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Abstract: Through combining P-type iterative learning (IL) control, model-free adaptive (MFA)
control and sliding mode (SM) control, a robust model-free adaptive iterative learning (MFA-IL)
control approach is presented for the active vibration control of piezoelectric smart structures.
Considering the uncertainty of the interaction among actuators in the learning control process,
MFA control is adopted to adaptively adjust the learning gain of the P-type IL control in order to
improve the convergence speed of feedback gain. In order to enhance the robustness of the system
and achieve fast response for error tracking, the SM control is integrated with the MFA control to
design the appropriate learning gain. Real-time feedback gains which are extracted from controllers
construct the basic probability functions (BPFs). The evidence theory is adopted to the design and
experimental investigations on a piezoelectric smart cantilever plate are performed to validate the
proposed control algorithm. The results demonstrate that the robust MFA-IL control presents a faster
learning speed, higher robustness and better control performance in vibration suppression when
compared with the P-type IL control.

Keywords: P-type IL; MFA control; SM control; evidence theory; active vibration control; piezoelectric
smart structure

1. Introduction

As an intelligent control strategy, iterative learning (IL) control has a simple structure and doesn’t
require accurate system modeling. According to past control experience, this method can improve
the current control performance of the system by operating repetitively over a fixed time interval [1].
In 1978, IL control was first proposed by Uchiyama in Japanese [2], which did not receive much
attention. After one critical report published by Arimoto in English [3], IL control made significant
progress in both theories and applications [4,5]. Practically, IL control has been applied to a wide range
of engineering applications, including flexible structures [6], nonholonomic mobile robots [7], flapping
wing micro aerial vehicles [8] and the sheet metal forming process [9]. Considering the repeatability of
the structural dynamic response in the vibration process, IL control is expected to provide a feasible
solution for the control issue here. Several research groups have applied IL control methods to the
active vibration control of piezoelectric smart structures. Zhu et al. [10] and Tavakolpour et al. [11]
first applied P-type IL control for the attenuation of vibrations in piezoelectric smart structures for
the design of the feedback gain, and the efficiency of P-type IL control was proven in their papers.
In addition, Fadil et al. [12] proposed a new intelligent proportional-integral-derivative (PID) controller
for vibration suppression by using P-type IL control and PID control, in which the P-type IL control
was applied to tune the parameters of the PID controller.
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In the studies above, although P-type IL controllers can effectively attenuate structural vibrations
at some excitation frequencies, the performances of the controllers for vibration suppression are still
not obvious when the piezoelectric smart structure is excited by its first natural frequency. Besides,
the control effectiveness of the actuators is obvious at the locations of the sensors, and they are not
able to effectively compensate for unwanted vibrations at other locations [13]. Moreover, thousands of
iterations in P-type IL control are needed for achieving satisfactory control precision, leading to the
slow learning speed [11,14]. In addition, the learning process should be accomplished within a limited
period, as overlearning may lead to system instability [11]. Therefore, the iterative number should be
limited to a predefined value. Finally, the unreasonable selections of learning gains may directly lead
to control spillover or system instability [15].

For accelerating the convergence rate and improving the stability of the learning algorithm,
adaptive control is needed to modify the learning process of the P-type IL control. Adaptive control
has been successfully incorporated into various learning algorithms for the adjustment of parameters
of the learning process [16,17]. Effective adaptive control strategies are necessary for the ability to
automatically tune parameters to the desired performance at each sampling period, such as an internal
model control method with an adaptive algorithm, implemented to reduce fatigue loads and tower
vibrations in wind turbines [18]. A real-time control implementation, based on an auto-tuning finite
impulse response filter, was applied to active vibration isolation [19]. An online method that tunes the
poles of the controller was proposed to adapt to the errors between a real object and its model [20].
An adaptive voltage and frequency control method was proposed for inverter-based distributed
generations in a multi-microgrid structure [21]. A characteristic model-based nonlinear golden section
adaptive control method was presented for vibration suppression in a flexible Cartesian smart material
robot [22].

