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Abstract: The electron spin degree of freedom can provide the functionality of “nonvolatility” in
electronic devices. For example, magnetoresistive random access memory (MRAM) is expected as
an ideal nonvolatile working memory, with high speed response, high write endurance, and good
compatibility with complementary metal-oxide-semiconductor (CMOS) technologies. However,
a challenging technical issue is to reduce the operating power. With the present technology, an
electrical current is required to control the direction and dynamics of the spin. This consumes high
energy when compared with electric-field controlled devices, such as those that are used in the
semiconductor industry. A novel approach to overcome this problem is to use the voltage-controlled
magnetic anisotropy (VCMA) effect, which draws attention to the development of a new type of
MRAM that is controlled by voltage (voltage-torque MRAM). This paper reviews recent progress
in experimental demonstrations of the VCMA effect. First, we present an overview of the early
experimental observations of the VCMA effect in all-solid state devices, and follow this with an
introduction of the concept of the voltage-induced dynamic switching technique. Subsequently, we
describe recent progress in understanding of physical origin of the VCMA effect. Finally, new materials
research to realize a highly-efficient VCMA effect and the verification of reliable voltage-induced
dynamic switching with a low write error rate are introduced, followed by a discussion of the technical
challenges that will be encountered in the future development of voltage-torque MRAM.

Keywords: voltage-controlled magnetic anisotropy; magnetoresistive random access memory;
magnetic tunnel junction

1. Introduction

The evolving information society has triggered the rapid spread of advanced technologies, such
as Artificial Intelligence (AI), Advanced Safety Vehicle (ASV), and IoT (Internet of Things), and this
has led to further industrial innovation. In the society of the future, Big-Data collected from physical
space will be stored and analyzed in cyber space, which creates new social values. Such a data-driven
society can only be sustained by the high-speed processing of Big-Data; therefore, reducing the power
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consumption of nano-electronic devices is becoming increasingly crucial. One promising approach is
the introduction of nonvolatile computation.

It is expected that the stand-by power of future computing systems will be reduced by utilizing
the nonvolatile features of spintronic devices, such as a magnetoresistive random-access memory
(MRAM) while using magnetic tunnel junctions (MTJ). An MTJ consists of two ferromagnetic layers
that are separated by an ultrathin insulating layer, such as magnesium oxide (MgO) [1,2]. Electrons can
tunnel through the barrier when a bias voltage is applied between the two ferromagnetic layers due
to the ultrathin thickness of the insulating layer. The amplitude of the tunneling current depends on
the relative angle between the magnetizations in each ferromagnetic layer through a spin-dependent
tunneling process, which is called the tunnel magnetoresistance (TMR) effect. The direction of the
magnetizations of one of the ferromagnetic layers is fixed (reference layer), typically by exchange
coupling with an antiferromagnetic material. An external field (free layer), using an electric-current,
can control the direction in the other, as discussed below. In this way information is written to the
memory device. Then, the information can be stored by controlling the magnetization configuration
between parallel and anti-parallel states, exhibiting two resistance states, in a nonvolatile manner.

MRAM has great potential to be a fast, high write endurance, and CMOS-compatible nonvolatile
memory, which is suitable for embedded as well as standalone memory applications. However, one of
the significant remaining challenges is to reduce the energy that is needed to write information, that is,
to switch the magnetization. In the long history of magnetism, magnetic fields that are produced by
electric-current have been used for magnetization reversal. This indirect approach is inefficient and
not scalable. Spintronics has brought us a new way of switching the magnetization through the s-d
exchange interaction between the conduction electron spin and localized spin, called the spin-transfer
torque (STT) effect [3–8]. The spin angular momentum that is carried by conduction electrons can
be transferred to localized electrons and can induce magnetization reversal. Recently, an alternative
technique for magnetization switching using the spin Hall effect, which is called the spin-orbit torque
(SOT) switching [9–12], has also been attracting attention. A typical SOT device comprises a bilayer
that consists of a non-magnetic heavy metal layer, such as Ta or W, and a ferromagnetic layer capped
by an oxide. A transverse pure-spin current is generated when an in-plane electric-current is injected
into the bilayer due to the spin Hall effect. The accumulation of spin at the heavy metal/ferromagnet
interface exerts a torque and induces magnetization switching. In this switching scheme, high write
endurance can be realized, even with high speed switching of the order of a few nanoseconds, because
the read and write passes are separate.

STT-based switching (STT-MRAM) has brought a drastic reduction in writing energy and expanded
potential for applications; STT-MRAM [13–15]. Figure 1 summarizes the reported writing energies
for a MRAM (red dots) and STT-MRAM (blue dots) as a function of the MTJ cell size. For example,
recent developments in STT-MRAMs have achieved writing energies of approximately 100 fJ/bit in
perpendicularly magnetized MTJs [13], which is close to the writing energy for a dynamic-RAM
(DRAM). However, it is still much higher than that of a static-RAM (SRAM), which is made up of
several MOSFETs that an electric-field operates. Furthermore, a writing energy of 100 fJ/bit corresponds
to 107 kBT (kB is the Boltzmann constant and T is the temperature, assumed to be 300 K). On the other
hand, the energy that is required to maintain magnetic information, i.e. the thermal stability, is about
60 kBT (green line in Figure 1), which means that we have a large energy gap between data writing
and retention, in the order of 105. This difference mainly comes from unwanted energy consumption
due to ohmic dissipation of the electric-current flow. Overcoming this fundamental issue using a
novel way of electric-field based spin manipulation is strongly desired. Not only for MRAMs, but
all of the nonvolatile memories that have been proposed so far have a dilemma of choosing between
stable nonvolatility and high operating energy. Therefore, the development of a novel type of memory
having low operating energy as well as low stand-by energy can have great impact on the design of
future memory hierarchy.



Micromachines 2019, 10, 327 3 of 31
Micromachines 2019, 10, x 3 of 31 

 

 

Figure 1. Reported writing energy for toggle magnetoresistive random-access memory (MRAM) (red 
dots) and spin-transfer torque-based switching (STT-MRAM) (blue dots) as a function of magnetic 
tunnel junctions (MTJ) cell size and the target area for voltage-torque MRAM. 

Various kinds of approaches to the electric-field manipulation of spin have been proposed and 
experimentally demonstrated, such as using the inverse magnetostriction effect in a multilayered 
stack with piezoelectric materials [16–18], the gate-controlled Curie temperature in ferromagnetic 
semiconductors [19–21] or even in an ultrathin ferromagnetic metal layer [22], magnetoelectric 
switching of exchange bias [23–26], electric polarization induced control in magnetic anisotropy at 
the ferromagnetic/ferroelectric interface [27,28], electric-field induced magnetic phase transition 
through structural phase transition [29], and the utilization of multiferroic materials [30,31]. 
However, each of these approaches have the drawbacks of limited operation temperature or low 
write endurance or difficulty in the introduction to magnetoresistive devices, although these 
requirements should be simultaneously satisfied for memory applications. We have focused on the 
voltage-controlled magnetic anisotropy (VCMA) effect in an ultrathin ferromagnetic layer [32,33] to 
overcome this problem.  

This paper reviews recent progress in the research of the VCMA effect and the challenges that 
are faced in developing new types of MRAM controlled by voltage, called voltage-torque MRAM 
(also called Magnetoelectric (ME)-RAM) [34–39]. Section Ⅱ presents an overview of the early 
experimental observations of the VCMA effect in all-solid state devices and the concept of voltage-
induced dynamic switching, with a discussion of the technical challenges. In section Ⅲ, the current 
understanding of the physical origin of the VCMA effect is discussed through experimental 
investigations while using X-ray absorption spectroscopy (XAS) and magnetic circular dichroism 
(XMCD) analyses with first-principles calculation. Section Ⅳ presents the materials research being 
done to enhance the VCMA effect, especially focusing on the heavy metal doping technique. Finally, 
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Weisheit et al. first reported the VCMA effect in a 3d transition ferromagnetic layer in 2007 [32]. 
They observed a coercivity change of a few % in 2–4 nm-thick FePt(Pd) films immersed in a liquid 
electrolyte. Opposing trends in the change in coercivity in FePt and FePd, depending on the applied 
voltage, were observed. An electric double layer is effective for applying a large electric-field at the 
interface; however, the operating speed is limited and we need to take care of the influence of 
chemical reactions. The voltage control of in-plane magnetic anisotropy was also found in 
ferromagnetic semiconductors at low temperature [40]. Theoretical attempts to understand the 

Figure 1. Reported writing energy for toggle magnetoresistive random-access memory (MRAM)
(red dots) and spin-transfer torque-based switching (STT-MRAM) (blue dots) as a function of magnetic
tunnel junctions (MTJ) cell size and the target area for voltage-torque MRAM.

