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Abstract: In this work, the influencing factors and corresponding theoretical models for the surface
topography in diamond turning process are reviewed. The surface profile on one tool feed is the
elementary unit of surface topography. The influences coupled with the models of the duplication
effect of the tool edge profile, material spring back, and plastic side flow are outlined in this part.
In light of the surface profile on one tool feed and “trim principle”, the modeling methods of
surface topography along the radial direction (2D surface topography) are commented. Moreover,
the influence of the vibration between the diamond tool and workpiece on the 2D surface topography
is discussed, and the theoretical models are summarized. Finally, the issues for modeling of 3D
surface topography, particularly the influences of material defects, are analyzed. According to the
state-of-the-art surface topography model of the diamond turned component, future work in this
field is therefore predicted.

Keywords: single-point diamond turning; surface topography; tool edge waviness; vibration; work
material defect

1. Introduction

Single-point diamond turning technology is extensively employed in the advanced manufacturing
process, such as the fabrication of optics components and the critical parts in the aerospace technology
and clean energy [1–4]. This technology employs the ultra-sharp diamond tool mounted on the
ultra-precision lathe, which is capable of achieving the nanometric surface finish and sub-micron
form accuracy at the mean time [5–8]. The fluid film bearings and high-accurate numerical controller
are applied on the lathes to control the relative movements between the diamond tool and the
workpiece [9–11]. Furthermore, the ambient temperature and the surrounding environment have been
strictly controlled to acquire the fine surface finish [12,13]. The above controlling process technologies
are applied since they can all affect the final surface topography of the diamond turned components, i.e.,
the surface topography is the comprehensive result of the above influencing factors. Meanwhile, surface
topography also has a direct impact on the functional performance, like the optical functions [14–16].
Therefore, it is of great significance to establish an accurate surface topography model for the diamond
turned components.

To fulfil such requirement, recent advances in the surface topography modeling of a diamond
turned component is summarized and discussed in this work, which follows the modeling process
of surface topography. First, the surface profile model in relation to one feed rate is analyzed and
the corresponding models with the influencing factors in this spatial dimensional, such as tool edge
waviness, material spring back and plastic side flow are presented. Afterwards, based on the surface
topography in one feed rate, the 2D surface topography in the radial direction can be achieved with
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consideration of vibration between diamond tool and workpiece. Finally, general models for 3D
surface topography are acquired and the influencing factors in this spatial dimension, i.e., mechanical
properties in relation to the work material are discussed and recommended to be integrated into the
surface topography model. Furthermore, challenges and outlooks for the surface topography model of
diamond turned components can be achieved according to the above results.

2. Theoretical Models

In this work, three categories of models, i.e., surface profile model in response to one tool feed,
surface topography model in the radial direction and 3D surface topography model, will be discussed.
The influencing factors and corresponding issues in the modeling process are therefore summarized
in Figure 1. The order for these models in Figure 1 is also consistent with the calculation process of
surface topography in diamond turning process.
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2.1. Surface Profile Model Corresponding to One Tool Feed 

In diamond turning, the surface topography is generated by the relative motion between the 
diamond tool and workpiece. Hence, the surface profile model in relation to one feed is the 
elementary unit of the total surface profile. As revealed by the previous investigations, three main 
components, i.e., the duplication effect of diamond tool edge profile, material spring back and 
material plastic side flow, can affect the vertical distance between the highest peak and the lowest 
valley, i.e., the peak-valley surface roughness Rt [17–19]. Therefore, these three components should 
be taken into account in the modelling of surface profile corresponding to one tool feed as shown in 
Figure 1.  

For the duplication effect of diamond tool edge profile, researchers originally employed the 
circular arc or its simplification form, i.e. the parabola expression as the tool edge profile and 
established the surface topography model [20–22]. On this condition, component in relation to the 
duplication effect of cutting edge profile can be expressed as 
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2.1. Surface Profile Model Corresponding to One Tool Feed

In diamond turning, the surface topography is generated by the relative motion between the
diamond tool and workpiece. Hence, the surface profile model in relation to one feed is the elementary
unit of the total surface profile. As revealed by the previous investigations, three main components, i.e.,
the duplication effect of diamond tool edge profile, material spring back and material plastic side flow,
can affect the vertical distance between the highest peak and the lowest valley, i.e., the peak-valley
surface roughness Rt [17–19]. Therefore, these three components should be taken into account in the
modelling of surface profile corresponding to one tool feed as shown in Figure 1.

For the duplication effect of diamond tool edge profile, researchers originally employed the circular
arc or its simplification form, i.e., the parabola expression as the tool edge profile and established the
surface topography model [20–22]. On this condition, component in relation to the duplication effect
of cutting edge profile can be expressed as
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where Rtew-wi(x) is the active tool edge profile in one feed rate (without consideration of the tool edge
waviness); rε is the tool corner nose radius; and f is the feed rate per revolution.

For the simplification process, the Taylor formula is applied in the approximation process [15].
However, the disadvantage of this kind of tool edge profile model is also obvious. Due to the
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state-of-the-art diamond tool fabrication technology [23–25], tool edge waviness is inevitably observed
on the cutting edge of the diamond tool, which can be measured by the diamond-tool-radius-check
(DTRC) system. Due to the existence of tool edge waviness on the cutting tool edge, deviations between
the circular arc surface topography and the actual surface topography are unavoidable. For instance,
Sung et al. once adopted a high-resolution optical system to capture the image of an active tool
nose profile, and their investigations show that the deviation of the tool nose profile, i.e., the tool
edge waviness, alone can cause the surface roughness to vary in a large extent [26,27]. As shown in
Figure 2a, the hollow square is the simulated peak-valley surface roughness Rt with consideration
of tool edge waviness; and the straight line is the nominal peak-valley surface roughness Rt = f 2/8rε
without consideration of tool edge waviness.

