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Abstract: Fan-out wafer level packaging (FOWLP) is one of the latest packaging trends in
microelectronics. Besides technology developments towards heterogeneous integration, including
multiple die packaging, passive component integration in packages and redistribution layers or
package-on-package approaches, larger substrate formats are also targeted. Manufacturing is currently
done on a wafer level of up to 12”/300 mm and 330 mm respectively. For a higher productivity
and, consequently, lower costs, larger form factors are introduced. Instead of following the wafer
level roadmaps to 450 mm, panel level packaging (PLP) might be the next big step. Both technology
approaches offer a lot of opportunities as high miniaturization and are well suited for heterogeneous
integration. Hence, FOWLP and PLP are well suited for the packaging of a highly miniaturized
energy harvester system consisting of a piezo-based harvester, a power management unit and a
supercapacitor for energy storage. In this study, the FOWLP and PLP approaches have been chosen
for an application-specific integrated circuit (ASIC) package development with integrated SMD
(surface mount device) capacitors. The process developments and the successful overall proof of
concept for the packaging approach have been done on a 200 mm wafer size. In a second step, the
technology was scaled up to a 457 × 305 mm2 panel size using the same materials, equipment and
process flow, demonstrating the low cost and large area capabilities of the approach.

Keywords: fan-out wafer level packaging; panel level packaging; heterogeneous integration

1. Introduction

Within the European funded project smart-MEMPHIS, the goal was to tackle the main challenge
for all smart devices—becoming self-powering. The project was aimed to design, manufacture
and test a miniaturized autonomous energy supply based on harvesting vibrational energy with
piezo-MEMS energy harvesters. Cost effective packaging was needed for the 3D system integration of
a MEMS-based multi-axis energy harvester, an ultra-low-power ASIC (application-specific integrated
circuit) to manage the variations of the frequency and harvested power, and a miniaturized energy
storing supercapacitor [1,2]. Miniaturization was another key demand as target applications were
a leadless pacemaker and a wireless sensor network for structural health monitoring. Panel level
packaging (PLP) was selected as the packaging technology for the single components. The ASIC,
together with two capacitors, have been integrated by a fan-out panel level packaging (FOPLP)
approach and will be described in detail in this paper.
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The drivers for 3D packaging solutions are manifold, and each requirement calls for different
answers and technologies. The main goal is miniaturization, but the increased component density
and performance, simplification of design and assembly, flexibility, functionality and, finally, cost
and time-to-market, have been found to be the core drivers for going 3D as well. Besides die and
package stacking and folded packages, embedding dies is a key technology for heterogeneous system
integration [3].

There are two main approaches for embedded die technologies: fan-out wafer level packaging
(FOWLP), where dies are embedded into polymer encapsulants, and PCB (printed circuit board)
embedding, where dies are embedded into printed circuit boards [4,5]. A lot of activities that are
running worldwide deal with fan-out wafer level integration. Main approaches here include the
embedded wafer level ball grid array (eWLB) by Infineon [6], the InFO package by TSMC [7] or the
redistributed chip package (RCP) by Freescale [8]. Fan-out wafer level packaging (FOWLP) has been
initiated in volume production for mobile and wireless applications (mainly wireless basebands) and
is now moving into automotive and medical applications.

One driver for panel level packaging is now, of course, the lowering of costs by increasing the
packaging size from wafers to larger panel formats and thereby increasing the number of packages
manufactured in parallel. Additionally, PLP has the opportunity to adapt processes, materials and
equipment from other technology areas. Printed circuit board (PCB), liquid crystal display (LCD) or
solar equipment are manufactured on panel sizes and also offer new approaches for fan-out panel
level packaging (FOPLP) [9–11].

Figure 1 shows an overview of the typical panel sizes used in PCB and LCD manufacturing in
comparison to standard wafer sizes. This already indicates the variety of possible formats without
taking the technical challenges and possible limitations for FOPLP into account.