Various kinds of approaches to the electric-field manipulation of spin have been proposed and
experimentally demonstrated, such as using the inverse magnetostriction effect in a multilayered
stack with piezoelectric materials [16–18], the gate-controlled Curie temperature in ferromagnetic
semiconductors [19–21] or even in an ultrathin ferromagnetic metal layer [22], magnetoelectric
switching of exchange bias [23–26], electric polarization induced control in magnetic anisotropy at the
ferromagnetic/ferroelectric interface [27,28], electric-field induced magnetic phase transition through
structural phase transition [29], and the utilization of multiferroic materials [30,31]. However, each
of these approaches have the drawbacks of limited operation temperature or low write endurance
or difficulty in the introduction to magnetoresistive devices, although these requirements should be
simultaneously satisfied for memory applications. We have focused on the voltage-controlled magnetic
anisotropy (VCMA) effect in an ultrathin ferromagnetic layer [32,33] to overcome this problem.

This paper reviews recent progress in the research of the VCMA effect and the challenges that are
faced in developing new types of MRAM controlled by voltage, called voltage-torque MRAM (also
called Magnetoelectric (ME)-RAM) [34–39]. Section 2 presents an overview of the early experimental
observations of the VCMA effect in all-solid state devices and the concept of voltage-induced dynamic
switching, with a discussion of the technical challenges. In Section 3, the current understanding of the
physical origin of the VCMA effect is discussed through experimental investigations while using X-ray
absorption spectroscopy (XAS) and magnetic circular dichroism (XMCD) analyses with first-principles
calculation. Section 4 presents the materials research being done to enhance the VCMA effect, especially
focusing on the heavy metal doping technique. Finally, in Section 5, experimental demonstrations
of reliable voltage-induced dynamic switching and an understanding of the voltage-induced spin
dynamics are discussed, together with a discussion on the theoretical investigations being made.

2. Overview of the VCMA Effect and Voltage-Induced Dynamic Switching

Weisheit et al. first reported the VCMA effect in a 3d transition ferromagnetic layer in 2007 [32].
They observed a coercivity change of a few % in 2–4 nm-thick FePt(Pd) films immersed in a liquid
electrolyte. Opposing trends in the change in coercivity in FePt and FePd, depending on the applied
voltage, were observed. An electric double layer is effective for applying a large electric-field at the
interface; however, the operating speed is limited and we need to take care of the influence of chemical
reactions. The voltage control of in-plane magnetic anisotropy was also found in ferromagnetic
semiconductors at low temperature [40]. Theoretical attempts to understand the physical origin of
the VCMA effect in metal started around the same time. Duan et al. proposed that spin-dependent
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screening of the electric-field can induce modification in the surface magnetization and magnetic
anisotropy [41]. Nakamura et al. calculated the VCMA effect in a freestanding Fe(001) monolayer and
pointed out that electric-field induced changes in the band structure, especially the p orbitals near the
Fermi level, which are coupled to the d states, play an important role [42]. Tsujikawa et al. studied
the VCMA effect in a Pt/Fe/Pt/vacuum system and found that relative modification in the electron
filling of the 3d orbital induced by the accumulated charges at the interface causes a change in the
perpendicular magnetic anisotropy (PMA) [43]. Other possible mechanisms have also been discussed,
such as electric-field induced modification in Rashba spin-orbit anisotropy [44,45] and electric-field
induced atomic displacement at the interface between ferromagnetic oxide and dielectric layers [46].

We attempted to apply the VCMA effect in an all solid state structure, which consisted of epitaxial
Au/ultrathin Fe(Co)/MgO/polyimide/ITO junctions grown on MgO(001) substrates (see Figure 2a)
to investigate the feasibility for practical applications [33,47]. Figure 2b shows an example of polar
magneto-optical Kerr effect (MOKE) hysteresis curves that were measured under the application of
a voltage. The thickness of the Fe80Co20 layer is fixed at 0.58 nm. The bias direction is defined with
respect to the top ITO electrode. A clear change in the saturation field in the out-of-plane direction can
be seen, which suggests a modification in the PMA. Under the application of a positive bias, the PMA
is suppressed and the in-plane anisotropy becomes more stable. On the other hand, the application of
a negative voltage enhances the PMA and even the transition of the magnetic easy axis can be realized
from the in-plane to the out-of-plane direction.
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Figure 2. (a) Schematic illustration of sample stack used for the first demonstration of the
voltage-controlled magnetic anisotropy (VCMA) effect in an all-solid state structure, and (b) applied
bias voltage dependence of the polar-magneto-optical Kerr effect (MOKE) hysteresis curves for a
0.58 nm-thick Fe80Co20 layer.

Due to screening by free electrons, the penetration of the electric-field into a metal is limited to the
surface, unlike in the case of a semiconductor; however, if the thickness of the ferromagnetic layer is
thin enough, e.g. several monoatomic layers, the modulation in the electronic structure at the interface
can make a sizable impact on the magnetic properties. Details of an experimental verification for the
physical origin of the VCMA effect are discussed in Section 2.

One great advantage of the VCMA effect is its high applicability in a MTJ structure, which
is the most important practical devices in spintronics. Figure 3 exhibits the first demonstration
of the VCMA effect that was observed in a MTJ structure, which consisted of Cr/ Au/ultrathin
Fe80Co20(0.5 nm)/MgO(tMgO)/Fe grown on a MgO(001) substrate [48]. Here, we made electrical
ferromagnetic resonance (FMR) measurements through the TMR effect. The PMA energy, KPMA, was
evaluated from the resonant frequency of the free layer at each applied voltage. In addition to FMR
measurements, the effect of a bias voltage on normalized TMR curves has also often been used for the
quantitative evaluation of the VCMA effect, as discussed later [49]. Generally, the PMA energy linearly
changes as a function of the applied electric field, E, which is defined as the applied bias voltage,
Vbias, divided by the MgO thickness, tMgO. The slope of the linear relationship represents the VCMA
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coefficient in units of J/Vm, e.g. −37 fJ/Vm for the case in Figure 3. The VCMA coefficient is one of
the most important parameters for demonstrating scalability and also in the reliable switching of the
magnetization and thus the development of voltage-torque MRAM.
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The realization of the VCMA effect in all-solid state devices, including a MTJ structure, made
it possible for us to demonstrate the high speed response of this effect, such as in voltage-induced
ferromagnetic resonance excitation [50–54], dynamic magnetization switching driven solely by the
application of a voltage [55], and spin wave excitation [56–58].

In addition to ultrathin epitaxial films with large PMA [35,59–67], VCMA effects have been
observed in various materials systems, for example, in sputter-deposited CoFeB [68–81], which is
an important practical material that is used in the mass production of MTJs, and in self-assembled
nano-islands [82], nanocomposite structures [83], and ultrathin layers with quantum well states [84].
The VCMA effect can also be applied for the control of domain wall motion [85–87] and magnetic
skyrmions [88–90]. In addition, voltage control of the magnetic properties has been expanded not
only for the PMA, but also for the Curie temperature [22], Dzyaloshinskii-Moriya interactions [91],
interlayer exchange coupling [92], and proximity-induced magnetism in non-magnetic metal thin
films [93–95].