In this work, the tool edge waviness is defined as the deviation between the actual tool shape
profile and its corresponding least square circular arc, i.e., the nominal tool shape profile which is
expressed in Equation (1). As shown in Figure 2b, the red line (represented as the ideal tool shape) is
the nominal tool shape profile, while the black line is the actual tool shape profile. To accurately capture
the active part of the diamond tool, He et al. proposed a two-step method, and subsequently integrated
it into the 3D surface topography model [28]. Kurniawan et al. employed a replication technique to
acquire the actual tool edge profile [29]. Specifically, the tool edge profile is firstly duplicated on a soft
material, for instance the aluminium alloy, and then used a 3D non-contact surface profiler to capture
the active cutting edge profile. Meanwhile, Zong et al. explored the influence of tool edge waviness in
diamond turning of potassium dihydrogen phosphate (KDP) crystals with finite element simulation
method, and they pointed out that the tool edge waviness can affect the formation process of cutting
chip, which further deteriorates the final achieved surface topography [30]. In addition, Zuo et al.
studied the micro/nano texture generation mechanism in double-frequency elliptical vibration diamond
cutting, in which the rake face, flank face and tool cutting edge radius are further taken into account [31].
Based on the theoretical and experimental results, they claimed that with consideration of rake face
and flank face, the prediction accuracy is obviously improved, which reflects that the influence of rake
face and flank face on surface generation is greater in the vibration-assisted diamond turning.
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Figure 2. Influence of tool edge waviness on the surface profile: (a) Comparisons between the surface 
roughness results with and without considering tool edge waviness; (b) tool edge waviness profile 
on the diamond tool. Reproduced with permission from [26,29]. 

Childs et al. once studied the dependence of peak-valley surface roughness on the feed rate per 
revolution with a rounded cutting tool, and reported that under a smaller feed, the tool feature that 
controls the final surface finish changes from nose radius to cutting edge radius [32,33]. Hence, in 
addition to the duplication effect to tool edge profile, the influence of cutting edge radius (rn) should 
also be taken into account particularly when the feed rate is small enough. Specifically, the influence 
of cutting edge radius on the surface topography formation is via the existence of the minimum 
undeformed chip thickness in diamond turning. The theoretical analyses [34,35], molecular dynamic 
(MD) simulation [36] as well as the experimental observations [37] all reported that there is a linear 
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Childs et al. once studied the dependence of peak-valley surface roughness on the feed rate
per revolution with a rounded cutting tool, and reported that under a smaller feed, the tool feature
that controls the final surface finish changes from nose radius to cutting edge radius [32,33]. Hence,
in addition to the duplication effect to tool edge profile, the influence of cutting edge radius (rn) should
also be taken into account particularly when the feed rate is small enough. Specifically, the influence
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of cutting edge radius on the surface topography formation is via the existence of the minimum
undeformed chip thickness in diamond turning. The theoretical analyses [34,35], molecular dynamic
(MD) simulation [36] as well as the experimental observations [37] all reported that there is a linear
relationship between the minimum undeformed chip thickness (hDmin) and the tool cutting edge radius
(rn), i.e., hDmin = krn, where k is the corresponding linear coefficient. Further investigations [34] disclosed
that the coefficient k is in relation to the contact behavior between the diamond tool and workpiece
surface, especially the mechanical properties of the work material and the frictional coefficient on the
tool-workpiece contact interface.

As demonstrated in Figure 3a, due to the existence of the minimum undeformed chip thickness,
the work material below the stagnant point F undergoes an extensive ploughing and rubbing process,
which is a type of plastic deformation without the formation of continuous cutting chips, and further
results in some of the work material flowing to the side of the turning mark [38,39]. Subsequently,
the phenomena of material plastic side flow and material spring back occur and the machined surface
finally forms [40,41]. To calculate the material spring back, Arcona et al. once performed systematic
experiments and proposed an empirical model, which demonstrated that the amount of material
spring back in metal cutting can be expressed as a proportional function of tool cutting edge radius
rn, the ratio of work material hardness and Yong’s modulus (H/E) [42,43]. Furthermore, to study
the material side flow behavior during the scratch test, Jardret et al. proposed a linear relationship
between the height component ha induced by the material side flow and the contact depth h as shown
in Figure 3b, and the expression is given by [44]

pe =
ha

h
= k1 ln

(
E cotθs

σy

)
+ k2 (2)

where pe is the elastic recovery rate, i.e., the ratio of ha to h; θs is the semi-apical angle of the indenter;
E and σy are the Young’s modulus and the yield stress of the work material; k1 and k2 are the
corresponding coefficients acquired from the fitting process, respectively.
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Inspired by the similarities between the scratch test and cutting process, Liu et al. further pointed
out that the roughness component (w) in relation to the material plastic side flow w can be expressed
by a function similar to Equation (2), i.e., [45]

w = k1 ln
(

E cotθ
eσy

)
+ k2 (3)

where e is a correct coefficient considering the influence of strain gradient strengthening effect of work
material [46].
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Furthermore, He et al. established the calculation model responsible for the height value in
relation to material plastic side flow at the margin point in one feed, which takes feed rate, tool corner
nose radius, minimum undeformed chip thickness and effective cutting width into consideration [25].

However, the above solutions only supply the results of material spring back and plastic side
flow components in the local position. For instance, in Equation (3), only the height value of material
plastic side flow at the margin position is one feed rate is calculated. However, these values are not
sufficient for the surface topography model in one feed rate, which means that the distribution functions
responsible for the material plastic side flow and material spring back should be supplied. Kong et al.
and To et al. studied the material plastic side flow and recovery in diamond turning process [47–49],
and Kong et al. further pointed out that the effect of material plastic side flow is overwhelmed by the
effect of material spring back when the depth of cut is extremely small. Furthermore, the influence of
the distribution of the material spring back and plastic side flow on the surface profile in one tool feed
is also discussed in [47]. As shown in Figure 4, S1 is the surface profile only considering the duplication
effect of tool edge profile (including tool edge waviness). Due to the effect of the material plastic side
flow, the height of the surface profile S1 in one tool feed gradually increases from the center to the
margin, and resultantly the surface profile S2 forms. Further taking the effect of material spring back
into account, the final surface profile on the machined surface can be expressed as S3. As demonstrated
in [25,45], the value of the material plastic side flow obtains the maximum value at the margin point in
one feed rate; this is due to the fact that the work material will flow and accumulate at the side part of
the active cutting edge under the high pressure on the tool/workpiece interface. Meanwhile, the value
of material spring back reaches the maximum value at the center part in one feed rate.
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surface topography in one tool feed (S1: only considering the duplication effect of tool edge profile; S2:
considering the influence of duplication effect and plastic side flow; S3: considering the influence of
duplication effect, material spring back and plastic side flow). Reproduced with permission from [47].

