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Abstract: Silicon carbide (SiC) metal-oxide-semiconductor field-effect transistors (MOSFETs) have the
advantages of high-frequency switching capability and the capability to withstand high temperatures,
which are suitable for switching devices in a direct current (DC) solid state circuit breaker (SSCB).
To guarantee fast and reliable action of a 400 V DC SSCB with SiC MOSFET, circuit design and
prototype development were carried out. Taking 400V DC microgrid as research background, firstly,
the topology of DC SSCB with SiC MOSFET was introduced. Then, the drive circuit of SiC MOSFET,
fault detection circuit, energy absorption circuit, and snubber circuit of the SSCB were designed and
analyzed. Lastly, a prototype of the DC SSCB with SiC MOSFET was developed, tested, and compared
with the SSCB with Silicon (Si) insulated gate bipolar transistor (IGBT). Experimental results show
that the designed circuits of SSCB with SiC MOSFET are valid. Also, the developed miniature DC
SSCB with the SiC MOSFET exhibits faster reaction to the fault and can reduce short circuit time and
fault current in contrast with the SSCB with Si IGBT. Hence, the proposed SSCB can better meet the
requirements of DC microgrid protection.

Keywords: silicon carbide (SiC) metal-oxide-semiconductor field-effect transistors (MOSFETs); solid
state circuit breaker (SSCB); prototype; circuit design

1. Introduction

Direct current (DC) microgrids have elicited increasing attention in recent years, because they
have a simple structure and are easy to control [1,2]. However, the safe and stable operation of a DC
microgrid is inseparable from the effective protection technology [3]. When a short circuit occurs, fault
current will rise instantly to a considerable extent. The equipment in the power system will suffer
from huge electro-thermal stress, which seriously affects the operational reliability of the system [4,5].
Therefore, a circuit breaker is required to isolate the fault. Existing circuit breaker techniques can be
classified into three types: mechanical circuit breaker, hybrid circuit breaker, and solid state circuit
breaker [6–10]. The function of a mechanical circuit breaker is achieved by a mechanical switch.
Although the mechanical circuit breaker can handle high current, electric arcing caused contact erosion
reduces the lifetime and the disadvantage of long break time further limits its application. A hybrid
circuit breaker is composed of a mechanical switch and parallel power devices. The current flows
into the mechanical switch under normal working condition and transfers into the semiconductor
switch under fault condition. The loss of a hybrid circuit breaker is minimal, but the control of a
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hybrid circuit breaker is complex. A solid state circuit breaker (SSCB) is composed of power devices
and related circuits to realize the interruption of fault current. The fault clearing time of an SSCB is
short, but the drawback of an SSCB lies in its loss. By comparison, an SSCB responds rapidly to the
fault and produces no arc when cutting off the current. Besides, without the interaction of mechanical
switch and power switch, the control of an SSCB is not complex and the reliability is relatively high.
Therefore, an SSCB can better meet the fast and reliable protection requirements in DC microgrid,
and has received extensive concern.

The commonly used devices in SSCBs are Silicon (Si)-based power devices [9,11–14]. However,
the performance of traditional Si devices has reached its limitation [15]. With the improvement of
wide-bandgap semiconductor technology and its application in SSCBs, the performance of SSCBs can
be further improved. Compared with Si devices, wide-bandgap semiconductor Silicon Carbide (SiC)
devices exhibit further excellent properties. The comparison of material properties is provided in
Table 1 [16]. Wider bandgap and higher thermal conductivity indicate that SiC devices can withstand
higher temperature than Si devices, which reduces heat dissipation requirement of an SSCB. Higher
electron velocity guarantees faster switching speed, higher frequency characteristics, and higher current
density of SiC-based power devices. The aforementioned advantages enable SiC devices to operate
faster and withstand higher temperature than Si devices, which break through the limitation and
improve the fault response capability of Si-based SSCB [17,18].

Table 1. Material properties of Si and SiC.