As mentioned above, most of the adaptive control methods are model-based, in which the
dynamic model of system has been already known before the design of the controller. However, for
complex practical systems, the mechanism models of the plants are often difficult to establish, and
the parameters are also hard to identify, making the design and application of controllers unpractical.
Controlling vibrations in plate and shell structures always brings a challenge because of the complexity
and density of the vibration modes. The strategy of using piezoelectric actuator-sensor pairs with
discrete locations, glued on both surfaces of the plate, realizes a low weight and effective control
for structural vibration [23]. The plate-integrated piezoelectric actuator-sensor pairs thus become a
multi-input-multi-output (MIMO) system. If an actuator fails to perform as expected, the performance
of its neighboring actuators will be negatively affected. In this system, the interaction among all
actuators exists in the whole process of active vibration control, and this kind of interaction is always
uncertain. The uncertainty caused by this interaction greatly presents a great challenge when designing
a controller, and the model-based adaptive controller cannot deal with these conditions. Data-driven
control methods, which are designed by directly using input and output (I/O) data of the system,
can serve as an efficient alternative. The control problems caused by time-varying parameters and
uncertainties of the model are challenging for model-based control, but not with data-driven control
approaches [24].

Model free adaptive (MFA) control, as an effective data-driven control method, is an attractive
technique which has gained a large amount of interest in recent years. It is easily implemented,
with small computational burden for its simple structure and strong robustness. Unlike the
neural-network-based adaptive control methods and model-based methods, no additional signal
testing or training processes are required during the design of data-driven control methods. Instead of
identifying the model of the plant, the MFA method builds an equivalent linearization of the data at
each operation by introducing a novel concept named the pseudo-partial derivative (PPD), and the
time-varying PPD can be estimated by merely using the I/O measurements of the plant.

In this paper, in order to accelerate the convergence speed of the feedback gain, the learning gain
of the P-type IL control is designed by the MFA control. The MFA control can realize adaptive control
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in parametric and structural manners. And it is also suitable for dealing with system uncertainties [25].
This advantage allows MFA control to be successfully employed in various engineering fields, such
as use in the sensing and control of piezoelectrically actuated systems [26], blood pump control [27],
multivariable industrial processes control [28], and robotic exoskeleton tracking control [29]. However,
the convergence speed of the tracking error may be slow if only MFA control is used to adaptively
adjust to the learning gain of the P-type IL control, and external noise in the system will increase
the difficulty of vibration control. Various control strategies have been provided and continuously
developed for the control of plants with unknown uncertainties and dynamic variations, such as sliding
mode (SM) control [30], fuzzy logic control [31], neural networks [32], etc. For nonlinear, time-varying
and uncertain systems, neural network approaches have an excellent approximation ability, and fuzzy
logic control possesses remarkable robustness and adaptability, nevertheless, the tuning of numerous
parameters and complex rules may decrease the efficiency and possibility of these methods [33].
Unlike neural networks and fuzzy logic control, SM control has a simple controller structure and can is
easily implemented. Moreover, it has other attractive features, including good transient performance,
robustness to parameter variations and insensitivity to disturbances [34]. With the aim of achieving
a faster response and better robustness, the SM control was integrated with the MFA control to
self-adjust the learning gain of the P-type control. Within the proposed method, the SM control is
applied to estimate the parameters by tracking the time-varying PPD, such that the state variables can
rapidly converge to the desired trajectory. Additionally, SM control can also be used to compensate
for the impact of random disturbance, thereby enabling the system to enhance control effectiveness
and maintain superior stability. In the P-type IL algorithm, two parts mainly affect the convergence
speed of the feedback gain: The system output error and the learning gain. In the application of
vibration suppression, the desired output signal is always zero. Therefore, the measured output
signal is the main factor that decides the system output error. In this paper, multi-sensors are used to
detect the structural deformation of a cantilever plate. Sensors at various locations generate different
measured output signals, and the controllers connected to these sensors may have distinct learning
speeds. It is unreasonable to define the same iterative number for all controllers as part of the stopping
criteria. After obtaining multi-source information from the controlled plant, it is critical to discover
the optimal method of fusing this information. In this paper, in order to solve the multicriteria and
multiobjective problems in practical applications, evidence theory was adopted to design the stopping
criteria. The evidence theory does not require prior knowledge and has outstanding performance for
handling uncertain or inexact information, which makes it an indispensable tool for state diagnosis
and defect inspection [35,36]. Applying the combination rules, the evidence theory can carry out
reasoning, data fusion or decision making [37]. By using information fusion technology, the learning
processes of all controllers can be diagnosed in real-time by the real-time feedback gains obtained from
the controllers. On this basis, the stopping criteria were designed for overlearning diagnosis of the
robust MFA-IL algorithm.