Furthermore, Xu et al. carried out molecular dynamics (MD) simulation to investigate the
respective influence of material spring back and plastic side flow on surface topography [50].
Their theoretical results show that the height of material spring back almost decreases to zero
at the two sides and increases to the maximum value at the center in one feed rate, which is consistent
with the model in [47]. Kishawy et al. employed the 3D thermo-viscoplastic finite element simulation
to explore the formation of plastic side flow and validated through cutting experiments [51,52].
They reported that larger tool corner nose radius and lower feed rate are the favourable conditions
for the generation of material plastic side flow. Meanwhile, Chen et al. adopted the Hertz contact
theory coupled with the Johnson-Cook material constitutive model to establish the calculation model
for the height component of material plastic side flow, and further verified this model by finite element
simulation and actual cutting experiments [53,54]. Summarizing these theoretical results, He et al.
further proposed that the general distribution of material spring back and plastic side flow in one
feed rate can be approximately calculated using a quadratic function model [28]. The corresponding
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boundary conditions responsible for the two influencing factors are also established, and on this
condition, the surface profile F(x) in one feed rate can be expressed as

F(x) = Rtew(x) +
4(wr − sr)

f 2

(
−

f
2
≤ x ≤

f
2

)
(4)

where Rtew(x) is the surface profile in one feed rate with consideration of tool edge waviness; wr and sr

are the values of material plastic side flow in the center (x = 0) and material spring back in the margin
position (x = ±f /2) in one feed rate, respectively.

Furthermore, due to the insufficient knowledge of calculation method for the height component of
material plastic side flow, some researchers attempt to establish the distribution function with respect
to the height component of material spring back and apply it to describe the deviation between the
kinematic components (Rtew(x)) and the final surface profile in one feed rate (F(x)). In fact, this function
can be regarded as the general function as discussed in [28]. For instance, in the fabrication of the
micro-freeform lens array, to accurately determine the process parameters required to generate the
pre-designed surfaces, Zhu et al. adopt a piecewise function to express the distribution of spring
back in relation to the minimum deformed chip thickness (hDmin) as demonstrated in Figure 5 [55].
Furthermore, Huang et al. designed a linear function to analyze the amount of material spring
back when the undeformed chip thickness ranges from minimum undeformed chip thickness to the
maximum chip thickness [56]. Liu et al. claimed that when the undeformed thickness is larger than the
minimum undeformed chip thickness, the material spring back amount is zero and hence established
the distribution function for material spring back [57]. As an alternative, Guo et al. assumed that when
the chip thickness is greater than the minimum undeformed chip thickness, the elastic recovery linearly
decrease to a constant value which is in relation to material mechanical properties and cutting edge
radius (rn), and a more complex piecewise function for material spring back is therefore established [58].
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In diamond turning, the combined effect of plastic side flow, burnishing in relation to the flank
face and material spring back is defined as the swelling effect. Researchers further defined the swelling
ratio as the proportion between the actual height of measured surface and its nominal height, which can
also be employed in the modelling of surface topography. For instance, Cheung et al. defined the local
swelling ratio SPi at the ith radial section as the square root of the ratio of the power spectral density
for the measured surface profile in one feed rate and the nominal surface roughness spectrum [59],
which can be acquired from the nominal surface profile expressed in Equation (1). Similarly, Chen et al.
reported that the average swelling ratio could be determined as the ratio of the average height of the
measured surface profile to the height of nominal surface profile [60]. Meanwhile, their investigations
all demonstrated that the swelling ratio is easily affected by the spindle speed in the actual cutting
experiments. Herein, the corresponding theoretical results for the material spring back function are
summarized in Table 1.
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Table 1. The distribution model of material spring back and/or plastic side flow.

Authors Expression Illustration

He et al. [28] δtc =
4(wr−sr)

f 2
wr and sr are the values of material plastic side flow and

material spring back, respectively.

Zhu et al. [55] δtc =


tc tc < te = εyhDmin
(1−εphDmin)−te

hDmin−te
tc ∈ [te, hDmin]

te tc > hDmin

te is the elastic deformation limit of the work material; tc is the
chip thickness and hDmin is the minimum undeformed

chip thickness.

Huang et al. [56] δtc =


tc 0 ≤ tc < tcmin

tcmin
tcmax−tcmin
tcmax−tcmin

tcmin ≤ tc < tcmax

0 tc > tcmax

tcmax and tcmin are the maximum and minimum undeformed
chip thickness, i.e. tcmin = hDmin.

Liu et al. [57] δtc =


tc 0 ≤ tc < te

petc te ≤ tc < tcmin

0 tc ≥ tcmin

pe is the elastic recovery rate when ploughing/rubbing occurs.

Guo et al. [58] δtc =


tc tc ≤ te

pe(tc − te) + te tce ≤ tc < tcmin

η(tcmax − tc) + te tcmin ≤ tc < tcmax

te tc ≥ tcmax

pe is the elastic recovery rate of the work material; η is the
corresponding linear coefficient and determined by tcmax,

tcmin and pe.

Chen et al. [60] F(x) = SP·Rtew(x) SP is the swelling ratio.