The VCMA effect can induce a transition of the magnetic easy axis between the in-plane and
out-of-plane directions by the application of a static voltage; however, bi-stable switching is not easily
attained, because the VCMA effect does not break the time reversal symmetry. One possible way is to
use the VCMA effect to assist other external fields. For example, the coercivity of the perpendicularly
magnetized film can be reduced by the application of dc voltage [47,96,97] or of voltage-induced
FMR [98], just as in the microwave-assisted magnetization reversal (MAMR) technique. Moreover,
the combination of STT [99,100] or SOT [101] and the VCMA effect has also been experimentally
demonstrated. These approaches are effective in reducing the energy that is required for writing by
electric-current based manipulation; however, the realization of magnetization switching solely by a
voltage effect is much more preferable.

We proposed pulse voltage-induced dynamic switching to overcome this problem (see Figure 4).
This technique was first demonstrated in in-plane magnetized MTJs [55,102] and it was then applied
in perpendicularly-magnetized MTJs [103–109]. For example, we assume the initial state (Figure 4a)
to be the perpendicularly magnetized “up” state under the application of an in-plane bias magnetic
field, Hbias. When a short pulse voltage is applied to eliminate the PMA completely, the magnetization
starts to precess around the Hbias (Figure 4b). If the voltage pulse is turned off at the timing of half turn
precession, then the magnetization can be stabilized in the opposite “down” direction (Figure 4c). Hbias
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is required to determine the axis of magnetization precession. The effective field, such as crystalline
anisotropy field and the exchange bias field, is also applicable.
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film. The in-plane bias magnetic field, Hbias, which determines the axis of the precessional dynamics,
is applied in the +x direction. (a) initial state (point S), (b) precessional switching process induced by
an application of pulse voltage (from point S to point M), and (c) relaxation process (from point M to
point E).

Figure 5a shows an example of an experimental demonstration of voltage-induced dynamic
switching being observed in perpendicularly magnetized MTJs [105]. The top FeB layer with a W cap
is the voltage-driven free layer. Under an optimized applied magnetic field, we achieved the stable
toggle switching by the successive application of voltage pulses with a width of 1 ns and amplitude of
−1.2 V. The precessional dynamics of the magnetization are reflected in the oscillation of the switching
probability (PSW) as a function of pulse width, as shown in Figure 5b. A high PSW is obtained at the
timing of half turn precession; however, when the pulse width is twice this, one turn precession results
in low PSW. From a practical point of view, the first half turn precession is effective in obtaining a
low WER with fast switching speed. Under the condition that the PMA is completely eliminated, the
amplitude of Hbias determines the precession frequency, and then the switching time, tSW for the half
turn precession is expressed as

tSW ∼
π
(
1− α2

)
γµ0Hbias

(1)

where α, γ, and µ0 are the magnetic damping constant, the gyromagnetic ratio, and the permeability of
vacuum, respectively.

The possible advantages of voltage-induced dynamic switching are as follows. (i) Fast switching
(~1 nanosecond) can be induced with an ultralow switching power of the order of a few fJ/bit.
(ii) The switching transistor can be downsized, because we do not need to apply a large electric-current.
(iii) Unipolar switching can separate the polarity of voltages for writing and reading. In addition,
the VCMA-induced enhancement in PMA has been used to propose a unique approach to reduce the
read disturbance [110].
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On the other hand, the following technical challenges remain. Firstly, the realization of a
large VCMA effect is the most important issue to show the scalability of the voltage-torque MRAM,
as discussed in Section 4. Furthermore, as seen in Figure 5b, the switching probability is sensitive
to the writing pulse width, due to the precession-mediated switching process. Therefore, we need
verification as to whether a sufficiently-low WER can be achieved by the voltage-induced dynamic
switching technique. In addition, this is a toggle switching technique, so pre-read and read-verify
processes are always required for writing. These reading processes dominate the total write time, and
it can be critical when the resistance of the MTJ cell increases. In addition, the removal of the external
magnetic field is also an important issue for practical applications.
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sample structure of a voltage-controlled perpendicularly-magnetized MTJ and observed bi-stable
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voltage applications. (b) Pulse width dependence of switching probability, PSW. Due to the precessional
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3. Physical Origin of the VCMA Effect

In this section, recent experimental trials conducted to understand the physical origin of the
VCMA effect are introduced [111]. The following two mechanisms account for the purely electronic
VCMA effect. The first mechanism comes from the charge-doping-induced anisotropy in the orbital
angular momentum, as shown in Figure 6a. As each electron orbital in the vicinity of the Fermi
level has a different density of states, selective charge doping may induce anisotropy in the orbital
angular momentum. This effect changes the PMA energy through spin-orbit interactions from the
spin-conserved virtual excitation processes [112,113], as expressed by the first term in Equation (2) [114].

−
1
4
λ
}
(〈

∆Lξ, ↓↓
〉
−

〈
∆Lξ, ↑↑

〉)
+
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λ
}
(〈
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〉
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Here, λ is the spin-orbit interaction coefficient. L and T′ are the orbital angular momentum and
part of the magnetic dipole operator, respectively. Here, 〈∆Lξ〉 ≡ 〈Lz〉 − 〈Lx〉 and 〈∆T′ζ〉 ≡ 〈T

′
z〉 − 〈T′x〉

are used. 〈Lz〉 and 〈Lx〉 are evaluated for the z- and x- components of the spin angular momentum,
respectively. The same is the case for 〈T′z〉 and 〈T′x〉. ↑ and ↓ denote the contributions from the majority
and minority spin-bands, respectively. We call the first mechanism the orbital magnetic moment
mechanism. The second mechanism is the VCMA effect from the induction of an electric quadrupole
(Figure 6b). An electric-field applied to the metal/dielectric interface is inhomogeneous, owing to
the strong electrostatic screening effect in the metal, such as electric-field, including higher-order
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quadratic components, can couple with the electric quadrupole correlated with the magnetic dipole
operator in an electron shell of the metal layer. The induced energy split of each orbital changes the
magnetic anisotropy through spin-orbit interactions from spin-flip virtual excitation processes [115,116],
as shown in Figure 6c. The latter mechanism corresponds to the second term in Equation (2). We call
this the electric quadrupole mechanism. As the expectation values for the orbital angular momentum
and the magnetic dipole operator can be measured as the orbital magnetic moment and the magnetic
dipole Tz term (mT), respectively, the aforementioned two mechanisms can be validated by X-ray
absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD) spectroscopy.
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The XAS/XMCD experiments provide element-specific information on the electronic structure via
the optical transition from the core level to unoccupied states in the valence band. Based on the use of
circularly polarized X-rays, X-ray absorption techniques provide interesting features for the study of
magnetic materials. Figure 7 shows a schematic diagram of the electronic states that are involved in
an optical transition from the 2p core to d valence states, which is related to XMCD at the L edges of
transition metals. The dichroic signal directly reflects the difference in the density of the states near
the Fermi level between the up and down spin sub-bands. From the XMCD results with sum-rule
analysis [117,118], the magnetic moments (spin magnetic moment: mS, mL, and mT) can be determined
from the measured XAS/XMCD spectra. Here, the measured orbital magnetic moments and magnetic
dipole Tz term have the following relationships;

