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While conventional group IV or III-V based device technologies have reached their technical
limitations (e.g., limited detection wavelength range or low power handling capability), wide bandgap
(WBG) semiconductors which have band-gaps greater than 3 eV have gained significant attention
in recent years as a key semiconductor material in high-performance optoelectronic and electronic
devices [1,2]. These WBG semiconductors have various definitive advantages for optoelectronic and
electronic applications due to their large bandgap energy. WBG energy is suitable to absorb or emit
ultraviolet (UV) light in optoelectronic devices [3]. It also provides a higher electric breakdown field,
which allows electronic devices to possess higher breakdown voltages [4].

In this Special Issue, 13 papers published, including various AlGaN/GaN, SiC, and WO3 based
devices. More than half of papers reported recent progress on AlGaN/GaN high electron mobility
transistors (HEMTs) and light emitting diodes (LEDs). Wojtasiak et al., and Sun et al, reported
a structural modification of AlGaN/GaN HEMTs to improve turn-on voltage, contact resistance,
and on-resistance [5]. Huang et al. investigated high-temperature characteristics of AlGaN/GaN
HEMTs and successfully established the thermal model [6]. Mao et al. and Li et al. simulated
AlGaN/GaN HEMTs with a large signal model to investigate the kink-effect [7,8]. All of these
efforts toward AlGaN/GaN HEMTs enable readers to understand current issues in AlGaN/GaN
HEMTs and offer various experimental and theoretical solutions. Beside transistor works, flip-chip
GaN LEDs that were combined with TiO2/SiO2 distributed Bragg reflectors (DBRs) was reported
by Zhou et al [9]. An improved GaN HEMTs and their microwave performance by employing the
asymmetric power-combining was reported by Kim et al [10]. Along with another GaN LED built
on a modified micron-size patterned sapphire substrate by Hsu et al. [11]. These GaN LED works
are also guided broad readers in the field of optoelectronics and biomedical areas toward future
high-performance optogenetics and photonics applications. Also, Sun et al. reported an enhanced
AlGaN/GaN Schottky Barrier by engineering the structure of the diode [12].

In addition to AlxGa1-xN system, two SiC simulation efforts have been made by Huang et al.
and Jia et al. Huang. They focused on the improvement of higher added efficiency (PAE) factor
in 4H-SiC metal semiconductor field effect transistors and breakdown voltage of 4H-SiC diodes,
respectively [13,14].

Besides popular AlxGa1-xN and SiC-based applications, three papers report InGaZnO thin-film
transistors (TFTs), Si/GaP one-transistor dynamic random-access memory (1T DRAM), and WO3

thin-film. Zhou et al. investigated a stress tolerance of InGaZnO TFTs with a SiO2 or Al2O3 passivation
layer which shows a stable positive bias during the operation [15]. Kim et al. simulated a novel
1T DRAM design by inserting a GaP pillar which showed a stable high-temperature operation [16].
Finally, Zhang et al. reported the changes of the optical bandgap in Tungsten trioxide by thermal
annealing which can be used for various electrochromic devices [17].
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To the end, I would like to take this opportunity to thank all the authors for submitting their
papers to this special issue. I also want to thank all the reviewers for dedicating their time and helping
to improve the quality of the submitted papers.
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