Parameter Si SiC

Bandgap/eV 1.1 3.2
Thermal Conductivity/(W/(cm·◦C)) 1.3 4.6

Electron Velocity/(107 cm/s) 1 3

Among SiC power devices, SiC metal-oxide-semiconductor field-effect transistors (MOSFETs)
exhibit the most promising prospects [19,20], but study on SSCBs with SiC MOSFET is still in its
infancy. Zhou et al. [21] introduced a digital SSCB with SiC MOSFET to identify inrush current, but
the fault clearing time was long, which is adverse to the equipment protection in the power system.
Ren et al. [22] focused on solving the inconsistency voltage distribution on cascaded SiC MOSFETs
in SSCB in high voltage direct current (HVDC) transmission application, while the detailed design
of SSCB was not given. Zhang et al. [23] proposed a changeable delay time protection method for
SSCB with SiC MOSFET. However, the high requirements to parameter calculation and complicated
design make the SSCB hard to realize. Therefore, to achieve quick and reliable action of the SSCB and
to make the SSCB easy to realize in application, detailed design of the SSCB with SiC MOSFET should
be carried out.

In this study, a 400 V DC microgrid was adopted as the application background. The topology
and structure of an SSCB with SiC MOSFET were introduced. The design of the SSCB was described
in detail, including device selection, gate driver, fault detection circuit, energy absorption circuit,
and snubber circuit. Finally, a prototype of the DC SSCB with SiC MOSFET was developed, tested and
compared with Si insulated gate bipolar transistor (IGBT). Experiment results proved that the designed
SSCB with SiC MOSFET can operate reliably in case of failure and can reduce voltage spike during the
turn-off period. In addition, the designed SSCB exhibits fast interrupting characteristics, which provide
guidance for improving the performance of SSCB and the application of SSCB with SiC MOSFET.

2. Topology of the SSCB with SiC MOSFET

Figure 1a demonstrates the topology of the SSCB with SiC MOSFET. As illustrated in the figure,
the SSCB with SiC MOSFET is composed of a SiC MOSFET switch, a drive circuit, a fault detection
circuit, an energy absorption circuit, and a snubber circuit. The functions of the power device are to
conduct current and to cut off the circuit when fault occurs. The drive circuit is used to send control
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signals to the power device to turn it on or off. The fault detection circuit can immediately detect
the faults and react. The energy generated during a fault period is absorbed and dissipated by the
energy absorption circuit. The snubber circuit is used to suppress the voltage spike induced by circuit
inductance in the initial turn-off stage to protect the voltage on the device from exceeding the rated
voltage. The structure of the SSCB is depicted in Figure 1b to specifically show its components and
further explain the working principle of the SSCB. The gate driver is connected to the SiC MOSFET by
gate resistance Rg. The fault detection circuit detects variations in gate voltage. R1 and R2 are divider
resistances. The function of energy absorption circuit is realized by using a metal-oxygen-varistor
(MOV), and the snubber circuit is achieved by simply using MOV_in instead of the commonly
used resistance-capacitor (RC) or resistance-capacitor-diode (RCD) circuit [24]. L1 and L2 are the
parasitic inductances.
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Figure 1. (a) Topology of the solid state circuit breaker (SSCB) with SiC metal-oxide-semiconductor 
field-effect transistor (MOSFET); (b) Structure of the SSCB with SiC MOSFET. 
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VDC and VL. VL is determined by the parasitic parameters in the circuit and change rate of the current. 
In consideration of the magnitude of the inductance in circuit board (less than 0.2 μH) and the di/dt 
for SiC MOSFET in turn-off stage (1–3 A/ns) [25], the induced voltage VL may reach 200 V or above. 
Therefore, the withstand voltage of the device is preferably guaranteed to have larger margin in 
application [21,26]. Considering the SSCB can be used under high current condition, devices with 
high rated current can be selected. To date, the major manufacturers of SiC MOSFETs are CREE 
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The working principle of the SSCB of SiC MOSFET can be explained as below: S1 conducts and
current flows through SiC MOSFET under normal working condition. The resistance of MOV_in and
MOV_ex are high, and no current flows into the snubber circuit and the energy absorption circuit.
When abnormal state occurs, the fault current increases rapidly and causes the change of gate voltage.
Through logical judgement and comparison, a turn-off signal is sent to gate driver to turn off the SiC
MOSFET. Simultaneously, the voltage on SSCB reaches to the breakdown voltage of MOV, the resistance
of MOV immediately drops to a very small value and the voltage on SSCB is clamped. First, MOV_in
is triggered to operate to suppress the voltage spike in the early turn-off stage. Then, MOV_ex operates
and because of the voltage difference between MOV_in and MOV_ex, the fault current transfers to
energy absorption circuit. During this time, the voltage on MOV_ex is higher than the DC-link voltage.
MOV_ex in absorbs the energy and fault current attenuates gradually. When the current reaches to
zero, the SSCB stops working and fault is cleared.

