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Abstract: Recent advances in nanoscale resistive memory devices offer promising opportunities for
in-memory computing with their capability of simultaneous information storage and processing.
The relationship between current and memory conductance can be utilized to perform matrix-vector
multiplication for data-intensive tasks, such as training and inference in machine learning and analysis
of continuous data stream. This work implements a mapping algorithm of memory conductance
for matrix-vector multiplication using a realistic crossbar model with finite cell-to-cell resistance.
An iterative simulation calculates the matrix-specific local junction voltages at each crosspoint, and
systematically compensates the voltage drop by multiplying the memory conductance with the
ratio between the applied and real junction potential. The calibration factors depend both on the
location of the crosspoints and the matrix structure. This modification enabled the compression of
Electrocardiographic signals, which was not possible with uncalibrated conductance. The results
suggest potential utilities of the calibration scheme in the processing of data generated from mobile
sensing or communication devices that requires energy/areal efficiencies.

Keywords: resistive memory; crossbar; in-memory computing; analogue computing; matrix-vector
multiplication; ECG

1. Introduction

Emerging classes of mobile electronic devices offer attractive capabilities for real-time analytics of
the physical world through the connection to central computing systems. One of the critical challenges
in this emerging Internet of Things (IoT) is the instantaneous extraction of relevant information from
the abundant data with the limited power and communication bandwidth for data transmission. This
challenge demands smart components on the edge of the mobile devices that can filter, compress, or
classify the data outputs onsite [1–4]. This pre-processing needs to be extremely power efficient and
quick to handle the large volume of data continuously generated from the surrounding world.

A subset of the processing operations can be categorized as a linear transformation which can
be expressed as a matrix-vector multiplication (MVM). The MVM can be performed in an analogue
domain using a resistive memory crossbar array by storing the matrix values as the conductance of
the memory cell. The operation can take a constant time complexity (O(1)), and be energy efficient
owing to the functional integration of the processing and memory units [5–7]. The scalability of the
crossbar structure down to 4F2 (F: feature size of a technology node) is also beneficial for the device
miniaturization. Envisioned applications include linear equation solver and training of or inference on
neural networks as demonstrated recently [1,7–11].
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Prior studies have shown that the throughputs per area and the energy efficiency can exceed
today’s von Neumann computing scheme, but computational accuracy remained as a non-trivial
challenge for high-precision analogue-based MVM. In device levels, output errors can be originated
from the variations of the electrical characteristics between the cells, non-linear current-voltage
relationship, and stochasticity in resistance switching process. Separate from the efforts in development
of the reliable devices, it is also important to optimize the conductance mapping scheme using realistic
crossbar arrays. Finite conductivity of interconnecting wire has been suggested as one of the important
factors causing errors in the crossbar-based MVM [9,12]. Empirical calibration methods that are based
on the comparison between the desired output and real measurements have shown to improve the
accuracy level although the origin of the discrepancy of the measurement values was not clearly
identified [1]. To overcome the limitation of such hardware-based methods, model-based theoretical
analysis attempted more systematic approach to understand the computational error [9,12]. Hu et al.
first introduced a comprehensive crossbar array model for MVM, and applied it to the training of
neural network for pattern recognition [9]. This simulation-based optimization of the conductance
minimizes the time and power consumption to post-process the outputs and provides explanation for
the computational outputs with given circuits.

This work implemented a mapping algorithm of memory conductance for MVM using a crossbar
model with finite wire resistance, and analyzed the calibration performance for the compression of
electrocardiographic (ECG) signals. An iterative software simulation calculates the matrix-specific
local junction voltages at each cross-point, and calculate the ratio between the junction voltages and
input voltage applied from the source. The ratio becomes a calibration factor to update the memory
conductance to systematically compensates the voltage drop. The results indicate that the calibration
factors both depend on the location of the junctions and matrix structure. This correction enabled
the in-memory compression of ECG signals whose reconstruction error is comparable to the double
precision calculation. The findings suggest a possible route to overcome difficulties in analogue
computing in realizing diverse edge computing devices for onsite data processing.

