
synchronize the value updated by the SK routines across multiple threads.

Algorithm 1 Syndrome kernel.

1: procedure SYND KERNEL(resi, Si)

2: sum← 0

3: for j← 0, deg(φi(x)− 1 do

4: sum← sum + resi,j.αi.j

5: end for

6: atomicXor(Si, sum) . synchronize between threads

7: end procedure

3.3.2. Key-Equation Kernel

The KEK is the only single thread routine, in our proposal, because of the iterative nature of the
iBM algorithm. Algorithm 2 represents the pseudocode for iBM implementation in the GPU routine.
There are other methods like the simplified iBM (siBM) algorithm [7] proposed for the key-equation
solver module, but experimental results have proven that siBM does not have significant improvement
on the performance of the GPU kernel routines.
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Algorithm 2 Key-equation kernel.

1: procedure KEQ EQ KERNEL(Λ, S)

2: Λ(0) ← 1 + S1x
3: if S1 = 0 then

4: dp ← 1; β(1) ← x3; l1 ← 0

5: else

6: dp ← S1; β(1) ← x2; l1 ← 1

7: end if

8: for r ← 1, t− 1 do

9: dr ←
t

∑
i=1

Λ(r)
i S2r−i+1

10: Λ(r) ← dpΛ(r−1) + drβ(r)

11: if dr = 0 or r < lr then

12: β(r+1) ← x2β(r); lr+1 ← lr; dp ← dp

13: else

14: β(r+1) ← x2Λ(r); lr+1 ← lr + 1; dp ← dr

15: end if

16: end for

17: end procedure

3.3.3. Chien Search Kernel

The CS algorithm is the final step within the decoder. The primitive element αpos−1
is checked

if it is a root for the error locator polynomial Λ(x) as specified in [9]. This kernel routine is an ideal
candidate for the GPU because of the parallelism it offers. Each element of the finite field is evaluated
in the equation Λ(x) as shown in Algorithm 3. This evaluation kernel routine is independent for
each GF element; hence these routines can be launched in parallel threads. Similar to the SK routine,
the memory within the GPU device is shared between threads, so the atomicXOR operation is used to
avoid writing overlap by different CSK routines. Once the error vector is formed, the error is masked
with the data in the memory to yield corrected data.

Algorithm 3 Chien search. Kernel

1: procedure CHIEN KERNEL(Λ, pos, err)

2: sum← 1 . Always KEQ is minimal

3: for j← 0, deg(φi(x))− 1 do

4: sum← sum + Λj(α
pos−1

)j

5: end for

6: if sum = 0 then . αpos−1
is a root

7: atomicXor(err[pos], sum) . Prevent overlap write

8: end if

9: end procedure

4. Experimental Results and Analysis

The proposed hybrid approach was compared against conventional GPU [8,9] and hardware [20]
architectures. The hardware implementation of the syndrome generator was synthesized for 28-nm
technology, and it achieved an operational frequency of 1 GHz. The setup used for the GPU
implementation is given in Table 1. In our experiments, we analyzed the performance and the area
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consumed for different BCH code sizes. We have used the finite field dimension of m = 12, 13, 14, 15 in
our comparison, which corresponds to block sizes of 256, 512, 1024, 2048 bytes. Furthermore, we have
analyzed the results for different bit errors (t = 2, ..., 40) in our experiments.

Table 1. Experimental setup.

GPGPU CPU

Platform Geforce GTX 760. 1152 cores Intel Xeon i7
Clock Freq. 1.033 GHz 3.7 GHz

Memory GDDR5(2 GB), 6 Gbps DDR2 (32 GB), 102.4 Gbps

4.1. Error Analysis

The error correction capability increased with n, but the larger the n, the higher the probability
of random bit error. Based on the raw bit error probability p, parity bits, and message code
cpar = 2 · t · m + |m(x)|, the sector with correctable error (PsecErr) might increase and is given as:

PsecErr = 1−
cpar

∑
i=t+1

(
cpar

i

)
· pi · (1− p)(cpar)−i (7)

Figure 6 plots the bit error vs. sector error for different BCH codes. We can also see that the PsecErr
decreased as p decreased. Furthermore, there was a slight increase in PsecErr when compared against
different m. This was due to the increase in the probability of error within bigger sector sizes.