However, up until now, the above distribution functions for the material spring back and
plastic side flow mainly established on some assumptions and no directly actual experimental
observations have been performed to support these assumptions. For the theoretical method, only a
few investigations, for instance the molecular dynamic simulation, are performed to analyze the
generation of the two influencing factors. Hence, in the future study, the combination of theoretical
simulation and experimental observation should be simultaneously employed in the analysis of height
component in relation to the material spring back and plastic side flow. Furthermore, in the current
investigations, the cross-section shape of the tool edge profile is usually fitted by a circular arc to obtain
the cutting edge radius rn. In fact, Xu et al. has theoretically noted that the shape of the cutting edge
shape also affects the stagnation region, chip formation and cutting forces, etc., which should be also
further clarified by the actual cutting experiments [61].

2.2. Surface Topography in the Radial Direction

With the theoretical results in Section 2.1, researchers can acquire the surface profile in one feed
rate. The following procedure is to establish the surface topography in the radial direction since it is the
foundation of the 3D topography model. To obtain the surface topography model, the ‘trim principle’
is extensively employed in the calculation process [62–65]. As demonstrated in Figure 6a [28], the blue
curve is the cutting tool trace in the diamond turning process, and the height coordinate at point B in
the radial direction θ should be calculated. In fact, two or more diamond tool profiles will sweep this
point in the diamond turning process and therefore leave their surface profiles, which are represented
as the corresponding red arcs as depicted in Figure 6b and the tool tip are at the relevant position Bm

and BM, respectively.
The ‘trim principle’ is that the final height coordinate at point B is the minimum value among all

these height coordinates induced by these tool profiles duplication. More precisely, on the current
configurations in Figure 6b, the height coordinate at point B is given by

zB = min
{
F(Bm) + zv(tBm), F(BM) + zv(tBM)

}
(5)

where F(Bm) and F(BM) are the height coordinates of point B when the tool tip locates respectively at
point Bm and BM, which can be acquired from the theoretical models discussed in Section 2.1; zv(t) is
the vibration component at the cutting time t, which will be systematically studied in the this section;
tBm and tBM are the corresponding times points when the diamond tool locates at the two points.
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Figure 6. Illustration for the ‘trim principle’ employed in the calculation of surface topography in radial
direction: (a) polar coordinate of the workpiece surface and position of B, Bm and BM; (b) sectional
view of height coordinate of point B. Reproduced with permission from [28].

For the surface topography in the radial direction, researchers have made great effort on the
influence of vibration, and for simplification, the vibration is considered as the relative movement
between the diamond tool tip and the workpiece surface [66,67]. According to the specific expressions
of the vibration component, investigations on the vibration in the surface topography model can
be divided into three categories, i.e., the mono-frequency vibration, multi-frequency vibration and
multi-direction frequency. For the mono- and multi-frequency vibration condition, only the vibration
in the height direction, i.e., z-axis is discussed since it is the sensitive direction of vibration impact
according to the previous findings [68,69]. The influence of mono-frequency vibration is originally
studied, and on this condition a ratio rz-n between the vibration frequency (fz) and the spindle rotation
frequency (f n) is always defined as [70,71]

rz−n =
fz
fn

= ∆ + ε (6)

where the value of ∆ is 0 or the positive integer; ε is a decimal fraction and in the range of −0.5 to 0.5.
Hence, the phase shift φ after one revolution is therefore expressed as [72]

φ = 2πε (7)

Herein, the relative movement between the diamond tool and workpiece surface in the height
direction, i.e., the infeed direction is expressed as a mono-frequency harmonic equation corresponding
to the phase shift [73]

zv(t) = A sin(2π fzt−φ) (8)

where A is the amplitude of the mono-frequency vibration. Furthermore, the tool locus projected on
the x-z plane (the feed direction is always configured as the x-axis) can be expressed as in terms of the
phase shift (φ) and feed rate (f ) as [74]

z f (x) = A
[
1− cos

(
x
f
φ

)]
(9)

On the mono-frequency vibration condition, regular turning marks in relation to the vibration will
be observed on the machined surface. Kim et al. pointed out that the number of the bulge segments
is identical to the integer part of the frequency ratio in Equation (6), i.e., the predictions results as
demonstrated in Figure 7a,b; while the orientation of the bulge segment depends on the sign of the
decimal part ε [75]. Specifically, when the value of ε is positive the orientation is counter clockwise,
and clockwise vice versa as depicted in Figure 7a,b. Tauhiduzzaman et al. experimentally investigated
the vibration induced by the imbalance of the spindle, and reported that this kind of vibration is
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synchronous, which can result in the called ‘spindle star’ that appears as straight concentric spokes as
demonstrated in Figure 7c [76]. Zhang et al. further pointed out that regular surface profiles could
influence the surface roughness and form error components, which is closely associated with the
wavelength of the surface profile component [77]. To reduce the influence of the regular patterns
induced by the vibrations, Khanfir et al. developed an active electronic control method with the spindle
on magnetic bearings [78].Micromachines 2019, 10, x 9 of 22 
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model for flat, spherical and freeform surfaces [84,85]. Their investigations indicated that when 
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surface topography cannot be ignored, particularly for the spherical and freeform surfaces. Lin et al. 
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of vibration on surface topography decreases with the decrease of the spindle speed [86]. 
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is therefore observed [87]. Meanwhile, it should be noted that the original phase of the vibration for 
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Figure 7. Results of surface topography on mono- and multi-frequency vibration conditions:
(a) simulation results of surface topography on mono-frequency vibration condition (∆ = 5, ε = 0.2);
(b) simulation results of surface topography on mono-frequency vibration condition (∆ = 2, ε = −0.2);
(c) experimental results on the mono-frequency vibration condition; (d,e) experimental results on the
multi-frequency vibration condition. Reproduced with permission from [75,76,79].