2. Methods

2.1. Calibration Factor for Matrix Mapping on Proposed Crossbar Model

Figure 1a shows a schematic representation of the crossbar model that includes interconnection
line resistance to calculate the local potential at each cross-point. The model incorporates both the
cell-to-cell resistance and the access resistance from a voltage source to the first column/row metal
lines. The analogue-based MVM using a crossbar array assuming an ideal behavior has the current
output from the column (or bit) line (BL) as follows.

Iideal
j = G1, jV1,app + · · ·+ Gm, jVm,app (1)

Here, Iideal
j is the current output from jth BL. Gi, j is the conductance of memory cell located at a

crosspoint of the ith word and the jth bit lines. The conductance (Gi, j) represents a linear-transformed
matrix element to map the matrix values within the range of the achievable conductance of the device.
Vi,app is input voltage to the ith word lines (WL). (BLs are assumed to be grounded.) Equation (1)
holds true only if the series resistance of the interconnection wires is negligible. Considering the
resistivity of conventional metal wires (ρ = 10−8 to 10−7 Ω·m), the resistance between the nearest cells
(R = ρ·F/(F·d), F: feature size, d: metal thickness) ranges from 100 to 101 Ω when d is assumed
~10 nm. The wire resistance may further increase due to lower density caused by vapor deposition.
For a 4F2 crossbar structure, the interconnect resistance between two adjacent cells can be estimated to
be ~4.53, 2.97, and 1.55 Ω under 16 nm, 22 nm, and 32 nm technology node, respectively, according to
the International Technology Roadmap for Semiconductors 2013 [12]. Simple calculation estimates the
voltage drop can be a significant source of errors considering the realistic conductivity of the resistive
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memories. For example, if we assume ~100 by 100 bits of crossbar arrays and 0.1 to 1 mA total current
along the word line, iR drop at the end of the word line can be 0.01 to 0.1V. (e.g., 0.1–1 mA × R(cell-cell)
× 100→ 0.01–0.1 V). In this realistic case, the current output needs to be modified as

Ireal
j = G1, jV1, j + G2, jV2, j + · · ·+ Gm, jVm, j (2)

instead of Equation (1) with Vi,app terms to conform with the Ohm’s law. Here, Vi, j is the local junction
potentials across the memory cell at (i, j) crosspoint. Since Vi, j is not guaranteed to be equal to the
applied voltage to the ith WL due to voltage drop, I j becomes small compared to the ideal case as
observed in previous studies [1,9].

One way to compensate the smaller current output can be the increase of the conductance level of
the memory according to the local voltage drop. If the voltage drop for arbitrary WL and BL input
voltages can be estimated, the conductance of the memory can be set as

G′i, j = Gi, j
Vi,app

Vi, j
(3)

instead of Gi, j. With the calibrated conductance (G′i, j), the current outputs become the ideal current
as follows.

Ireal
j = G1, j

V1,app

V1, j
·V1, j + · · ·+ Gm, j

Vm,app

Vm, j
·Vm, j = Iideal

j (4)

Thus, the ratio (Vi,app/Vi, j) can be considered as a calibration factor for the memory conductance
for in-memory MVM when the junction potential deviates from the applied voltage. There can
be other approaches that use equilvalent conductance terms multiplied by the applied voltage to
describe the measured current. This approach may be useful if measurement data are available and
the calibration algorithm to drive the real current to the ideal one is developed. Yet, the current work is
more focused on the calibration based only on theoretical model circuits without requirement for any
real measurements.
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Figure 1. (a) Simulation model for resistive memory crossbar array with finite conductance of
interconnects. (b) Conductance calibration algorithm for mapping of an m× n matrix using a crossbar
simulator. (c) Local currents at word lines (WL) and bit line (BL) junctions in accordance with
Kirchhoff’s law.