3. Design of the SSCB with SiC MOSFET

3.1. Device Selection

The designed SSCB is used in a 400 V DC microgrid. A high induced voltage VL is generated at
the early turn-off period due to the fast switching speed and the existence of parasitic inductance in
the circuit. Therefore, the SiC MOSFET is required to withstand the sum voltage of DC-link voltage
VDC and VL. VL is determined by the parasitic parameters in the circuit and change rate of the current.
In consideration of the magnitude of the inductance in circuit board (less than 0.2 µH) and the di/dt
for SiC MOSFET in turn-off stage (1–3 A/ns) [25], the induced voltage VL may reach 200 V or above.
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Therefore, the withstand voltage of the device is preferably guaranteed to have larger margin in
application [21,26]. Considering the SSCB can be used under high current condition, devices with
high rated current can be selected. To date, the major manufacturers of SiC MOSFETs are CREE
(Durham, NC, USA) and ROHM (Kyoto, Japan). Both manufacturers have products with relatively
high rated current: C2M0080120D of 36 A, SCT2080KE of 40 A. However, the device must have a
stronger short circuit withstand capability to assure the reliability of the SSCB. According to the study
of Wang et al. [27], the comparison of short circuit withstand time (SCWT) and critical energy of the
1200 V/80 mΩ CREE and ROHM SiC MOSFET are made in Table 2. The SCWT of ROHM SiC MOSFET
is higher than CREE SiC MOSFET under same DC-link voltage or temperature. In addition, the critical
energy of ROHM product is also greater than CREE product. Thus, the 1200 V/80 mΩ ROHM SiC
MOSFET performs better than CREE SiC MOSFET in harsh condition. Accordingly, SCT2080KE, with
the rated voltage of 1200 V and rated current of 40 A is selected as the switching device of the SSCB.

Table 2. Comparison of the 1200 V/80 mΩ CREE and ROHM SiC MOSFET.

Device
Temperature = 25 ◦C, VDC = 600 V Temperature = 200 ◦C, VDC = 400 V

SCWT/µs Critical Energy/J SCWT/µs Critical Energy/J

CREE 3.5 1.2 4.7 1.3
ROHM 4.7 1.6 5 1.4

3.2. Drive Circuit

The suitable drive circuit is the prerequisite for ensuring the satisfactory operation of the SSCB
with SiC MOSFET. To assure the fast switching speed, it is necessary to select the proper gate voltage.
In addition, the design of the drive circuit must also consider the value of gate resistance, the selection
of driver chip.

3.2.1. Gate Voltage

Gate voltage is crucial to develop the excellent characteristics for the SiC MOSFET. Figure 2 shows
the relationship between gate voltage and on-state resistance. When gate voltage is low, on-state
resistance is relatively high, which will result in large on-state loss. After reaching a certain value,
on-state resistance can be considerably reduced. Hence, a higher gate voltage is generally applied.
In addition, gate voltage affects the switching characteristics of the device. The device switches faster
with the increase in gate voltage, but the voltage should not be excessively high in case of oscillation.
Moreover, a high gate voltage can adversely affect the reliability of the gate oxide, thereby resulting in
device failure.
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A negative gate voltage is generally required to reliably turn off the SiC MOSFET. The higher
the voltage, the faster the device can turn off. Similarly, a large negative voltage adversely affects
the reliability of the gate oxide. Based on the preceding analysis and combined with the datasheet
provided by manufacturer, gate voltage is recommended to be −5/18 V.