In view of the above disadvantages, recent investigations on the vibration in diamond turning are
performed on the multi-direction and multi-frequency conditions. For instance, Zhang et al. proposed
a five-degree-of-freedom dynamic model for the aerostatic bearing spindle to explore the mechanism
of multi-direction vibration (in the x-, y- and z-direction) and its influence on surface topography in
diamond turning [80,81]. Their studies show that on the general effect of the axial and radial vibrations,
a spiral and two-fold patterns surface profile generates on the machined surface. Based on the dynamic
model, they further pointed out that the surface topography in the center area is mainly affected by
the axial vibration of the spindle, while that outside region is primarily affected by the tilting motion
of the spindle [82]. In addition, Tian et al. assumed the relative vibration between diamond tool
and workpiece in turning direction (infeed direction) and feeding direction to be a simple harmonic
motion, and the fine correlations of surface topography between the simulation and experiment results
proved the accuracy of the proposed model [83]. Similarly, Huang et al. considered the vibrations
in the feed and infeed directions, and established the surface topography model for flat, spherical
and freeform surfaces [84,85]. Their investigations indicated that when considering the vibration in
feed direction, the tool locus will be more complex and its influence on surface topography cannot
be ignored, particularly for the spherical and freeform surfaces. Lin et al. considered the vibrations
in three directions, i.e., x-, y- and z-axis, and they claimed that the influence of vibration on surface
topography decreases with the decrease of the spindle speed [86]. Furthermore, Qu et al. directly
integrated the real-time vibration signals in the feed and infeed directions into the surface topography
model in ultra-precision roll die turning and fine consistence is therefore observed [87]. Meanwhile,
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it should be noted that the original phase of the vibration for [83] to [86] all assumed to be zero
for convenience.

Furthermore, to theoretically study the impact of multi-frequency vibration on the surface
topography, He et al. proposed an analytical model for the surface topography considering the
influence of multi-frequency vibration, and subsequently performed the corresponding cutting
experiments to validate its accuracy [28]. The theoretical results coupled with the experimental
observations all demonstrated that the bulge segments on the multi-frequency condition are complex
and irregular, which is rather different from the mono-frequency vibration condition. Their theoretical
results agree well with the experimental results on the studies of multi-frequency vibration as depicted
in Figure 7e. Chen et al. established the finite element model for the machine tool to simulate the
multi-mode vibration on the surface generation in diamond fly-cutting process [88–90]. They reported
that the low-frequency vibration influences the surface roughness error, while the high-frequency
vibration affects the figure error in fly-cutting process. Furthermore, Gao et al. pointed out that the
fluctuation of the oil source pressure and the flow status of the film of the aerostatic spindle will also
affect the figure error in fly-cutting process [91,92].

Generally, the vibration between the diamond tool and workpiece surface is one the kinematic
errors in the diamond turning process. In the recent studies, researchers tend to integrate other
motion errors into the surface topography model. For instance, Kong et al. analyzed the spindle
axial motion error, slide motion error and stroke error on the surface generation in fast servo
machining [93]. Yang et al. further analyzed the displacement error, angular error and squareness
error in the turning process and proposed the surface topography model including these influencing
factors [94]. Their theoretical results prove that the slide straightness and angular errors result in the
oscillating and tilting surface profile, while the vibrations can cause the segments on the machined
surface as demonstrated in Figure 8. Bittner et al. and Wu et al. considered the tilt error between the
moving direction of the diamond tool and the spindle axis, and pointed out this error can lead to a
conical profile error on the machined surface topography [95,96].
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Figure 8. Influence of X-slide carriage straightness error and spindle roll error on the surface topography:
(a) 2D surface topography when considering the influence of X-slide straightness error; (b) sectional view
of surface topography corresponding to (a); (c) 2D surface topography when considering the influence
of spindle roll error; (d) sectional view of surface topography corresponding to (c). Reproduced with
permission from [94].
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The theoretical results for the vibrations and other influencing factors for the surface topography
model on the radial direction are therefore summarized in Table 2. As demonstrated, the influence of
vibration on the surface topography has been comprehensively considered and analyzed. However,
the other influencing factors, for instance the error components in relation to the machine tool
structure, are only preliminarily explored. In fact, the influencing factors of surface topography on
the radial direction can be categorized into static error component and dynamic error component.
The dynamic error component, including the vibration between the diamond tool and workpiece
surface, is time-varying; while the static error components, including the positional and angular errors
between the spindle, slide and diamond tool, do not vary with time. Therefore, to achieve a more
accurate surface topography model, different strategies should be employed for the different error
components. Specifically, the dynamics error components should be monitored by the instruments to
acquire the real-time signal. In addition, the static error component is accurately determined before
the cutting experiments. Subsequently, a more accurate surface topography model is built under the
consideration of both the real-time signal and the measured static error components.

Table 2. Theoretical results for the vibrations employed in the surface topography modelling process.

Authors Expression Illustration for the ∅

Yang et al. [73] zv(t) = A sin(2π fzt−φ) ∅ is the original phase of the vibration and its value is
configured as the phase shift between two adjacent vibrations.

He et al. [28] zv(t) =
n∑

k=1
Ak sin(2π fkt + φk)

∅k is the original phase of the kth vibration and its value comes
from the actual measurement

Tian et al. [83]
{

xv(t) = Ax[1− cos(2π fxt + φx)]
zv(t) = Az[1− cos(2π fzt + φz)]

∅x and ∅z are assumed to be zero in the modelling process

Huang et al. [84]
{

xv(t) = Ax sin(2π fxt−φx)
zv(t) = Az sin(2π fzt−φz)

∅x and ∅z are assumed to be zero in the modelling process

Lin et al. [87]


xv(t) = Ax sin(2π fxt−φx)

yv(t) = Ay sin
(
2π fyt−φy

)
zv(t) = Az sin(2π fzt−φz)

∅x, ∅y and ∅z are assumed to be zero in the modelling process

2.3. 3D Surface Topography for Diamond Turned Component

Based on the established surface topography model on the radial direction and those reviewed
theoretical results, the 3D surface topography can be achieved. For the 3D surface topography model
of a diamond turned component, two issues are mainly discussed in the section. The first one is the
calculation method for the z coordinate on the diamond turned surface under the 3D condition; and the
second one is the modeling for the random factors, especially the defects in the work material. For the
first issue, researchers extensively employed the numerical calculation method [83–87]. Specifically,
the modeling surface is firstly sampled into a finite number of equally spaced sections on the radial and
circumferential directions, and the height coordinates of the sampling points are therefore calculated
according to the theoretical models on the radial direction as discussed in Section 2.2. For the values
of height coordinate in other positions, the fitting method is therefore introduced in the calculation
process. However, from this calculation method, only the the coordinates on the intersectional points
are the accurate values. Considering these shortcomings, researchers recently started to develop the
analytical method for the 3D surface topography model. For instance, He et al. developed an analytical
surface topography model on the polar coordinates condition, and then transformed into the Cartesian
coordinates condition with corresponding transformation formula [28]. This method can supply the
accurate value for each point on the coordinate plane without any fitting calculation process.