2.2. Iterative Calibration Based on Crossbar Simulation

An iterative algorithm was developed to progressively increase conductance values based on the
simulated Vi, j at individual junctions. Figure 1b summarizes the procedure of the calibration process.
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Through the iterations, Vi, j
′s are updated by solving the 2mn Kirchhoff’s relations (mn WL junctions +

mn BL junctions) that need to be simultaneously satisfied with given memory conductance and the
voltage inputs [13]. Figure 1c, for example, illustrates the local currents on the WL junction that follow
the equation below.

Gw
(
VWL

i, j −VWL
i, j−1

)
= Gi, j

(
VBL

i, j −VWL
i, j

)
+ Gw

(
VWL

i, j+1 −VWL
i, j

)
(5)

Here, Gw is a cell-to-cell conductance, and VWL
i, j and VBL

i, j are voltages at (i, j) crosspoint on WL
and BL, respectively. 2mn Kirchhoff’s equations can be arranged in a simple matrix form whose details
are described in the Appendix A. Since the calibrated conductance (G′i, j) is higher than the previous
conductance (Gi, j), the overall current increases, and the voltage drops need to be recalculated with
this new G′i, j by the next iteration of the simulation. The iteration is repeated until the conductance
(or Vi,app/Vi, j ratios) converge, and the final ratios determine the conductance level of the memory to
represent the arithmetic matrix elements. The simulation code is implemented in MATLAB and each
iteration takes ~1 sec with single 3.5 GHz Intel Core i7 for 64 × 64 crossbar arrays. The calibration
factors were converged after 10 to 20 iterations depending on the cell-to-cell resistance and termination
criteria. The runtime and error depend on the termination criteria, and assumed to be a similar level to
the previous report [9].

3. Results and Discussion

The in-memory MVM can be used for low-power data processing, such as compression or high-
or low-pass filtering. Here, as an example, the discrete wavelet transform (DWT) matrix is mapped to
the final memory conductance ranging from 0.01 to 70 µS [14,15]. The cell-to-cell resistance (R) and the
access resistance from the voltage source to the crossbar are assumed to be 1 Ω and 100 Ω, respectively.
Larger R (10 Ω) is also studied for comparison. Voltages are supplied from the left for WLs and the
bottom for BLs. For the calculation of the voltage drops at each junction, the supply voltage of 0.1 V
was assumed for all WLs. (The calibration factors were insensitive to the voltage (0.1 to 0.5 V) since Vi, j
~ Vi,app − iR where iR varies approximately with the same factor as Vi,app). The operation parameters
were set to be consistent with the practical values reported in the previous PRAM-based studies [7].

Figure 2 presents the simulation results of the conductance mapping of 64 × 64 DWT matrix using
biorthogonal filters with 4-level of decomposition. Figure 2a describes the change in the calibration
factors through the iteration represented by the 2-norm of the difference matrix. The conductance is
quickly converged, and the norm values less than 10−4 were achieved after 10 cycles (R = 1 Ω) and
16 cycles (10 Ω). Figure 2b compares the initial conductance (G0

i, j) and final conductance for R = 10 Ω
case. Figure 2c plots the final calibration factors to visualize the voltage drop across the crossbar.
(R = 1 Ω (left), 10 Ω (right)) Calibration factors range from 1.1 to 1.4 for 1 Ω case, and 1.1 to 2.2 for 10 Ω
case. 10 Ω resistance shows larger dependency of the calibration factor on the distance from the voltage
source. The location dependency of the calibration factors implies that the effect of possible fluctuation
in the resistance of nanoscale wires can be averaged over the long distance from the voltage source for
the junctions with large calibration factors. The colormaps also reveal the large values for the first four
columns and small values for every four rows. As depicted in Figure 2d, the calibration factors reflect
the matrix structure. The conductance sum (

∑
i G0

i, j) is large for the first four columns, which results in

a large current gathered along the four BLs. For the same reason, the small conductance sum (
∑

j G0
i, j)

for every four rows result in small overall current along the WLs: thus, smaller calibration factors.
This variation in the overall current along the metal line causes different level of iR drop, resulting in
matrix-dependent calibration factors.
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Figure 2. Conductance mapping of 64× 64 matrix for discrete wavelet transform (DWT). (a) Convergence
of calibration factors though the iterations for 1 Ω and 10 Ω cell-cell resistance. (b) Colored map of cell
conductance of a crossbar before/after calibration. (R = 10 Ω). (c) Matrix-specific calibration factors at
individual cross-points for R = 1 Ω (left) and R = 10 Ω (right). (d) Conductance sum of each column
(top) or row (bottom) of the initial conductance.