∆mL = −
µB(〈∆L↓↓〉+〈∆L↓↓〉)
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It should be noted that the PMA energy from the spin-conserved virtual excitation process (first
term in Equation (2)) is related to the orbital magnetic moment and the PMA energy from the spin-flip
virtual excitation process (second term in Equation (2)) is related to the magnetic dipole Tz term.
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A Fe/Co (1 ML)/MgO multilayer was employed to see the changes in the orbital magnetic moment
in XAS/XMCD experiments [113]. The sample stack is depicted in Figure 8a. A multilayered structure,
consisting of bcc-V(001) (30 nm)/bcc-Fe(001) (0.4 nm)/Co (0.14 nm)/MgO(001) (2 nm)/SiO2 (5 nm)/Cr
(2 nm)/Au (5 nm), was deposited on a MgO(001) substrate. Figure 8b shows the typical XAS/XMCD
results around the L3 and L2 edges of Co with a magnetic field of 1.9 T (θ = 20◦) to saturate the
magnetization of the Fe/Co layer. The changes in the orbital magnetic moment and effective spin
magnetic moment (mS − 7mT) of Co were determined while using sum-rule analysis, and they are
summarized in Figure 8c,d. We can see that mL of Co with an electric-field of −0.2 V/nm is larger than
that corresponding to +0.2 V/nm. Moreover, the induced change in mL with θ = 20◦ is larger than that
with θ = 70◦. The experiment demonstrates that an orbital magnetic moment anisotropy change of
(0.013 ± 0.008)µB between the magnetization angles of θ = 20◦ and 70◦ was generated in the presence of
applied electric fields of ±0.2 V/nm. Figure 8d shows the electric-field-induced change in mS − 7mT of
Co. As with mL, mS − 7mT is enhanced under the application of a negative electric-field. Moreover, the
electric-field-induced change in the magnetic moment is anisotropic. In contrast to mT, it is known that
mS is not sensitive to the magnetization direction. Hence, the anisotropic part of the induced change in
the magnetic moment should be attributed to mT.
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edges. (c) Voltage-induced change to the orbital magnetic moment in Co. (d) Voltage-induced changes
to the effective spin magnetic moment (mS − 7mT) in Co. Reprinted figure with permission from [113],
Copyright 2017 by the American Physical Society.

As discussed in the previous section, Equation (2) can be used to analyze the VCMA effect. If we
employ the spin-orbit interaction coefficient of Co, λCo = 5 meV, then the induced change in the
PMA energy is estimated to be 0.039 ± 0.023 mJ/m2 when the applied electric-field is switched from
+0.2 V/nm to −0.2 V/nm. Here, the experimentally obtained ∆mL = (0.017±0.010)µB was used. From
the VCMA coefficient in the Fe/Co/MgO system (−82 fJ/Vm), the PMA energy change at ±0.2 V/nm is
0.03 mJ/m2, which is in good agreement with the PMA energy change that was obtained using the first
term of Equation (2). From the discussion above, the change in the orbital magnetic moment anisotropy
in Co seems to explain the VCMA effect. However, the impact of the change in the magnetic dipole
Tz term (mT) that is shown in Figure 8d on the VCMA effect remains to be seen. In Ref. 113, a first
principles study was employed to clarify this point. As a result, the VCMA effect from the spin-flip
terms (∆E↓↑ + ∆E↑↓) is found to be negligible and that from the spin-conserved terms (∆E↑↑ + ∆E↓↓)
appeared to be dominant. Therefore, the change in orbital magnetic moment is responsible for the
VCMA effect. Due to the large exchange splitting for Co, the observed changes in mT do not contribute
to the VCMA effect, as described by the second term in Equation (2).

It has been reported that the spin-orbit interaction energy from a spin-flip virtual excitation
process makes a significant contribution to the VCMA effect when 3d/5d-layered transition metals
are employed [116]. Figure 9a shows an experimental design and a high-angle annular dark-field
scanning transmission electron microscopy (HAADF-STEM) image of the device. Figure 9b shows
the typical results of the polarization-averaged XAS and its XMCD around the L3 and L2 energy
edges of Pt. A perpendicular magnetic field of ±60 mT was applied to saturate the magnetization of
FePt. Figure 9c,d show electric-field-induced changes in the magnetic moments of Pt. The results
confirm a clear bias voltage inductions of mS − 7mT, while there is no significant change to mL under
voltage applications.

In general, in low-symmetry systems, such as interfaces, the atomic electron orbital may possess an
electric quadrupole moment. If the atom is also spin-polarized, the electric quadrupole moment induces
the anisotropic part of the spin-density distribution, i.e., the magnetic dipole Tz term (mT) [114–116,118].
In contrast to mT, mS is not sensitive to the magnetization direction. In Ref. 116, the voltage-induced
change in mS − 7mT shows large magnetization direction dependence. Thus, the observations indicate
the significant induction of mT in Pt by an external voltage. A first-principles study was also conducted
for the FePt/MgO system, similar to the Fe/Co/MgO study. As a result, firstly, the monoatomic Pt layer
at the interface with MgO makes the dominant contribution to the VCMA effect. Moreover, while the
VCMA effect from the spin-conserved terms (∆E↑↑ + ∆E↓↓) decreases the PMA energy, the VCMA
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effect that is induced by the applied voltage from the spin-flip terms of interfacial Pt increases the PMA
energy (∆E↓↑ + ∆E↑↓). The total PMA energy in the FePt/MgO system increases under the condition of
electron depletion at the Pt/MgO interface, as the PMA energy increase by the spin-flip terms is greater
than the PMA energy decrease by the spin-conserved terms.Micromachines 2019, 10, x 11 of 31 
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To conclude, for the 3d-transition ferromagnetic metals, it is important to consider the orbital
magnetic moment anisotropy. The validity of the Bruno model [112] (first term of Equation (2) and
Figure 6a) has been experimentally demonstrated in Ref. 113. For the 3d/5d-multilayered ferromagnetic
metals, the orbital magnetic moment anisotropy in 3d-metals cannot completely explain the VCMA
effect. In addition to the magnetic moments in 3d metals, those in 5d metals should be considered
in treating the total PMA energy in the system. Moreover, both the orbital magnetic moments and
the electric quadrupole mechanisms (second term of Equation (2) and Figure 6b) of Pt dominate the
VCMA in the case of L10-FePt, as shown in Ref. 116. As discussed in the recent review paper [111],
it has been widely recognized that the XAS/XMCD spectroscopy is a powerful tool to investigate the
voltage-induced effects in spintronic devices [28,113,116,119–124].

A much larger VCMA coefficient can be obtained when compared with that of purely electronic
origin if we use a chemical reaction [122,125]. For example, a VCMA coefficient exceeding 10,000 fJ/Vm
originating from reversible oxygen ion migration has been demonstrated in the Co/GdOx system.
In Ref. 122, XAS/XMCD spectroscopy at the Co absorption edge was employed to a Ta (4 nm)/Pt
(3 nm)/Co (0.9 nm)/GdOx (33 nm)/Ta (2 nm)/Au (12 nm) multilayer and found that an applied voltage
changes the oxidation state and magnetization of the Co. Ref. 125 also reports real-time measurements
of such an electrochemical VCMA effect. The operating speed strongly depends on the applied voltage
and temperature, which strongly indicates that the electrochemical VCMA requires a thermal activation
process. The reported maximum speed was in the sub-millisecond range. Therefore, such large values
of the electrochemical VCMA seem attractive, but lie beyond the scope of VCMA studies for working
memory applications. A similarly large VCMA effect with limited operating speed has been observed
in many systems with electrochemical reactions [28,126,127] and/or charge traps [128,129].
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Recently, strain-induced modulation of electronic structures and its influence on the VCMA effect
has attracted attention [130,131]. For example, Hibino et al. reported a high VCMA coefficient of
+1600 fJ/Vm in a Pt/Co/Pd/MgO structure at 10 K [95]. Here, the thin Pd layer possesses a magnetic
moment that is induced by the proximity effect from the adjacent Co layer. At room temperature,
a conventional linear VCMA effect with an efficiency of −90 fJ/Vm was observed. On the other hand,
at lower temperatures below 100 K, a strong nonlinear VCMA effect appeared with the sign reversal.
They explained that the observed effect can be attributed to the temperature dependence of the strain
in the Pd. Similarly, Kato et al. reported a VCMA coefficient of over +1000 fJ/Vm at room temperature
in an Ir/tetragonal FeCo/MgO structure [132]. So far, only static measurements have been done in these
experiments. A demonstration of a high speed response is required to confirm whether they actually
originate from the purely-electronic VCMA effect or not.

4. Materials Research for a Large VCMA Effect

The VCMA coefficient is one of the most important parameters for the scalability design of
voltage-torque MRAM. When the cell size is reduced, we need to increase the PMA of the free layer to
maintain the target thermal stability. As described in Section 2, voltage-induced dynamic switching
requires the elimination of the PMA during the precessional dynamics.