Micromachines 2019, 10, x FOR PEER REVIEW 2 of 10 

 

The drivers for 3D packaging solutions are manifold, and each requirement calls for different 
answers and technologies. The main goal is miniaturization, but the increased component density 
and performance, simplification of design and assembly, flexibility, functionality and, finally, cost 
and time-to-market, have been found to be the core drivers for going 3D as well. Besides die and 
package stacking and folded packages, embedding dies is a key technology for heterogeneous system 
integration [3]. 

There are two main approaches for embedded die technologies: fan-out wafer level packaging 
(FOWLP), where dies are embedded into polymer encapsulants, and PCB (printed circuit board) 
embedding, where dies are embedded into printed circuit boards [4,5]. A lot of activities that are 
running worldwide deal with fan-out wafer level integration. Main approaches here include the 
embedded wafer level ball grid array (eWLB) by Infineon [6], the InFO package by TSMC [7] or the 
redistributed chip package (RCP) by Freescale [8]. Fan-out wafer level packaging (FOWLP) has been 
initiated in volume production for mobile and wireless applications (mainly wireless basebands) and 
is now moving into automotive and medical applications. 

One driver for panel level packaging is now, of course, the lowering of costs by increasing the 
packaging size from wafers to larger panel formats and thereby increasing the number of packages 
manufactured in parallel. Additionally, PLP has the opportunity to adapt processes, materials and 
equipment from other technology areas. Printed circuit board (PCB), liquid crystal display (LCD) or 
solar equipment are manufactured on panel sizes and also offer new approaches for fan-out panel 
level packaging (FOPLP) [9–11]. 

 

Figure 1. Existing wafer and panel sizes influencing fan-out panel level packaging developments. 

Figure 1 shows an overview of the typical panel sizes used in PCB and LCD manufacturing in 
comparison to standard wafer sizes. This already indicates the variety of possible formats without 
taking the technical challenges and possible limitations for FOPLP into account. 

2. Process Considerations  

For fan-out wafer and panel level packaging, two basic process flows are encountered: the “Mold 
first” and the “RDL (redistribution layer) first” approaches. By now, for the “Mold first” process, a 
face-down and a face-up option exist. Both variants are already in mass production. The process flows 
for all of the options are summarized in Figure 2. 

Area [mm²]

700.000

200.000

400.000

600.000

100.000

0

300.000

500.000

18“

18“ x24“

21“ x24“

Wafer PCB LCD

GEN1
GEN2

GEN3

GEN4

12“ x18“

12“
8“6“

21“ x21“
515x510 mm²

Figure 1. Existing wafer and panel sizes influencing fan-out panel level packaging developments.

2. Process Considerations

For fan-out wafer and panel level packaging, two basic process flows are encountered: the “Mold
first” and the “RDL (redistribution layer) first” approaches. By now, for the “Mold first” process, a
face-down and a face-up option exist. Both variants are already in mass production. The process flows
for all of the options are summarized in Figure 2.

“Mold first” face-down starts with a die assembly on an intermediate carrier, followed by the
over-molding and debonding of the molded wafer/panel from the carrier. The redistribution layer,
typically based on thin film technology, is finally applied on the reconfigured molded wafer/panel.
The face-up approach also starts with a die assembly on a carrier with a temporary adhesive layer.
However, for this approach the dies have a Cu-bump and are placed face-up on the carrier. After
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over-molding, a back-grinding step opens access to the Cu-bumps of the dies again. The redistribution
is applied and finally the wafer is released from the carrier and diced for package singulation.
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Figure 2. Fan-out wafer/panel level packaging process flow options.

The “RDL first” process is comparable to an advanced flip chip on flex assembly. Here, the
redistribution layer is first of all applied on an intermediate carrier, and the bumped dies are assembled
by chip to wafer bonding on the RDL. Afterwards, the assembly is underfilled and over-molded and
the molded wafer, including RDL, has to be released from the carrier.

Besides the different processes having pros and cons, such as the costs, yield and flexibility, the
final package structures also show differences (see Figure 3).
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Figure 3. Fan-out wafer/panel level package structures from different process flow options.

The “mold first” face-down approach has the shortest interconnect with a direct plated via. This
may lead to the best RF performance at higher frequencies due to there being lowest loss, especially
when the chip to chip connection is considered. “Mold first” face-up needs a Cu pillar in combination
with a plated via, and “RDL first” even needs a soldered interconnect. Additionally, the last two
options also have an additional polymer/underfill layer between the die and RDL, which may influence
the performance and reliability.