The second issue is the modeling for the random influencing factors in the diamond turning
process, especially the crystallographic orientation (single crystal material) and defects (polycrystal
material) in the work material. For the single crystal work material, the influence of crystallographic
orientation on the surface topography is always analyzed. For instance, Yuan et al. investigated the
effect of the crystallographic orientation on the cutting force and surface quality in the diamond turning
process, and selected single crystal aluminium and copper as the work material [97]. A micro-plasticity
model responsible for the anisotropy phenomenon in diamond turning is therefore developed. To et al.
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selected three different crystallographic orientations on the single crystal aluminium in diamond
turning, and reported that there is a close dependency of surface topography with crystallographic
orientation [98]. Similarly, Chen et al. studied the effect of crystallographic orientation of potassium
dihydrogen phosphate (KDP) on the finial surface finish, and pointed out that the variation of surface
topography is consistent with the variation of crystallographic orientation [99]. To further reveal the
underlying mechanism responsible for the dependence of surface topography on the crystallographic
orientation, the molecular dynamics (MD) method is usually employed. For instance, Komanduri et al.
once conducted the MD simulation to analyze the influence of crystallographic orientation on surface
formation of single crystal aluminium in nanometric cutting, and they disclosed the subsurface
deformation, dislocations as well as the extent of anisotropy of workpiece material [100,101]. Li et al.
explored the influence of pore and second phase particle on the surface finish in diamond turning of
single crystal copper with MD simulation, and reported that the existence of pore promotes the slide
of dislocation and leads to strong work hardening [102]. Meanwhile, the influence of second phased
particle is closely associated with its hardness relative to the work material. Liu et al. fabricated the small
diamond tool with focused ion beam (FIB) technology, and further perform nano-cutting experiments on
single crystal silicon using a specialized designed instrument with scanning electron microscopy (SEM)
online observation [103]. Their experimental results indicated that the cutting-induced amorphous
layer on the machined surface is strongly dependent on the depth of cut and cutting edge radius
(rn). As demonstrated, theoretical analysis and experimental observation have performed on the
influencing factors of single crystal work material. However, up to now, no suitable surface topography
model considering the influence of crystallographic orientation of the single crystal material has been
established, which should be further explored in the future investigation.

Compared with the single crystal material, the polycrystal material is more extensively employed
in the diamond turning process, for instance the aluminium alloy and polycrystal copper. In diamond
turning, the depth of cut is usually less than the average grain size of polycrystalline material [97].
Moriwaki performed cutting experiments on the machinability of copper and pointed out that the
scratches parallel to cutting direction on the diamond turned surface is due to the imperfection on
the cutting edge, i.e., tool edge waviness; while the irregular step structure is induced by the grain
boundary [104]. Furthermore, the step structure will be strengthened when the surface is machined
under a larger depth of cut. Inamura et al. employed a quasi-static method to analyze the nano-cutting
process of copper [105]; and they claimed that the formation of surface topography for polycrystalline
cooper depends on its crystal orientation. For the formation process of surface topography, they found
that the plastic deformation firstly occurs along the grain boundary and then propagates into each
grain. Brinksmeier et al. studied the step structure phenomenon and its height value in diamond
turning of polycrystalline copper as shown in Figure 9a, and pointed out that the step structure between
two grains derives from the variation of elastic recovery [106,107]. They further pointed out that the
grain structure of metal substrate is the ultimate limit to the achievable surface roughness. Liu et al.
explored the formation mechanism of the step structure for polycrystalline copper, and claimed that
the misalignment in the slip direction between the sub-grains and the original grains results in the step
structure [108]. To explain the step structure on the diamond turned surface of polycrystalline copper,
a theoretical formula for the value of material spring back in diamond turning is developed in [28],
and the formation of step structure on the machined surface is reported to heavily depend on the
Young’s modulus of the neighbouring grain and their grain boundary. Specifically, as demonstrated in
Figure 9b for polycrystalline copper, the Young’s modulus of the two neighbouring grains are different
and both are larger than its value on the grain boundary, which finally leads to the step structure as
depicted in Figure 9c. Furthermore, to reduce the influence of grain boundary of polycrystalline copper
on the final surface finish, Zhang et al. employed the cold-deformation recrystallization annealing
method, which has been proved to effectively improve the final surface roughness [109].



Micromachines 2019, 10, 288 13 of 22

Micromachines 2019, 10, x 13 of 22 

 

et al. employed the cold-deformation recrystallization annealing method, which has been proved to 
effectively improve the final surface roughness [109]. 

 (a) (b) 

(c) 

 
Figure 9. The step structure on the diamond turned of polycrystalline copper and its theoretical 
explanation: (a) the surface topography of step structure on the machined surface; (b) surface and the 
distribution of Young’s modulus before cutting process; (c) the step structure formation on the 
machined surface. Reproduced with permission from [28,107]. 

In addition to the grain boundary, other kinds of defects can also be observed in the matrix of 
alloy materials and composites materials. For instance, Ge et al. studied the surface quality when 
diamond turning of SiCp/Al composites, and observed many defects such as pits, voids, micro-cracks, 
grooves and matrix tearing on the machined surface [110]. Tauhiduzzaman et al. focused on the 
influence of microstructure of aluminium alloy Al 6061, including grain boundary density and 
inclusions, and pointed out that using an ultra-fine grain work material can effectively reduce the 
influence of material microstructure on surface topography [111]. Han et al. experimentally 
investigated the formation of defects in diamond turning of polycrystalline copper, and pointed out 
that the dominating defect affecting the formation of surface topography will correspondingly 
change with the increase of depth of cut [112].  