Figure 10 shows a simple estimate of the PMA and VCMA coefficient required to consider the
scalability [34,35]. As the simplest example, if we assume a free layer whose PMA is only determined
by the interface magnetic anisotropy at the interface with the dielectric layer, the effective PMA energy
is expressed as

KPMA(E) =
Ki(E)
tfree

−
1
2
µ0M2

S (4)

Here, tfree and MS are the thickness and saturation magnetization of the free layer. Ki(E) is the
PMA under application of the electric-field (E), and it is given by

Ki(E) = Ki(E = 0) − ηE (5)

where η is the VCMA coefficient. The thermal stability ∆(E) of the free layer under the application of
the electric-field can be expressed by

∆(E) =
KPMA(E)Atfree

kBT
= ∆0 −

ηA
kBT

E (6)

Here, A and ∆0 are the area of the free layer and the thermal stability under zero
electric-field, respectively.

Consequently, the VCMA coefficient, η, which is required to eliminate ∆0 can be expressed as,

η =
kBT∆0

AESW
(7)

where ESW is the amplitude of the switching electric-field.
For the curves in Figure 10, it was assumed that tfree = 1 nm and ESW = 1 V/nm for each value

of ∆0. If we take cache memory applications as an example, the required KPMAtfree values range
from 0.2 mJ/m2 to 0.5 mJ/m2, depending on the target ∆0 values; consequently, the required VCMA
coefficient is estimated to be from 200 fJ/Vm to 500 fJ/Vm. The main memory applications need higher
KPMAtfree values in the range from 0.6 mJ/m2 to 1.5 mJ/m2. As a result, the required VCMA coefficient
is in the range from 600 fJ/Vm to 1500 fJ/Vm. However, in experiments that have only focused on
the purely-electronic VCMA effect, the achieved VCMA coefficient that is demonstrated in practical
materials, such as CoFeB, has been limited to about 100 fJ/Vm [71,78,81,98].
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We employed a fully epitaxial Cr/ultrathin Fe/MgO system as a standard system for the materials
research of VCMA effect [133], because large interface magnetic anisotropy can be obtained due to the
flat and well-defined Fe/MgO interface [134–136] when compared to MTJs with noble metal buffers,
which can have the problem of surface segregation [137]. To evaluate the VCMA properties, we used
molecular beam epitaxy to prepare orthogonally-magnetized MTJ structures that consisted of a MgO
seed (3 nm)/Cr buffer (30 nm)/ultrathin Fe (tFe)/MgO (tMgO = 2.3 nm)/Fe(10 nm) on MgO(001) substrates.
Here, the bottom ultrathin Fe layer is the voltage-controlled free layer with perpendicular magnetic
easy axis and the top 10 nm-thick Fe is the in-plane magnetized reference layer. Figure 11a shows an
example of the applied bias voltage, Vbias, and dependence of the half-MR loop measured under an
in-plane magnetic field, Hex. The vertical axis is normalized using the maximum (Hex = 0 Oe) and
minimum (Hex = −20 kOe) resistances. The Fe thickness is fixed at tFe = 0.44 nm.

The application of an in-plane magnetic field tilts the magnetization of the ultrathin Fe layer into
the magnetic hard axis, while that of the reference layer remains in the film plane (see the drawings
in Figure 11a). Therefore, the effective perpendicular anisotropy field is reflected in the saturation
behavior of tunneling resistance. The tunneling conductance, G, depends on the relative angle (θ)
between the magnetizations of the free and reference layers, i.e. G(θ) = G90 + (GP−G90)cosθ. Here, G90

and GP are the conductance under the orthogonal and parallel magnetization configurations. Therefore,
the ratio of the in-plane component of the magnetization of the free layer, Min-plane, to its saturation
magnetization, MS, is expressed as

Min−plane

MS
= cosθ =

R90 −R(θ)
R(θ)

RP

R90 −RP
(8)

where RP is the MTJ resistance in the parallel magnetization configuration, R90 is the MTJ resistance in
the orthogonal magnetization configuration, and R(θ) is the MTJ resistance when the magnetization of
the ultrathin Fe layer is tilted towards the in-plane direction at angle θ under the application of an
in-plane magnetic field. Using Equation (8), we can evaluate the normalized in-plane magnetization
versus the applied magnetic field. The inset in Figure 11b shows an example of a normalized M-H
curve measured under Vbias = 10 mV. The PMA energy, KPMA can be calculated from Min-plane (H)
with the saturation magnetization value evaluated by SQUID measurements (yellow area in the inset
of Figure 11b). Figure 11b summarizes the applied electric-field, Vbias/tMgO, dependence of KPMAtFe.
With ultrathin layers of Fe, an unexpected nonlinear VCMA effect was observed. Under the application
of negative voltages, the PMA monotonically increases with a large VCMA coefficient of −290 fJ/Vm.
On the other hand, the PMA deviates from a linear relationship under the application of positive
voltages. Figure 12 summarizes the Fe thickness dependence of the VCMA coefficient. This nonlinear
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VCMA effect was only observed with ultrathin layers of Fe, tFe < 0.6 nm (blue dots), and the usual
linear VCMA effect appears for thicker layers (red dots). Xiang et al. systematically investigated the
tunneling conductance, the PMA, and the VCMA effect in a similar system to determine the origin
of the nonlinear VCMA effect, but the MgO was replaced by a MgAl2O4 barrier, which has smaller
lattice mismatch with Fe. Interestingly, they found strong correlation between the VCMA effect and
the quantum well states of ∆1 band formed in an ultrathin Fe layer that is sandwiched between the
Cr and MgO layers [138]. These results may indicate that artificial control of the electronic states in
an ultrathin ferromagnetic layer may provide a new approach for designing the VCMA properties.
In addition to the influence of quantum well states, we found that intentional Cr doping at the Fe/MgO
interface can enhance the PMA and the VCMA effect [62]. Therefore, intermixing with the bottom Cr
buffer may also have an influence on the observed large VCMA effect. A theoretical investigation to
understand the role of the inter-diffused Cr atoms has been proceeded [139,140].
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Figure 11. (a) Bias voltage dependence of normalized tunnel magnetoresistance (TMR) curves measured
under in-plane magnetic fields for an orthogonally magnetized MTJ consisting of Cr/ultrathin Fe
(0.44 nm)/MgO/Fe (10 nm). The inset shows a cross-sectional TEM image of the MTJ. (b) Applied
electric-field dependence of KPMAtFe values. The inset displays an example of a normalized M-H curve.
KPMA was evaluated from the yellow-colored area with the saturation magnetization value that was
obtained by a SQUID measurement. Reprinted figure with permission from [133], Copyright 2017 by
the American Physical Society.
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A large VCMA effect can be obtained with the Cr/ultrathin Fe/MgO system; however, we can only
induce an enhancement in the PMA. As explained in Section 2, reduction in the PMA is required for
voltage-induced dynamic switching of the perpendicularly-magnetized free layer.

Nakamura et al. proposed inserting a heavy metal monolayer at the Fe/MgO interface to improve
the VCMA properties, and found using first-principles calculations that 5d transition metals, such as
Ir and Os, would be effective in enhancing the VCMA coefficient [141]. A few experimental trials of
interface engineering that included the insertion of a heavy metal layer at a CoFe-based film/MgO
interface have been reported [81,142]; however, the VCMA coefficient was still less than 100 fJ/Vm.
Ir seems to be a promising candidate for this purpose due to its huge spin-orbit coupling constant,
which is more than 10 times larger than that of 3d transition ferromagnets [141].