3.2.2. Gate Resistance

Gate resistance must be considered in the design of the drive circuit. If the gate resistance is large,
then oscillation during the switching process can be suppressed, but the turn-on and turn-off speed
will be slow. This condition may increase the loss of the device. By contrast, if the gate resistance
is small, then the switching speed accelerates, which easily leads to current and voltage oscillation.
However, the loss of the device will decrease. According to the analysis of Li et al. [28] and after
repeated testing, gate resistance is determined to be 10 Ω.

3.2.3. Driver Chip

At present, the driver chips available for SiC MOSFETs on the market are mainly IXYS_609 of
IXYS (Milpitas, CA, USA) and ACPL-W346 of Avago (San Jose, CA, USA). The drive capability of
IXVYS_609 is relatively stronger, which can provide peak current of 9 A. However, it has no isolation
function. The drive capability of ACPL_W346 is weaker than that of IXVYS_609. It can provide a peak
current of 2 A and is integrated with an optocoupler isolation. The peak current of 2 A is sufficient for
a single SiC device. The drive circuit can be more compact due to the integrated optocoupler isolation,
and the volume of the SSCB can be reduced. Therefore, the ACPL_W346 chip is selected. Table 3 lists
the main technical parameters of ACPL_W346. The specific design scheme of the driving circuit based
on ACPL_W346 is described in [29].

Table 3. Main technical parameters of ACPL-W346.

Parameter Minimal Value Maximal Value

Source VCC/V 10 20
Output Current IOUT/A - 2.5

Working Temperature T/◦C −40 105
Propagation Delay/ns - 120

Common Mode Restraining Capability/kV·µs−1 50 -

3.3. Fault Detection Circuit

During the fault process, the fault current will cause an evident change in the gate-source voltage
because of the existence of the Miller capacitance [30]. Thus, the fault can be detected by the change
of gate-source voltage. Figure 3 shows the schematic diagram of the fault detection circuit based on
gate-source voltage variation.

As shown in Figure 3, the fault detection circuit is composed of clamping circuit, fault detection
section, latch circuit, logic control circuit, and reset circuit. The clamping circuit is used to suppress
the rise in gate voltage and avoid the overvoltage harm to the gate oxide. The divided gate-source
voltage is sent to the differential operational amplifier, whose output is connected to the inverting
input of the comparator, and the reference signal is connected to the non-inverting input. If the divided
voltage exceeds the reference voltage, then the comparator output signal level switches from high to
low. The SR latch circuit outputs a high level and remains. After sending the signal to the inverter,
the signal logic reverses. The signal is then sent to the AND gate. During this time, even if the drive
control signal is at a high level, the signal level of the AND gate output still remains low. This signal is
the input signal of the drive circuit. In this way, the SSCB operates and the SiC MOSFET is turned-off.
Figure 4 shows the sequence chart of the fault detection circuit under fault condition.
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3.4. Design of the Energy Absorption Circuit

During the fault clearing period, the energy stored in the parasitic inductance of the circuit is
dissipated by the energy absorption circuit, and the function is achieved by MOV_ex. The voltage on
SSCB is clamped to Vmov because of the clamping function of MOV. The voltage on inductance L can
be expressed by:

VL = VMOV −VDC, (1)

where, VDC is the DC-link voltage. To simplify the analysis, the change rate of fault current is assumed
to be linear based on the simulation and test results in [31–33]. The inductance current, namely the
current of SSCB, can then be calculated as follows:

iL = Imax −
VMOV −VDC

L
t, (2)
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where Imax is the peak current. When SSCB starts to operate, the current will gradually attenuate to
zero from its peak value. By setting iL = 0, the total working time of SSCB ts can be obtained.

ts =
ImaxL

VMOV −VDC
(3)

The absorbed energy in the energy absorption circuit can then be achieved by:

WMOV_ex =
∫ ts

0 VMOV · iLdt

=
∫ ts

0 VMOV · (Imax −
VMOV−VDC

L t)dt
= 1

2 (
VDC

VMOV−VDC
)LI2

max

. (4)

Since the inductance in the circuit is low (µH level), the energy that needs to be absorbed is small
although the short circuit current is high. Thus, an ordinary MOV can meet the requirement of the
design. In this study, VDC is 400 V. After looking up the product model, 14D511K is selected as the
MOV_ex. Main parameters of 14D511K are listed in Table 4.