(a) Block size, 256 bytes (m = 12) (b) Block size, 512 bytes (m = 13)

(c) Block size, 1024 bytes (m = 14) (d) Block size, 2048 bytes (m = 15)

Figure 6. Raw bit error vs. sector error.
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4.2. Syndrome Generation Analysis

Syndrome generation is the critical area where the proposed hybrid method provides an advantage
over the GPU methods [8,9]. Figure 7 shows the plot of the syndrome computation time vs. different
bit errors (t = 2, ..., 40) across different finite fields (m = 12, 13, 14, 15) for different architectures:
GPU [9], hardware [21], and hybrid (proposed). The computation of the SRU engine depended on
the number of clock cycles required for a page read. Since all the resi(x) that were necessary for the
key-equation solver were calculated in tandem, the latency only depended on the read cycles for flash
memory. The hardware architecture for syndrome generation consumed the same clock cycle as the
hybrid approach since the approach to syndrome generation was similar. It should be noted that the
GPU unit was used as a display unit, so the results of kernel profiling depended on the load of the
GPU during the execution of the kernel routine. The execution time for the syndrome on the GPU
architecture depended on the number of threads getting executed, and typically, it was from 30–100 µs.

(a) m=12 (b) m=13

(c) m=14 (d) m=15

Figure 7. Syndrome computation time for different arches.

4.3. VLSI Analysis

Table 2 compares the hardware area required for different methods of the syndrome generator ([20]
and the proposed). Since the GPUs were employed for key-equation and Chien search, the hardware
was only compared for the syndrome generator unit for multi-bit error correction for different GF
dimensions. This is a fair comparison since the area of the GPUs was already accounted for systems
with graphical display. The hardware implementations were targeted for 28-nm and met a frequency
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of 1 GHz. In order to support different finite field (m = 12, 13, 14, 15) and 40-bit error correction, the
hardware method [20] consumed 30,247 µm2, whereas our proposed hybrid architecture consumed
10,633 µm2, thus saving two-fold of the area. This area savings was due to the splitting of the syndrome
generation into two units (SRU and syndrome kernel). When there were no errors in the page, the total
time taken by the proposed decoder was less than 5 µs (Figure 7), which was less than the average
read latency of 100 µs. Table 3 compares the power consumed by the conventional method [20] and
our proposed method. The last entry in the table provides the power consumption required to support
error correction over different fields (m = 12, 13, 14, 15) and until 40-bit error correction. There was a
savings of 4 mW in our proposed method.

Table 2. Area comparison for different syndrome generators vs. the proposed SRU.

Setup
Area for t (µm2)

4 8 12 16 20 24 28 32 36 40

m = 12 [20] 606 1287 2079 2871 3256 3661 3959 4252 4611 4917
Prop. 853 1704 2550 3399 4209 5061 5903 6747 7592 8436

m = 13 [20] 858 1863 2962 4043 4648 5246 5814 6387 6988 7573
Prop. 924 1846 2767 3682 4607 5532 6390 7305 8308 9134

m = 14 [20] 916 2002 3167 4330 5016 5723 6375 7048 7714 8390
Prop. 994 1985 2976 3966 4966 5959 6948 7942 8935 9927

m = 15 [20] 988 2172 3435 4707 5485 6292 7043 7818 8587 9367
Prop. 1064 2125 3186 4249 5318 6383 7448 8504 9570 10,633

m = 12, ..., 15 [20] 3368 7324 116,43 15,951 18,405 20,922 23,191 25,505 27,900 30,247
Prop. 1064 2125 3186 4249 5318 6383 7448 8504 9570 10,633

Table 3. Power comparison for different syndrome generators vs. the proposed SRU.