For all the different fan-out approaches, there are activities running worldwide on panel
sizes. Several companies, including NEPES, POWERTECH, SAMSUNG Electro-Mechanics, DECA
Technologies or ASE, have already announced their work on processes ready for high volume
manufacturing [12–15].

3. Materials and Methods

For the ASIC packaging, a “mold first” face-down approach was selected, as no additional chip
preparation such as bumping was needed and the direct integration of the SMD capacitors is feasible.

For the package type, a land grid array (LGA) was chosen for a minimum package stand-off in
the final system integration. For the process development, dies with same size and IO (input/output)
pattern as the functional ASICs were used. The package design with these dies was done to allow the
simply daisy chain testing of the interconnects. A second design was done to allow a full functional
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ASIC packaging. The ASIC die size was 2.01 × 2.01 mm2, and the final package size was 2.25 × 1.5 mm2.
Two off-the-shelf capacitors from muRata (GCG155R71C104KA01, Murata Manufacturing Company,
Ltd., Kyoto, Japan) were also integrated into the package. In Figure 4, the daisy chain, as well as the
full functional package designs, are shown.
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The process developments and the overall proof of concept for the ASIC fan-out wafer/panel level
packaging approach was done on a 200 mm wafer size. All materials, equipment and processes were
selected and evaluated for direct upscaling to a 457 × 305 mm2 panel size.

3.1. Assembly

The carriers were prepared in a first step with a thermal release tape by lamination. For the die
placement, an ASM (ASM Assembly Systems GmbH & Co. KG) Siplace CA3 was used that allows a
die placement on a wafer but also on a panel in one step. ASICS were directly picked from the diced
wafer and placed face down on the carrier. The SMD components were assembled in the same step.
On the wafer level, a 100% area utilization was applied, whereas on the panel level the area utilization
was only 25% due to the limited number of available dies. Figure 5 depicts examples of the wafer and
panel level assembly.

Micromachines 2019, 10, x FOR PEER REVIEW 4 of 10 

 

For the ASIC packaging, a “mold first” face-down approach was selected, as no additional chip 
preparation such as bumping was needed and the direct integration of the SMD capacitors is feasible.  

For the package type, a land grid array (LGA) was chosen for a minimum package stand-off in 
the final system integration. For the process development, dies with same size and IO (input/output) 
pattern as the functional ASICs were used. The package design with these dies was done to allow the 
simply daisy chain testing of the interconnects. A second design was done to allow a full functional 
ASIC packaging. The ASIC die size was 2.01 × 2.01 mm², and the final package size was 2.25 × 1.5 
mm². Two off-the-shelf capacitors from muRata (GCG155R71C104KA01, Murata Manufacturing 
Company, Ltd., Kyoto, Japan) were also integrated into the package. In Figure 4, the daisy chain, as 
well as the full functional package designs, are shown. 

  
(a) (b) 

Figure 4. Package layout; (a) daisy chain package, (b) functional. 

The process developments and the overall proof of concept for the ASIC fan-out wafer/panel 
level packaging approach was done on a 200 mm wafer size. All materials, equipment and processes 
were selected and evaluated for direct upscaling to a 457 × 305 mm² panel size.  

3.1. Assembly 

The carriers were prepared in a first step with a thermal release tape by lamination. For the die 
placement, an ASM (ASM Assembly Systems GmbH & Co. KG) Siplace CA3 was used that allows a 
die placement on a wafer but also on a panel in one step. ASICS were directly picked from the diced 
wafer and placed face down on the carrier. The SMD components were assembled in the same step. 
On the wafer level, a 100% area utilization was applied, whereas on the panel level the area utilization 
was only 25% due to the limited number of available dies. Figure 5 depicts examples of the wafer and 
panel level assembly. 

  
(a) (b) 

Figure 5. Die and SMD assembly on the carrier; (a) 200 mm wafer, (b) detail of the 457 × 305 mm² 
panel. 