Figure 3 summarizes the effect of the conductance calibration on the data compression and
reconstruction performance. Rescaled ECG signals from the MIT-BIH database were applied as the
input voltage (0–0.3 V) for DWT [16]. Figure 3a,b show the coefficients of the DWT converted from
the simulated currents from the BLs for R = 1 Ω and 10 Ω, respectively. The black squares present
the exact coefficients calculated in double-precision (64 bits), and the green diamond lines present
the simulated coefficients with the initial memory conductance before calibration. The negatively
shifted values of the simulated coefficients result from the small currents due to the voltage drop along
the resistive metal interconnects. This shift fails the threshold-based compression of data where the
small coefficients are cut off based on their absolute quantity (distance from zero). The larger negative
slope in Figure 3b compared to Figure 3a reflects a severe reduction in current outputs for the columns
located far from the voltage source due to the larger R (10 Ω). The other lines in the figures show the
coefficients calculated with the calibrated memory conductance at different stages of iteration. The red
lines in Figure 3a,b show that the fully calibrated coefficients well match to the exact values for both R
values. The 2-norms of the difference between the exact and the experimental coefficient vectors were
4.2 (1 Ω) and 8.6 (10 Ω), and the maximum difference were 3.5 (1Ω) and 7.2 (10 Ω) at the peak of the
coefficient (exact coefficient value: 224.8, index: 29). Figure 3c shows the reconstructed ECG signals
using the calibrated coefficients. (ECG signals were vertically shifted for visibility of individual lines.)
The magenta line shows the reconstructed signals from the 15 largest exact coefficients out of 64. By
filtering of the small coefficients, the noise in the original signal was removed as the case with exact
coefficients. Figure 3d plots the error of the reconstructed signal. The reconstructed signal-to-noise
ratios, defined as 20log10(||x||2/||x− x̂||2) (x: original ECG, x̂: reconstructed ECG), were 28.2/43.4 (1 Ω)
and 27.8/37.1 (10 Ω) with/without cut-off, respectively, compared to 28.3 for the reconstruction using
15 largest exact coefficients.
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Figure 3. Electrocardiographic (ECG) signal compression using in-memory computing. (a,b) 
Coefficients of ECG signal after DWT using crossbar (Xbar) conductance determined by simulation. 
n: iteration number of simulation for conductance calibration. (a) R = 1 Ω. (b) 10 Ω. (c) Reconstruction 
of ECG from the coefficients. Compression ratio = 15/64. (d) Reconstruction error. 
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4. Conclusions

A conversion algorithm of a matrix to conductance was proposed in a crossbar memory array when
the metal interconnects have finite conductance. The iterative simulation systematically compensates
for the voltage drop along the interconnects by increasing the memory conductance. The calibration
enables in-memory data compression. Considering the power limit in healthcare-related mobile devices,
the proposed real-time compression using a memory crossbar can have potential as pre-processing
units in such devices for diagnosis/therapeutic purposes.
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J.W.J., E.-S.P., W.K., M.H., C.S.H.; writing: Y.K.L., C.S.H.
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Appendix A

The crossbar model aims to calculate junction potentials at each cross-point. Since we can build
one Kirchhoff’s equation for each junction, 2mn relations (Figure A1, mn junctions on WL+ mn junctions
on BL) need to be simultaneously satisfied with given memory resistances and the applied WL and BL
applied potentials. Here, Gw and Gi, j are the wire and memory conductance, and VWL

i, j and VBL
i, j are the

local voltages at the junctions in a real system with finite conductance of the interconnects.