Table 4. Main parameters of 14D511K.

Allowable DC
Operating Voltage

Breakdown
Voltage

Maximal
Clamping Voltage

Maximal
Absorbed Energy Power

415 V 510 V 845 V 125 J 0.6 W

3.5. Design of the Snubber Circuit

To suppress the voltage spike, MOV_in is used in the snubber circuit. The fault current will flow
into MOV_in first due to smaller parasitic resistance in the snubber circuit. Then, the current will
quickly transfer to MOV_ex and MOV_ex will continue to absorb the energy. Thus, MOV_in only
works during the early turn-off stage and absorbs minimal energy. However, the voltage of MOV_in
affects the peak voltage of SSCB, and the selection of MOV_in is related to MOV_ex. Figure 5 illustrates
the simulated relationship of absorbed energy and peak voltage to voltage ratio. With the increase of
breakdown voltage ratio of MOV_in and MOV_ex, MOV_in absorbs less energy, while the voltage
overshoot of SSCB increases. When voltage ratio is greater than 1.3, the snubber circuit absorbs minimal
energy and barely changes. Considering that the energy MOV_in absorbs and the peak voltage can be
suppressed effectively, the breakdown voltage of MOV_in can be 1.3 times that of MOV_ex. Since the
breakdown voltage of MOV_ex is selected to be 510V, 05D681K with the breakdown voltage of 680V is
chosen. The main parameters are provided in Table 5.
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Table 5. Main parameters of 05D681K.

Allowable DC
Operating Voltage

Breakdown
Voltage

Maximal
Clamping Voltage

Maximal
Absorbed Energy Power

560 V 680 V 1120 V 21 J 0.1 W

4. Testing on the SSCB Prototype with SiC MOSFET

Based on the structure of Figure 1b, the prototype of the SSCB with SiC MOSFET was developed
and is shown in Figure 6a. The SSCB is composed of a SiC MOSFET, a gate driver, a fault detection
circuit, an energy absorption circuit, and a snubber circuit. Gate driver uses the ACPL-W346 driver
chip. Fault detection circuit is based on the schematic diagram in Figure 3. Energy absorption circuit is
composed of MOV (14D511K) to absorb the energy. Snubber circuit is composed of MOV (05D681K) to
suppress the voltage spike in the early turn-off period. The fault simulation circuit is shown in Figure 6b,
where S1 is the SSCB prototype. Switch S2, which is parallel with the load, is another SiC MOSFET
that controls on and off of the circuit. Load is represented by a 100 Ω resistance. Voltage-stabilizing
capacitor C is 560 µF, and DC-link voltage is 400 V. First, S1 is on while S2 is off. The system is under
normal working condition. After 5 µs, a turn-on signal is sent to S2, placing the system in a short circuit
state, and the current rapidly increases. To prevent the abnormal state caused by the malfunction of
SSCB, S1 is forcibly turned off after 3 µs of short circuit. The sequence of the control signals is shown in
Figure 7.
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Figure 8 presents the test results of the fault detection circuit. When short circuit happens,
gate voltage evidently rises. The differential operational amplifier can detect the change and react
immediately. A turn-off signal is sent to the gate driver subsequently.
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Figure 8. Waveforms of gate voltage change and test results of the fault detection circuit.

Figure 9 shows the test results of the SSCB under the fault. The purple curve is the current
waveform, whereas the blue curve is the voltage waveform. Figure 9a,b illustrate the cases where the
snubber circuit is disconnected and connected to the circuit, respectively. When the snubber circuit is
not connected, the peak voltage of SSCB during short circuit is 800 V, and oscillation is acute. Voltage
spike can be suppressed to 750 V and the oscillation can be greatly restrained due to the existence of the
snubber circuit. In addition, the peak fault current is approximately 80 A and the fault clearing time is
about 720 ns. Therefore, the SSCB with SiC MOSFET can interrupt the current rapidly, and prevent the
device from being exposed to high energy, long time shock, which provides protection for the device
and improves the reliability of the system.