3.2 Compression Molding 

For the reconfigured wafer encapsulation, compression molding is mainly used [16]. Recent 
machine developments now also allow panel molding for sizes in the range of 600 × 600 mm². A 
compression molding evaluation within this study was performed on 200 mm with a wafer level 
machine from TOWA (TOWA Corporation, Kyoto, Japan) and with a large area panel mold machine 

Figure 5. Die and SMD assembly on the carrier; (a) 200 mm wafer, (b) detail of the 457 × 305 mm2 panel.

3.2. Compression Molding

For the reconfigured wafer encapsulation, compression molding is mainly used [16]. Recent
machine developments now also allow panel molding for sizes in the range of 600 × 600 mm2.
A compression molding evaluation within this study was performed on 200 mm with a wafer level
machine from TOWA (TOWA Corporation, Kyoto, Japan) and with a large area panel mold machine
from APIC Yamada (APIC YAMADA CORPORATION, Nagano, Japan), using a tooling with a cavity
size of 457 × 305 mm2.

There are a variety of epoxy molding compounds (EMC) for embedded wafer and panel level
molding from different suppliers available on the market. Basically, state of the art materials can
be divided into liquid, granular and sheet compounds. In order to find suitable epoxy molding
compounds (EMC), together with optimized machine parameters for compression molding and die
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embedding, mold flow simulations were performed. Sub-models were used to investigate the forces
that dies were subjected to during the encapsulation process to avoid significant die shifting of flying
dies during the compression [17].

The complex interplay of the shear-thinning behavior and the crosslinking kinetics of the highly
filled epoxy resins, with an increasing viscosity, are modeled by incorporating fitted experimental data
from plate-plate rheometry and DSC (differential scanning calorimetry) measurements. The procedure
for finding the set of optimized parameters will be described in the following.

These models allow us to simulate the compression molding process and yield pressure, as well
as the shear-stress on the component’s surfaces. For a die where the front (and back) are perpendicular
to the melt front, the resulting force only has pressure contributions, while the sides only have shear
contributions. This leads to the following expression:

F =
(
p f ront − pback

)
A f ront + τtopAtop + 2τsideAside (1)

In order to keep the stress on the components as low as possible, different combinations of
materials, process temperatures and compression profiles were simulated. Through a careful choice of
the compression profile, together with a suitable temperature and an EMC with a low viscosity and
strong shear-thinning properties, a set of optimized parameters was determined. Figure 6 shows the
stress on components during encapsulation at 125 ◦C for 7 different EMCs. It becomes clear that the
materials represented by the yellow and blue graphs are less suitable than the low-viscosity materials
which can be seen below them.
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Figure 6. Existing wafer and panel sizes influencing fan-out panel level packaging developments.

Based on this study, we selected a liquid EMC with a resulting low stress on dies and SMDs
during the compression molding. The material data are summarized in Table 1.

Table 1. Material data for epoxy molding compound used for encapsulation (data sheet values).

Type Liquid

Filler content [wt%] 88

Maximum filler size [µm] 25

Cure condition In Mold Cure: 125 ◦C/10 min
Post Mold Cure: 150 ◦C/60 min

Specific gravity @ 25 ◦C 1.96

Tg (DMA) [◦C] 150

CTE1 [ppm/K] 8

CTE2 [ppm/K] 41
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After the compression molding and post mold cure of the EMC, the reconfigured wafer and panels
have been de-bonded from the carrier by a temperature step.

3.3. Automated Layout Adaptation

Die shifting is one of the key challenges during “mold first” FOWLP and PLP. Due to the different
thermo-mechanical properties of the carrier, the thermo-release tape and epoxy molding compound
dies move such that the die position is shifted with respect to the placement position after cooling
down from the compression molding. This effect is also influenced by the chemical shrinkage of the
molding compound.

Die shifting can be overcome by correcting the initial placement position according to a measured
shifting factor, so that after the molding the dies have the correct layout position. However, this
approach implies a cost and time intensive process set-up.