 (a) (b) 

 
Figure. 10 Grain boundary effect on the morphology of cutting chips for different kinds of work 
material: (a) raised line structure on the cutting chip of aluminium alloy Al6061; (b) step structure on 
the cutting chip of polycrystalline copper. Reproduced with permission from [113,114]. 

To comprehensively reveal the influence of material microstructure on surface topography and 
analyze its characteristic, Ding et al. conducted orthogonal cutting experiments with a small diamond 
micro-tool to machine aluminium alloy Al6016 and polycrystalline copper on a vibration-controlled 
ultraprecision machine tool (Moore Nanotech 350, Moore Nanotechnology Systems, LLC, Swanzey, 
NH, USA) [113,114]. They found that for the aluminium alloy, the hard particles embedded in the 
material matrix are brittle, which is responsible for the void and scratch line on the machined surface 

Figure 9. The step structure on the diamond turned of polycrystalline copper and its theoretical
explanation: (a) the surface topography of step structure on the machined surface; (b) surface and
the distribution of Young’s modulus before cutting process; (c) the step structure formation on the
machined surface. Reproduced with permission from [28,107].

In addition to the grain boundary, other kinds of defects can also be observed in the matrix of alloy
materials and composites materials. For instance, Ge et al. studied the surface quality when diamond
turning of SiCp/Al composites, and observed many defects such as pits, voids, micro-cracks, grooves
and matrix tearing on the machined surface [110]. Tauhiduzzaman et al. focused on the influence
of microstructure of aluminium alloy Al 6061, including grain boundary density and inclusions,
and pointed out that using an ultra-fine grain work material can effectively reduce the influence of
material microstructure on surface topography [111]. Han et al. experimentally investigated the
formation of defects in diamond turning of polycrystalline copper, and pointed out that the dominating
defect affecting the formation of surface topography will correspondingly change with the increase of
depth of cut [112].

To comprehensively reveal the influence of material microstructure on surface topography and
analyze its characteristic, Ding et al. conducted orthogonal cutting experiments with a small diamond
micro-tool to machine aluminium alloy Al6016 and polycrystalline copper on a vibration-controlled
ultraprecision machine tool (Moore Nanotech 350, Moore Nanotechnology Systems, LLC, Swanzey, NH,
USA) [113,114]. They found that for the aluminium alloy, the hard particles embedded in the material
matrix are brittle, which is responsible for the void and scratch line on the machined surface [113,115].
Furthermore, obvious raised line structure can be observed on the cutting chips as demonstrated in
Figure 10a. Meanwhile, for the polycrystalline copper, few hard particles are found on the material
matrix, while the grain boundary relevant step structure (not the wrinkled structures on the chip) is
clearly observed on the cutting chips in Figure 10b, which is in common with the step structure on the
machined surface in Figure 9a.

To reveal the underlying mechanism for the influence of hard particles, Xu et al. and Sharma et al.
performed the molecular dynamics (MD) simulation process, and pointed out that when it encountered
the diamond tool cutting edge, the hard particles embedded in the material matrix will be suppressed
and subsequently protruded from the generated surface [116,117]. Particles removal or further
suppressed into the material matrix are associated with their sizes and locations in the work material.
In fact, on different cutting conditions, the dominant factors influencing the surface topography
are different. For instance, He et al. once predicted the 2D surface topography of the diamond
turned aluminium alloy at different feed rates and compared with the measured results, as shown
in Figure 11a,b [28]. Furthermore, the absolute prediction error (the average value for the difference
between the prediction and measurement results) and the relative prediction error (the ratio of the
absolute prediction error to the actual peak-valley surface roughness Rt of the surface) were also
calculated, as presented in Figure 11c. On a large feed rate condition (f = 8 µm/r), the dominant
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influencing factors on the surface formation are the duplication effect of tool edge profile, material
spring back and plastic side flow. Instead, on a small feed rate condition (f = 6 µm/r), the influences of
material defects, e.g., grain boundary, gradually dominate the formation of the surface topography.
The critical impact of material defects on the formation of surface topography on the small feed rate
condition (f ≤ 2 µm/r) also results in the sharp increase of the absolute and relative prediction errors,
as demonstrated in Figure 11c.
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Moreover, in addition to the material property aspects, the ambient environment factors,
the configurations of the diamond tool and some other process parameters, such as depth of cut and
spindle speed, should also be considered. For instance, Mishra et al. made an experimental investigation
and reported that the diamond tool overhang can lead to the excess tool tip vibration and tool wear in
machining process, which further affects the final surface topography. The optimized range of the tool
overhang, i.e., 12 mm to 16 mm, is recommended through the experimental observations [118,119].
Mir et al. studied the influence of rake angle in diamond turning of silicon with molecular dynamics
method, and reported that a positive rake angle diamond tool contributes to the generation of
cracks on the machined surface and therefore affects the final surface topography [120]. Meanwhile,
the selection of cutting fluids affects the lubrication condition [121], tool wear rate [122] and temperature
distribution [123,124] on the contact interface between the diamond tool and workpiece surface, which
further has impact on the final surface topography. For the process parameters, Cheung et al. and
Zhang et al. once pointed out that the surface roughness decreases with the increase of spindle
speed; while the variation trend under different depths of cut is irregular [125,126]. As demonstrated,
there are only a few investigations concentrated on ambient environment factors and depth of cut, etc.
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Unfortunately, no suitable surface topography model with consideration of these influencing factors
has been established up to now.

3. Future Work

In this study, the influencing factors of surface topography of the diamond turned components
and their corresponding models, as well as the modeling process have been reviewed and summarized.
It can be seen that the influence of feed rate, material spring back and the harmonic form vibration
between diamond tool and workpiece surface have been comprehensively studied. However, for the
other influencing factors, such as tool edge waviness, material plastic side flow, rake angle, grain
boundary and other defects in the work material matrix, the quantitative theoretical models are only
preliminarily established. In terms of the current findings, we think that some essential future works
need to attract more attention.