Micromachines 2019, 10, x 9 of 12 

 

AND Gate Output Signal: [5V/div]

2μs/div

Gate Voltage: [10V/div]

Differential Operational Amplifier 
Output Signal: [2V/div]

Comparator Output Signal: [5V/div]

 
Figure 8. Waveforms of gate voltage change and test results of the fault detection circuit. 

Figure 9 shows the test results of the SSCB under the fault. The purple curve is the current 
waveform, whereas the blue curve is the voltage waveform. Figure 9a,b illustrate the cases where the 
snubber circuit is disconnected and connected to the circuit, respectively. When the snubber circuit 
is not connected, the peak voltage of SSCB during short circuit is 800 V, and oscillation is acute. 
Voltage spike can be suppressed to 750 V and the oscillation can be greatly restrained due to the 
existence of the snubber circuit. In addition, the peak fault current is approximately 80 A and the fault 
clearing time is about 720 ns. Therefore, the SSCB with SiC MOSFET can interrupt the current rapidly, 
and prevent the device from being exposed to high energy, long time shock, which provides 
protection for the device and improves the reliability of the system. 

Voltage of SSCB :[200V/div]

Fault Current :[50A/div]

400ns/div  
(a) 

Voltage of SSCB:[200V/div]

Fault Current:[50A/div]

400ns/div  
(b) 

Figure 9. Waveforms of the fault current and voltage of the SSCB with SiC MOSFET: (a) without a 
snubber circuit and (b) with a snubber circuit. 

This study also does a test on an SSCB with Si IGBT, whose driver chip is TX-DA962D6 by LMY 
electronics, integrated with the desaturation detection function. Figure 10 shows the experimental 
result. The purple and blue curves represent the current waveform and voltage waveform, 
respectively. As shown in the figure, the fault clearing time is 2.8 μs and the fault current is up to 300 

Figure 9. Waveforms of the fault current and voltage of the SSCB with SiC MOSFET: (a) without a
snubber circuit and (b) with a snubber circuit.

This study also does a test on an SSCB with Si IGBT, whose driver chip is TX-DA962D6 by LMY
electronics, integrated with the desaturation detection function. Figure 10 shows the experimental
result. The purple and blue curves represent the current waveform and voltage waveform, respectively.
As shown in the figure, the fault clearing time is 2.8 µs and the fault current is up to 300 A. Both of
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these values are nearly four-fold those of the SSCB with SiC MOSFET. Such high current with such
long time will exert huge electro-thermal stress on device and equipment in the system.
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In summary, by using an SiC MOSFET as the switching device, the designed SSCB prototype is
evidently faster than SSCB with Si IGBT, which can cut off the fault current within 1 µs. The proposed
SSCB with SiC MOSFET is distinguished by the fault detection circuit and the simplicity of the snubber
circuit. On one hand, the fault detection method used in an Si-based SSCB is extended to an SSCB
with SiC MOSFET because of the existence of a Miller capacitor in the SiC MOSFET. The fault can be
detected rapidly and effectively based on the variation in gate voltage. On the other hand, by replacing
the RC or RCD snubber circuit with MOV, the complicated design of parameters can be avoided and
voltage spike can be suppressed as well. The detailed design in this study makes the realization of
SSCB with SiC MOSFET easier and less complicated, providing reference for design and improvement
of SSCB.

5. Conclusions

In order to realize the fast and reliable fault isolation in DC microgrid, the topology and structure
of a 400 V miniature DC SSCB with SiC MOSFET are introduced. The design of the SSCB prototype is
described in detail, including the selection of the device, drive circuit, current detection circuit, energy
absorption circuit, and snubber circuit. The experimental results demonstrate that the SSCB with SiC
MOSFET can immediately detect and interrupt the fault within 720 ns, peak current value of 80 A.
Compared with the SSCB with Si IGBT, the proposed SSCB evidently has shorter interruption time and
causes less thermal stress on the device.
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