We prepared multilayer structures consisting of Cr (30 nm)/ultrathin Fe(tFe)/Ir(tIr)/MgO (2.5 nm)
with indium-tin oxide (ITO) or Fe (10 nm) top electrodes to investigate the impact of the introduction
of Ir on the interfacial PMA and the VCMA effect [35]. The ultrathin Ir layer was inserted between the
Fe and MgO layers; however, we found that the Ir atoms were dispersed inside the Fe layer during the
post-annealing process, as seen in the HAADF-STEM images in Figure 13a. Atomic-scale Z-contrast
HAADF-STEM imaging enabled the identification of inter-diffused Ir atoms as bright spots that are
indicated by yellow arrows. The first-principles calculation predicts strong in-plane anisotropy at the
Ir/MgO interface [141]; however, we observed an unexpected enhancement in the PMA. Figure 13b
shows a comparison between the polar MOKE hysteresis curves of a single Fe layer (tFe = 1.0 nm)
and an Ir-doped Fe layer formed the bilayer structure consisting of Fe (1.0 nm)/Ir (0.1 nm)). The pure
Fe layer exhibits large saturation fields of about 7 kOe, which indicated an in-plane magnetic easy
axis. On the other hand, the introduction of the quite thin Ir doping layer resulted in transition of
the magnetic easy axis from the in-plane to the out-of-plane direction. Figure 13c summarizes the
dependence of the intrinsic interfacial magnetic anisotropy, Ki,0, on the thickness of the Ir layer. With
appropriate Ir doping, Ki,0 reaches 3.7 mJ/m2, which is about 1.8 times that observed at the Fe/MgO
interface (2.0 mJ/m2) [35,134].
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Figure 13. (a) HAADF-STEM images of a multilayer structure of Cr/ultrathin Ir-doped Fe/MgO.
Inter-diffused Ir atoms can be identified by atomic-scale Z-contrast HAADF-STEM imaging as indicated
by the yellow arrows. (b) Comparison of the polar MOKE hysteresis curves for pure Fe (1 nm)/MgO
and Fe (1 nm)/Ir (0.1 nm)/MgO structures. (c) Dependence of the intrinsic interface magnetic anisotropy
energy, Ki,0, on the thickness of the Ir layer. Reproduced from [35]. CC BY 4.0.
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The Ir doping also has an effect on the VCMA. Figure 14a shows an example of the bias voltage effect
on the TMR curves that were measured under in-plane magnetic fields for an orthogonally-magnetized
MTJ with an Ir-doped Fe free layer (tFeIr = 0.82 nm; formed from Fe (0.77 nm)/Ir (0.05 nm)). The saturation
field shifts with changes in the applied voltage, as is the case in a pure Fe/MgO structure. However, the
applied electric-field dependence of KPMAtFeIr exhibits a completely different trend when compared
with that observed in the Fe/MgO structure. We observed a large reduction in PMA with a VCMA
coefficient of −320 fJ/Vm under positive voltages (see Figure 14b). It is interesting that such a low
doping concentration of Ir, which is even thinner than one monolayer, can have a drastic effect on
the VCMA properties. In addition, voltage-induced FMR measurements confirmed the high speed
response of the VCMA effect, as shown in the inset in Figure 14b. Thus, the observed large VCMA
comes from purely-electronic origin.
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Figure 14. (a) Bias voltage dependence of normalized TMR curves measured under in-plane magnetic
fields for an orthogonally-magnetized MTJ consisting of Cr/Ir-doped Fe(0.82 nm)/MgO/Fe(10 nm). (b)
Applied electric-field dependence of KPMAtFeIr. The inset shows an example of voltage-induced FMR
excitation measured by a homodyne detection technique, which proves the high speed responsiveness
of the observed VCMA effect. Reproduced from [35]. CC BY 4.0.

A theoretical analysis using first-principles calculation was performed in Cu(5ML)/
Fe94Ir6(5ML)/MgO(5ML) structures to discuss the physical origin of the large VCMA effect in Ir-doped
Fe. The Ir-doped bcc Fe was modeled by a supercell consisting of 4×4 unit cells as shown in Figure 15a.
Figure 15b depicts the atomic-resolved electric-field induced magnetic anisotropy energies (MAE) for
the Fe and Ir atoms. The variation in the MAE for the Ir atoms is more than five times greater than
that for the Fe atoms. Interestingly, MAE change in the second layer (layer 2 in Figure 15b) from the
interface with the MgO layer is larger than that of the layer 1, contrary to expectations.

We also attempted to divide the MAE into contributions from the spin-flip and spin-conserved
terms between the occupied and unoccupied states. Figure 15c shows the voltage-induced changes
in MAE that arise from second-order perturbation of the Ir sites in layers 1 and 2. The electric-field
modulation of the spin-conserved term for the majority spin occupied and unoccupied states δE↑↑ is
larger than that for the minority spin states δE↓↓. On the other hand, the spin-flip terms that are by the
electric-field, δE↑↓ and δE↓↑ have almost the same absolute value, but with opposite sign, so the VCMA
effect that arises from the spin-flip term is small. Therefore, the large VCMA effect in Ir-doped Fe is
mainly caused by the electric-field effect on the majority spin Ir-5d states and it can be interpreted by
the modulation in the first term of Equation (2), i.e. the orbital magnetic moment mechanism.
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Figure 15. First principles calculations of the electric-field induced magnetic anisotropy energy change
in an Ir-doped Fe/MgO system. (a) Supercell structure used for the calculation, consisting of MgO
(5 ML)/FeIr (5 ML)/MgO (5 ML). (b) Atomic-resolved magnetic anisotropy energies (MAE) change
induced by an electric-field of 0.1 V/nm in MgO. The Ir concentration was maintained at about 6%
in the FeIr layer. (c) The electric-field induced MAE arising from second-order perturbation of the
spin-orbit coupling for Ir atoms in layers 1 and 2. Reproduced from [35]. CC BY 4.0.

Figure 16 shows the density of states for Ir atoms in layer 2. The majority spin 5d states are
dominant near the Fermi level, since the minority spin 5d states near the Fermi level form bonding
and anti-bonding states by hybridization with the minority spin Fe-3d states. On the other hand,
the majority spin 5d states are well-localized when compared with the minority spin states near the
Fermi level. Figure 16 also shows the MAE as a function of the Fermi energy shift (black line). The PMA
energy is drastically modified by a small shift in Fermi energy reflecting the localized majority spin
states and the large spin-orbit coupling of the Ir atoms. As a result, a large VCMA is obtained for the
charge-doping effect even in layer 2.Micromachines 2019, 10, x 18 of 31 
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The theoretical calculations predict the larger VCMA effect exceeding a few thousand fJ/Vm by
inserting a monolayer of Ir at the Fe/MgO interface; however, such a structure can drastically degrade
the TMR properties in the MTJ device, in addition to the strong in-plane anisotropy. On the other
hand, if Ir doping can improve both the PMA and the VCMA effect while minimizing degradation
in TMR, the MTJs should be much more manufacturable, even by sputtering processes. In fact, the
enhancement of the PMA and the VCMA effect by Ir doping has also been confirmed in polycrystalline
MTJs that are mainly prepared by sputtering [143]. We still have numerous choices for the 4d and 5d
elements, therefore materials engineering using heavy metal doping has enormous possibilities for
further improvement in the interfacial PMA and VCMA properties.

5. Towards Reliable Voltage-Induced Dynamic Switching

In this section, recent experimental trials for reliable voltage-induced dynamic switching are
discussed. As shown in Figure 4, voltage-driven magnetization switching is initiated by precession
of the magnetization that is induced by the VCMA effect and the associated voltage-torque, which
is proportional to the time derivative of the applied voltage. During the application of a voltage,
the magnetization precesses around the effective field while undergoing magnetization damping.
Once the voltage is turned off, the magnetic anisotropy immediately recovers as the ferromagnetic
layer/dielectric layer junction discharges, and the magnetization relaxes into one of two polarities.
We can achieve bipolar magnetization switching using a unipolar voltage pulse with a controlled
duration since the polarity of the final state can be controlled by the voltage pulse width. In the
absence of thermal fluctuations, the magnetization trajectory during the switching process is uniquely
determined for a given initial state and voltage pulse shape, and therefore error-free magnetization
switching can be achieved by choosing the appropriate voltage pulse width. However, in practice,
the magnetization inevitably suffers thermal fluctuations and that results in the stochastic generation of
write errors. Special care must be taken when attempting to reduce the write errors in voltage-torque
MRAM cells. In the case of STT, the current polarity determines the polarity of magnetization switching,
and a longer pulse may be used to reduce write errors. On the other hand, in the case of voltage-induced
dynamic switching, a longer pulse dampens the magnetization along the effective field direction, and
this degrades the switching accuracy.