(WL, (i, j)) Gw
(
VWL

i, j −VWL
i, j−1

)
−Gi, j

(
VBL

i, j −VWL
i, j

)
−Gw

(
VWL

i, j+1 −VWL
i, j

)
= 0 (A1)

(WL, j = 1) GWL
i,access

(
VWL

i,1 −VWL
i,applied

)
−Gi,1

(
VBL

i,1 −VWL
i,1

)
−Gw

(
VWL

i,2 −VWL
i,1

)
= 0 (A2)

(WL, j = n) Gw
(
VWL

i,n −VWL
i,n−1

)
−Gi,n

(
VBL

i,n −VWL
i,n

)
= 0 (A3)
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(BL, (i, j)) Gw
(
VBL

i+1, j −VBL
i, j

)
−Gi, j

(
VBL

i, j −VWL
i, j

)
−Gw

(
VBL

i, j −VBL
i−1, j

)
= 0 (A4)

(BL, i = m) GBL
j,access

(
VBL

j,applied −VBL
m, j

)
−Gm, j

(
VBL

m, j −VWL
m, j

)
−Gw

(
VBL

m, j −VBL
m−1, j

)
= 0 (A5)

(BL, i = 1) Gw
(
VBL

2, j −VBL
1, j

)
−Gi, j

(
VBL

1, j −VWL
1, j

)
= 0 (A6)

When the equations are arranged in the order as described in Figure A1, the equations can be simplified
as the following matrix formulation:

Amn×mnvWL + Bmn×mnvBL = EWL (for WL junctions) (A7)

Cmn×mnvWL + Dmn×mnvBL = EBL (for BL junctions) (A8)[
A B
C D

][
vWL

vBL

]
=

[
EWL

EBL

]
(A9)

where

vWL,mn×1 =
[
VWL

1,1 , VWL
1,2 , · · · , VWL

1,n , VWL
2,1 , · · · , VWL

m,n

]T
= [vWL,i = 1, vWL,i = 2, · · · , vWL,i = m]

T (A10)

vBL,mn×1 =
[
VBL

1,1, VBL
1,2, · · · , VBL

1,n, VBL
2,1, · · · , VBL

m,n

]T
= [vBL,i = 1, vBL,i = 2, · · · , vBL,i = m]

T. (A11)

EWL,mn×1 =
[
GWL

1,accessV
WL
1,app, 0, · · · , GWL

2,accessV
WL
2,app, 0, · · · , GWL

m,accessV
WL
m,app, 0, · · ·

]T
(A12)

EBL,mn×1 = −
[
GBL

1,accessV
BL
1,app, GBL

2,accessV
BL
2,app, · · · , GBL

n,accessV
BL
n,app 0, · · ·

]T
(A13)

Here, A and D are sparse matrices whose nonzero elements are the ones that are multiplied by the
local potentials adjacent to the junction under consideration along the WL (for A) or BL (for D). For
example, the Kirchhoff’s law on the (i, j) WL junction is described by

A
(i−1)×j+jth row vWL + B

(i−1)×j+jth row vBL = EWL,(i−1)×j+jth row (A14)

The only nonzero elements of (i− 1) × j + jth row of A are j − 1, j, j + 1th elements of the row.
B and C are mn×mn diagonal matrices related to the conductance of the resistive memory to describe
the currents flow through the memory layer. More details are available in [13] although the structure of
the matrices A, B, C, D, EWL and EBL depends on the order of the Kirchhoff’s equations that correspond
to the individual junctions.Micromachines 2019, 10, x 7 of 8 
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For the simulation where all the applied potentials to the WL and BL are set, local potentials at
the crossbar junctions can be obtained in two steps by solving the following two equations:(

B−AC−1D
)
vBL = EWL −AC−1EBL (A15)

vWL = C−1(EBL −DvBL) (A16)
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