Firstly, as revealed in [118], there are ‘uncontrollable parameters’ in the diamond turning process,
which include the material defects, tool wear and lubrication condition, etc. Their main characteristic is
the random property which results in that it is rather hard to theoretically model their effects. Therefore,
in the practical application, it is suggested to introduce the probability method to analyze their effects.
For instance, defects such as voids, grain boundary and hard particles are extensively observed in
the aluminium alloy material matrix; He et al. employed the uniform distribution coupled with
Kolmogorov-Smirnov test method to model the distribution of additional heights in relation to material
defects, which effectively improve the prediction accuracy of 3D surface topography model [28].
Furthermore, for the single-crystal work material, the influences of grain orientation and rake angle are
distinct and should be further studied and taken into account in the future surface topography model.

Secondly, in terms of the vibrations between the diamond tool and workpiece surface,
their amplitudes and frequencies are always from the Fourier transformation of the original
displacement signal and some of the weaker components will be omitted in the calculation process.
However, to establish a more accurate surface topography model, the real-time vibration signal is
recommended to be integrated into the surface topography modeling process. Meanwhile, the error
components in relation to the machine tool structure and diamond tool configurations (for instance,
tool overhang) deserve more attention in the topography modeling.

Thirdly, in the current findings, researchers focused on the various kinds of influencing factors
and further integrated them into the surface topography model. In fact, the final surface topography
can be regarded as the comprehensive results of these influencing factors. When the impact of one
influencing factor is superior to others, corresponding results will be reflected in the machined surface
topography. Hence, to inversely infer the dominant influencing factors based on the results of surface
topography acquired in experiment should also be given enough attention.

Fourthly, the quantitative validation of the surface topography model, especially the 3D surface
topography model should also be particularly concerned in the practical application. The predication
accuracy of the surface topography model is always evaluated by the difference between the measured
surface topography and the simulated result. However, it is such to accurately match the corresponding
points between the two profiles. To solve this problem, some researchers [28,96] attempted to
employ the 2D surface topography, i.e., the radial or circumferential surface profile to evaluate the
prediction accuracy, which can be regarded as a local validation method. Meanwhile, some other
researchers [85–87] compare the surface roughness between the two profiles to validate the accuracy.
However, this method is also not comprehensive since two different surface profiles may have the
same surface roughness values. Hence, the global evaluation for the prediction accuracy of the 3D
surface topography model should also be further explored.

4. Conclusions

This work aims to give a comprehensive understanding of the influencing factors and
corresponding modeling methods for the surface topography of the diamond turned component and
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discover the future developments in the related field. Based on the excellent achievements outlined on
the above parts, some conclusions can be drawn as follows

(1) For the surface profile model corresponding to one feed, in addition to the known factors, such
as feed rate per revolution and tool corner nose radius, the tool edge waviness and material
dependent factors including the material spring back and material plastic side flow should also be
given enough attention. Furthermore, the influence mechanism and the corresponding modeling
methods of the other factors, such as depth of cut and spindle speed, are deserved to further
clarified and subsequently integrated into the surface topography model.

(2) For the surface topography in the radial direction, the ‘trim principle’ is extensively employed in the
calculation of the coordinate values in the height direction. Furthermore, researchers have made
great effort on the impact of vibration between diamond tool and workpiece, and the expression of
harmonic vibration develops from the mono-frequency vibration to the multi-frequency vibration
and multi-direction vibration. Herein, to improve the prediction accuracy, the real-time vibration
signal and error components related to machine tool as well as cutting tool are recommended to
be cooperated into the future surface topography model.

(3) Defects in the work material matrix have a great impact on the final achieved surface topography
in diamond turning process, which is closely associated with work material solidification process.
For the single crystal material, the influence of the grain orientation should be further taken
into account. For the polycrystalline work material, different experimental results are observed
for the aluminium alloy and copper material when considering the grain boundary. Hard
particles within the polycrystalline work material are responsible for the scratches and raised
structures on the machined surface. Furthermore, influencing factors in relation to the ambient
environment and the validation for the prediction accuracy should also be concerned on the
surface topography model.
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Nomenclature

A Amplitude of the mono-frequency vibration
E Yong’s modulus of the work material
F(x) Surface profile in one feed rate
H Hardness of the work material
Rtew(x) Surface profile in one feed rate with consideration of tool edge waviness
Rtew-wi(x) Active tool edge profile in one feed rate (without consideration of the tool edge waviness)
SP Average swelling ratio in the radial direction
SRi Local swelling ratio SPi at the ith radial section
e Correct coefficient considering the influence of strain gradient strengthening effect of work material
f Feed rate per revolution
f n Spindle rotation frequency in diamond turning
fz Vibration frequency in diamond turning
h Contact depth in the scratch test
ha Height component induced by the material side flow
hDmin Minimum undeformed chip thickness
k Corresponding linear coefficient in relation to the contact behavior
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pe Elastic recovery rate when ploughing/rubbing occurs.
rn Cutting edge radius of diamond tool
rz-n Ratio of the vibration frequency to the spindle rotation frequency
rε Corner nose radius of diamond tool
sr Value of material spring back in the margin position (x =±f /2) in one feed rate
tBm Time points when the diamond tool locates at the point Bm

tBM Time points when the diamond tool locates at the point BM
tc Chip thickness in diamond turning
tcmax Maximum undeformed chip thickness
tcmin Minimum undeformed chip thickness
te Elastic deformation limit of the work material
w Roughness component in relation to the material plastic side flow
wr Value of material plastic side flow in the center (x = 0) in one feed rate
zv(t) Vibration function at the cutting time t
∆ Integer part of the frequency ratio
δtc Distribution model of material spring back
ε Decimal fraction part of the frequency ratio and in the range of -0.5 to 0.5
η Coefficient in relation to the material spring back
θ Angular coordinate for the point on the workpiece surface
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