Although earlier experiments have characterized the basics of voltage-driven magnetization
switching, it was only in 2016 that the WER in a practical MTJ was quantitatively evaluated for the
first time [105]. Figure 17a shows a schematic illustration of an experimental setup for evaluating the
WER of an MTJ. Voltage pulses that were generated by the pulse generator are fed to the MTJ and
these switch the free layer magnetization. The free layer magnetization direction, either parallel or
antiparallel with respect to the reference layer magnetization, can be monitored via the TMR effect.

Figure 17b displays the typical behavior of voltage-driven magnetization switching; Psw is the
switching probability, tpulse is the pulse width; and, Vpulse is the voltage amplitude. When Vpulse is small,
the VCMA effect cannot completely eliminate the magnetic energy barrier; therefore, the magnetization
switching in this region is dominated by thermal activation. As Vpulse is increased, well-defined
oscillation of Psw appears, which is a signature of precession-mediated switching induced by the VCMA
effect. As discussed in Section 2, the highest Psw is obtained at tpulse that corresponds to one-half the
magnetization precession cycle, and then Psw gradually moves toward 0.5 while undergoing damped
oscillations. This behavior can be understood as the combined action of magnetization damping and
thermal fluctuations.

In Ref. 105, Shiota et al. employed perpendicularly magnetized MTJ (p-MTJ) that consisted of a
reference layer/MgO/Fe80B20/W cap and experimentally demonstrated a WER of 4 × 10−3. They also
demonstrated in numerical simulations that the WER could be reduced by improving the thermal
stability factor, ∆ and by reducing the magnetic damping, α of the free layer, as shown in Figure 17c.
An improved ∆ effectively reduces the thermal fluctuations in the initial state and in the relaxation
process after switching. Moreover, a lower α can reduce the influence of thermal fluctuations during
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the switching process, which leads to more accurate writing. However, it should be noted that, the
larger the value of ∆, the larger the VCMA efficiency required, otherwise the magnetization switching
is dominated by thermal activation, and well-controlled magnetization switching cannot be obtained.
By using CoFeB/MgO/CoFeB p-MTJs, Grezes et al. experimentally investigated the WER and the read
disturbance rate as a function of read/write pulse width and amplitude, and examined the compatibility
of the bit-level device performance for integration with CMOS processes [110]. They also simulated
the performance of a 256 kbit voltage-torque MRAM block in a 28 nm CMOS process, and showed
the capability of the MTJs for delivering WERs below 10−9 for 10 ns total write time by introducing
the read verify processes. The introduction of read verify processes makes it possible to reduce the
effective WER, however it causes an increase in the total writing time. Therefore, we need further
effort to reduce the essential WER that is induced by single pulse switching. Recently, Shiota et al.
showed that improvement in the PMA and VCMA properties can be achieved in the MTJ consisting
of Ta/(Co30Fe70)80B20/MgO/reference layer, and demonstrated a WER of 2 × 10−5 without the read
verify process [106]. Further optimization of the composition of the CoFeB alloy and the device
structure allowed for a WER lower than 10−6 to be achieved, as shown in Figure 18 [109]. In this case,
the introduction of a once read verify process enables a practical WER of the order of 10−12.
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In addition to materials engineering, a physical understanding of the voltage-driven magnetization
dynamics is also needed in order to facilitate reductions in the WER. Recent studies [107,108] showed
that numerical simulations that are based on the macrospin approximation could well reproduce
the experimental data by taking into account thermal fluctuations and magnetization damping.
In macrospin approximation, the free layer spins are represented by a magnetic moment M, and its
time evolution can be obtained by numerically solving the Landau-Lifshitz-Gilbert equation:

dM
dt

= γM×Heff +
αM
Ms
×

dM
dt

(9)

where Ms is the saturation magnetization, t is the time, α is the damping constant, and Heff is the
effective field given by

Heff = −
dE
dM

(10)
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and E is the energy density expressed as

E = KPMA

(
1−m2

z

)
−MsHxmx (11)

where m = (mx, my, mz) is the magnetization unit vector and Hx is an in-plane bias magnetic field.
As displayed in Figure 19a, without the VCMA effect, the magnetization has two energy equilibrium

at m̃± =
(
m̃x, 0, ±

√
1− m̃2

x

)
, where m̃x = MsHx/(2KPMA), one maximum at mx = −1, and one saddle

point at mx = 1. By letting KPMA fall to zero, the magnetization precesses around Hx associated with
damping, and the appropriate duration can switch the magnetization direction.

Figure 19b displays a typical plot of the dependence of WER on tpulse that was observed in an
MTJ consisting of a Ta/(Co30Fe70)80B20 (1.1 nm)/MgO/reference layer. The amplitude of the in-plane
component of the bias magnetic field is 890 Oe. The filled circles and the line denote data were
obtained from experiments and numerical simulations, respectively [107]. Good agreement with
the experimental data suggests the validity of the model used for the numerical simulations. It is
noteworthy that the WER exhibits a local maximum at a certain tpulse, which cannot be explained
just by considering the VCMA effect. A detailed analysis of the magnetization trajectory revealed
that thermal agitation during the relaxation process (i.e., after the pulse application) induces the
transition of the magnetization between the precession orbits surrounding the energy minima and that
the precession-orbit transition enhances the WER. The numerical simulations also revealed that the
probability of the precession-orbit transition depends on tpulse (see Ref. 107 for more details). In the
present case, the probability is maximized at around tpulse = 0.12 ns. This results in the appearance of a
local maximum in the WER, and it narrows the operating tpulse range for which reliable magnetization
switching is assured. As the appearance of the WER local maximum is related to magnetization
fluctuations during the relaxation process, we need to reduce its influence by improving the PMA and
VCMA properties in order to achieve a wide operating tpulse range.

Micromachines 2019, 10, x 20 of 31 

 

𝑑𝑴𝑑𝑡 =  𝛾𝑴 × 𝑯ୣ୤୤ +  𝛼𝑴𝑀ୱ × 𝑑𝑴𝑑𝑡  (9) 

where Ms is the saturation magnetization, t is the time, α is the damping constant, and Heff is the 
effective field given by  𝑯ୣ୤୤ =  − 𝑑𝐸𝑑𝑴 (10) 

and E is the energy density expressed as  𝐸 =  𝐾୔୑୅(1 − 𝑚௭ଶ) − 𝑀ୱ𝐻௫𝑚௫ (11) 

where m = (mx, my, mz) is the magnetization unit vector and Hx is an in-plane bias magnetic field. As 
displayed in Figure 19a, without the VCMA effect, the magnetization has two energy equilibrium at 𝒎෥ ± = (𝑚෥௫, 0, ±ඥ1 − 𝑚෥௫ଶ), where 𝑚෥௫ = 𝑀ୱ𝐻௫/(2𝐾୔୑୅), one maximum at mx = −1, and one saddle point 
at mx = 1. By letting KPMA fall to zero, the magnetization precesses around Hx associated with damping, 
and the appropriate duration can switch the magnetization direction.  