Another approach could be to use a fast AOI (automated optical inspection) in combination with
maskless processing for die connection and rewiring. This would give the opportunity to tolerate a
larger die misplacement by adapting the layout to the real die position. The layouts of the proposed
processes, through the mold and blind via, by laser drilling and redistribution structuring by laser
direct imaging (LDI), can be automatically adapted according to the measured die positions. Although
these process steps are mask-less, they can be highly productive.

The second approach has been selected for this project. For all of the processed samples, the
exact die position has been measured using a Mahr (Mahr GmbH, Göttingen, Germany) OMS 600.
A software routine has been used to automatically adapt the layout of the redistribution layer. The
layout adaption has been done in in x- and y-direction, but the rotation of the dies were also taken
into account.

3.4. Redistribution Layer

The redistribution layer (RDL) is based on thin film technology. A photosensitive, low temperature
cure polyimide dielectric dry film is laminated and structured by laser direct imaging (LDI). On the
one hand, dry film allows for the lamination and application on the reconfigured wafer through the
mold vias; on the other hand, the process is directly transferable to a panel scale. Metallization has
been done with a sputtered Cu plating base followed by Cu plating. A conductor line and LGA pads
have been structured by etching using a dry film photoresist and, again, laser direct imaging. As a last
step before the package singulation, a solder mask is applied and structured on the wafer backside.

4. Results and Discussion

For the package evaluation and quality inspection, the finalized panels and singulated packages
have been analyzed non-destructively and destructively. In Figure 7, an example of a fully processed
457 × 305 mm2 panel is shown. The panels could be successfully processed without, for instance,
cracking the panel.
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In Figure 8, detailed pictures of a daisy chain and a functional package are depicted. A good
alignment of the die pads and SMD terminals are visible as a result of the adaptive routing of the RDL
to the real die positions, as described above.
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Figure 8. Manufactured ASIC packages by FOWLP/PLP; (a) daisy chain package, (b) functional package.

The packages have been also characterized by electrical testing. For the daisy chain packages, the
resistance of the chip interconnections as well as the capacity of the embedded capacitors have been
measured. In Figure 9, the measurement results of 350 packages are shown. For the resistance, we
detected a mean value of 0.93 Ohm with a standard deviation of 0.18 Ohm, and for the capacitor we
detected a mean value of 46.3 nF with a standard deviation of 0.48 nF. A high package yield could be
achieved, and the electrical measurements show good results, while still indicating some potential for
optimization in the RDL processing.
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Figure 9. Electrical test results of the daisy chain packages; (a) daisy chain resistance of chip to package
interconnects, (b) capacity of integrated capacitors.

An X-ray computer tomography (CT) was used for a non-destructive analysis of the overall
package integrity with a focus on the metal structures and interconnects. In Figure 10, the results
of a daisy chain package are depicted. A 3D view, along with virtual cross sections, proof the well
aligned RDL structures as well as the integrity of the via connection to the die pads and both the SMD
terminals and conductor lines.

In addition, metallographic cross sections were prepared to investigate the overall package quality.
A cross section through the die and SMD component is depicted in Figure 11. No delaminations can be
observed between the die and epoxy molding compound and the dielectric layer of the RDL, indicating
a good adhesion between all of the materials and layers. A good alignment and well-formed via
interconnection on the die pads is also visible.
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Figure 10. X-ray CT package analysis; (a) package overview, (b) package top layer; (c) virtual cross
section through chip interconnects, (d) virtual cross section through SMD interconnects.
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In summary, a good package quality was achieved with the FOWLP approach, and the process
could be successfully transferred from the wafer formats to the panel formats.

5. Conclusions

Fan-Out Wafer and Panel Level Packaging is one of the latest trends in microelectronics packaging
with the potential for miniaturization but also for heterogeneous packaging. In this study, the “mold
first” approach was chosen for an ASIC package development with integrated SMD capacitors. The
process developments and the successful overall proof of concept for the fan-out wafer/panel level
packaging approach were conducted on a 200 mm wafer size. In a second step, the technology was
scaled up to a 457 × 305 mm2 panel size using the same materials, equipment and process flow,
demonstrating the low cost and large area capabilities of the approach. Hence, this technology is well
suited for applications such as the targeted energy harvester, where heterogeneous components have
to be integrated into a miniaturized system.
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