Setup
Power for t (mW)

4 8 12 16 20 24 28 32 36 40

m = 12 [20] 0.179 0.374 0.599 0.819 0.897 0.978 1.037 1.097 1.170 1.232
Proposed 0.167 0.336 0.499 0.673 0.841 1.014 1.185 1.354 1.524 1.695

m = 13 [20] 0.226 0.491 0.773 1.054 1.178 1.304 1.426 1.546 1.674 1.797
Proposed 0.178 0.355 0.534 0.714 0.889 1.061 1.248 1.424 1.615 1.778

m = 14 [20] 0.231 0.503 0.784 1.068 1.213 1.363 1.499 1.640 1.780 1.923
Proposed 0.187 0.373 0.561 0.747 0.938 1.122 1.309 1.493 1.678 1.863

m = 15 [20] 0.235 0.512 0.812 1.110 1.270 1.438 1.593 1.755 1.915 2.078
Proposed 0.194 0.388 0.588 0.776 0.975 1.168 1.370 1.564 1.755 1.953

m = 12, ..., 15 [20] 0.692 1.506 2.369 3.232 3.661 4.105 4.518 4.941 5.369 5.798
Proposed 0.194 0.388 0.588 0.776 0.975 1.168 1.370 1.564 1.755 1.953

4.4. Performance Analysis

The comparison of the total time taken, in case of an error, is compared for the hardware [20],
GPU [8,9], and hybrid architecture (proposed) in Figure 8 (the variable be represents bit error). We can
see that the hybrid approach was better than the GPU method because of the SRU implementation in
hardware. However, the hardware implementation took less than 1 µs because of the high performance
(which is indistinguishable in Figure 8). We can observe a gain of more than 25% when the system has
errors. We can find the probability of sector error from a given bit error rate using Equation (7). For a
given PsecError, the throughput was calculated for a second’s worth of data transfer.
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Figure 8. Total computation time for different architectures and different finite fields.

Figure 9 represents the plot for throughput vs. bit error rate for different finite fields
(m = 12, 13, 14, 15) and different t = 4, ..., 40. We can see that for m = 12, 13, the throughput was
sustained till 10−3, and for m = 14, 15, the throughput was sustained till 10−3.5. This throughput is
sustainable for flash memories that have an Uncorrectable Bit Error Rate (UBER) of 10−15, an it is also
sustainable for the end of life for flash memories which is greater than 10−5.
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(a) Block size, 256 bytes (m = 12) (b) Block size, 512 bytes (m = 13)

(c) Block size, 1024 bytes (m = 14) (d) Block size, 2048 bytes (m = 15)

Figure 9. Raw bit error vs. throughput (sectors/s).

5. Conclusions

In this paper, we have proposed a novel hybrid method to implement an efficient BCH decoder
for different finite field extensions by having the SRU module in hardware and the rest implemented
in GPU kernel routines. By using this method, we have given flexibility on two parameters: first,
the flexibility over different finite fields GF(2m); second, the flexibility over different bit error support.
The flexibility over GF(2m) was achieved by splitting the syndrome into the SRU unit and the syndrome
kernel. The SRU module resided on the Euclidean domain of GF(2) polynomials, thus making it
programmable across multiple finite fields. The syndrome kernel was executed only when an error
was encountered. The latency taken by our method, without error, was superior to the CPU and
GPU implementations and was equal to the performance observed in [20]. Besides, we had two-fold
area savings in the SRU unit to achieve flexibility over GF(2m) and bit errors. Therefore, this hybrid
approach is a pragmatic solution to have a flexible error correction for modern NAND flash devices.
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Abbreviations

The following abbreviations are used in this manuscript:

BCH Bose–Chaudhuri–Hocquenghem
iBMA inversion-less Berlekamp-Massey algorithm
CPU Central Processing Unit
CS Chien Search
CSK Chien Search Kernel
KEK Key Equation Kernel
GPU Graphical Processing Unit
GPGPU General Purpose Graphical Processing Unit
LDPC Low Density Parity Check
LFSR Linear Feedback Shift Register
MLC Multi-Level Cell
RS Reed–Solomon
SK Syndrome calculation Kernel
SLC Single-Level Cell
SRU Syndrome Residual Unit
UBER Uncorrectable Bit Error Rate
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