Figure 19b displays a typical plot of the dependence of WER on tpulse that was observed in an 
MTJ consisting of a Ta/(Co30Fe70)80B20 (1.1 nm)/MgO/reference layer. The amplitude of the in-plane 
component of the bias magnetic field is 890 Oe. The filled circles and the line denote data were 
obtained from experiments and numerical simulations, respectively [107]. Good agreement with the 
experimental data suggests the validity of the model used for the numerical simulations. It is 
noteworthy that the WER exhibits a local maximum at a certain tpulse, which cannot be explained just 
by considering the VCMA effect. A detailed analysis of the magnetization trajectory revealed that 
thermal agitation during the relaxation process (i.e., after the pulse application) induces the transition 
of the magnetization between the precession orbits surrounding the energy minima and that the 
precession-orbit transition enhances the WER. The numerical simulations also revealed that the 
probability of the precession-orbit transition depends on tpulse (see Ref. 107 for more details). In the 
present case, the probability is maximized at around tpulse = 0.12 ns. This results in the appearance of 
a local maximum in the WER, and it narrows the operating tpulse range for which reliable 
magnetization switching is assured. As the appearance of the WER local maximum is related to 
magnetization fluctuations during the relaxation process, we need to reduce its influence by 
improving the PMA and VCMA properties in order to achieve a wide operating tpulse range. 

 

Figure 18. Example of the optimized WER as a function of tpulse observed in a perpendicularly-
magnetized MTJ consisting of Ta/(Co50Fe50)80B20/MgO/reference layer. The blue and red symbols 
represent the WER of parallel (P) to antiparallel (AP) and AP to P switching, respectively. Reprinted 
figure with permission from [109], Copyright 2019 by the IOP Publishing Ltd. 

Figure 18. Example of the optimized WER as a function of tpulse observed in a perpendicularly-
magnetized MTJ consisting of Ta/(Co50Fe50)80B20/MgO/reference layer. The blue and red symbols
represent the WER of parallel (P) to antiparallel (AP) and AP to P switching, respectively. Reprinted
figure with permission from [109], Copyright 2019 by the IOP Publishing Ltd.
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Figure 19. (a) Contour plot of energy density in the absence of a bias voltage. (b) Appearance of a local
peak in the WER observed in an MTJ consisting of Ta/(Co30Fe70)80B20 (1.1 nm)/MgO/reference layer.
The filled circles and the lines represent experimental data and numerical simulations, respectively.
Reprinted figure with permission from [107], Copyright 2018 by the American Physical Society.

In addition to tpulse, a recent study revealed that the WER depends in a unique manner on the
rise time (trise) and fall time (tfall) [108]. Figure 20 displays the magnetization trajectories that were
obtained by using three different waveforms. When a pulsed voltage is applied, the magnetization
rotates from m+ towards m− (red line) and, after the pulse, the magnetization relaxes to either m̃+ or
m̃−, depending on tpulse (green line). An important thing is that, due to the nonzero magnetization
damping, the magnetization direction at the end of the voltage pulse (m′) never reaches m̃+ or m̃−
whatever tpulse is chosen as long as one uses square pulses (Figure 20a). Therefore, it takes some time
before the magnetization settles down to the energy minimum. During that time, the magnetization is
subjected to thermal agitation, and a finite number of write errors will be counted. When a nonzero
trise and/or nonzero tfall is introduced, the magnetization is subjected not only to Hx, but also to the
anisotropy field due to the uncompensated PMA KPMA

′(V,t), which is given by

Hani = −
2K′PMA(V, t)mz

Ms
(12)

Since the polarity of Hani switches according to the polarity of mz, it applies additional torque to the
magnetization that tilts the magnetization to Hx during trise (Figure 20b), and it pulls the magnetization
away from Hx during tfall (Figure 20c). As a result, for trise = 0.085 ns, m′ comes closer to the saddle
point, whereas, for tfall = 0.085 ns, m′ almost overlaps with m̃− and thereby one can minimize the time
that is required for relaxation. This suggests that there is a certain tfall which can minimize the WER.
Indeed, such WER reduction is experimentally obtained and the numerical simulations reproduce it,
as shown in Figure 20d,e.

The inverse bias method is another unique technique for reducing the WER. Figure 21a illustrates
the write sequence of the conventional and inverse bias methods. In the inverse bias method, a bias
voltage with a negative polarity is applied before and after the write pulse. If the system exhibits a
linear VCMA effect, then the inverse bias enhances the KPMA of the free layer, and thereby reduces
the thermal fluctuations in the initial state and during the relaxation process. It should be noted that
inverse biases can also be used for the pre-read and read verify processes, which thereby offers a
read-disturbance-free operation as well as WER reduction. Noguchi et al. first proposed the inverse
bias method [37] and the effectiveness was later studied using numerical simulations [144]. In Ref. 144,
a substantial reduction in WER was confirmed by introducing inverse biases, whose absolute intensity
was the same as that of the write pulse, but with opposite sign (see Figure 21b).
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Since precise control of voltage-driven magnetization switching relies on the precise control of the
voltage pulse shape, accurate calculation and shaping of the voltage pulse waveform [38,145] are also an
important technique for studying the voltage-driven magnetization dynamics in detail. The procedure
that is presented in Ref. 145 allows for one to accurately analyze and control the voltage waveform
applied to an MTJ. This is especially important in the development of voltage-torque MRAM, because
the MTJ resistance becomes much higher than 50 Ω to suppress the flow of charge current, whereas
nearly all microwave interconnects have a characteristic impedance of 50 Ω. This impedance mismatch
gives rise to multiple reflections between the signal source and the MTJ, and/or the deformation of the
waveform, and this obscures the correlation between the applied voltage waveform and the induced
magnetization dynamics.

An external bias magnetic field has been used to determine the axis for magnetization precession
in most experimental demonstrations of voltage-induced dynamic switching. However, the application
of a magnetic field is not suitable for practical circuits. Therefore, we also need efforts to replace the
external bias field by an effective field, such as through crystalline anisotropy and exchange bias fields.
Matsumoto et al. proposed using a combination of a conical magnetization state and shape anisotropy
to induce precessional switching under zero-bias magnetic field [146]. Conical magnetization states
have been mainly studied in multilayer structures containing Co, such as Co/Pt and Co/Pd [147–149],
however recently it can be realized, even in a practical CoFeB/MgO structure [150–152]. Therefore, the
above proposed structure might be applicable if we can realize a sufficiently-high thermal stability
while keeping the conical states.

6. Conclusions

Electric-field control of spin has the potential to make substantial impact on the development of
novel nonvolatile memory with ultra-low operating power, as well as the expected zero stand-by power.
The utilization of the voltage-controlled magnetic anisotropy (VCMA) effect is a promising approach
to realizing voltage-torque MRAMs. Bi-stable magnetization switching has been demonstrated while
using precessional dynamics that are induced by the VCMA effect. The purely-electronic VCMA effect
originates from electric-field induced modification of the electronic structure at the interface between
an ultrathin ferromagnet and a dielectric layer, such as MgO. In a 3d transition ferromagnet, e.g. Fe and
Co, the voltage-induced change in the orbital magnetic moment plays an important role in the origin of
the VCMA effect through the carrier accumulation/depletion effect at the interface. On the other hand,
in a 3d/5d composite system, e.g. L10-FePt film, an electric quadrupole mechanism also has significant
influence on the VCMA effect. To increase of the VCMA coefficient, the utilization of proximity-induced
magnetism in a 5d transition metal, which has large spin-orbit coupling, is promising. A large VCMA
coefficient of −320 fJ/Vm has been achieved in an Ir-doped ultrathin Fe layer with a demonstration
of high-speed responsiveness. As for the reliability of writing while using voltage-induced dynamic
switching, low write error rates of the order of 10−6 have been realized by improving the thermal
stability and the VCMA effect in practical perpendicularly-magnetized MTJs. Further enhancement
in the VCMA coefficient is the key to demonstrating the potential for scalability and realizing more
reliable switching for voltage-torque MRAM. A novel nonvolatile memory maintaining low operating
power as well as zero stand-by power can provide a broader option for the design of memory hierarchy
in future data-driven society. We expect that the voltage-torque MRAM has the potential to be
applied in IoT edge devices and wearable/implantable computing systems, in which, ultimately, low
power consumption is strongly demanded. Furthermore, the voltage-control of spin may also lead to
the improvement in other spintronic devices, such as a voltage-tuned magnetic sensor, spin-torque
oscillator, and spin-based neuromorphic devices.
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