The finite element (FE) method is a widely accepted and powerful tool to deal with piezoelectric
smart structures. Some kinds of efficient and accurate electromechanically coupled dynamic FEs
of smart structures have already been developed [38–40]. Among commercial FE analysis codes,
ANSYS has the ability to model smart structures with piezoelectric materials, and H Karagülle et
al. [41] successfully integrated vibration control actions into ANSYS modeling, where the solution was
achieved as well. In this paper, ANSYS parametric design language (APDL) is used to integrate the
control law into the ANSYS FE model to perform closed-loop simulations.

In this paper, using the complementary features of P-type IL control, MFA control and SM control,
a robust MFA-IL control strategy was developed for the suppression of vibrations in smart structures.
Due to its ability to cope with uncertainties in the learning control process, MFA control was applied
to adaptively adjust the learning gain of the P-type IL control. By inserting the SM control term into
the MFA control, the learning gain can be designed properly and the convergence rate of the tracking
error and the robustness of the closed-loop system can be improved. A multi-source information
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fusion diagnosis method for the overlearning evaluation is presented based on the evidence theory,
and the stopping criteria are also be designed. The proposed control method was numerically and
experimentally investigated for a clamped plate under various external disturbances, and the results
are illustrated and extensively discussed at the end of the present work.

The rest of this paper is organized as follows. In Section 2, based on the FE model of piezoelectric
smart structures, the state space model of the equivalent linear system is developed for the purpose
of control law design. The P-type IL control is employed for establishing the vibration control
equations. Section 3 describes the dynamic transformation and linearization for the vibration control
system. Section 4 describes the design of the robust MFA-IL control scheme. Theoretical basis of
state diagnosis, based on evidence theory and the design of the stopping criteria, is introduced in
Section 5. In Section 6, numerical examples are presented to demonstrate the validity of the proposed
method. In Section 7, a complete active vibration control system is set up to conduct an experimental
investigation. The conclusions and outlooks are drawn in Section 8.

2. FE Model and P-type IL Control

The linear electro-mechanically coupled dynamic FE equations of the piezoelectric smart structure
can be written as [23]:[

Muu 0
0 0

]{
¨
u
..
φ

}
+

[
Cuu 0

0 0

]{ .
u
.

φ

}
+

[
Kuu Kuφ

Kφu Kφφ

]{
u
φ

}
=

{
Fu

Fφ

}
(1)

where u and φ are the vectors of nodal displacements and electric potentials; Muu, Cuu, Kuu, Kuφ(Kφu)
and Kφφ are the structural mass matrix, the damping matrix, the mechanical stiffness matrix, the
piezoelectric coupling matrix and the dielectric stiffness matrix, respectively; Fu and Fφ are the vectors
of mechanical force and electric load, respectively.

The damping matrix Cuu is usually defined as a linear combination of the structural mass matrix
Muu and the mechanical stiffness matrix Kuu, which is written as follows:

Cuu = αMuu + βKuu (2)

where the constants α and β are the Rayleigh damping coefficients.
The piezoelectric sensor generates output electric potential as long as the structure is oscillating.

The system (1) can be uncoupled into the following independent equations for the sensor output
electric potential:

φ = K−1
φφ(Fφ −Kφuu) (3)

and the structural displacement

Muu
..
u + Cuu

.
u + K∗u = Fu −KuφK−1

φφFφ (4)

where K∗ = Kuu −KuφK−1
φφKφu.

Note that Fφ is usually zero in the sensor, thus, Equation (3) can be rewritten as φ = −K−1
φφKφuu.

Then, the rate of change of the sensor output electric potential can be written as:

.
φ = −K−1

φφKφu
.
u (5)

The system output error is defined as:

e = yd − y (6)

where yd is the desired output signal and y is measured output signal.
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In the application of vibration suppression, we require the desired output signal to be zero. The
measured output signal in this paper is the rate of change of the sensor output electric potential,
namely, y =

.
φ. As a discrete-time system, the output error at the kth moment can be given as:

e(k) = 0−
.

φ(k) = K−1
φφKφu

.
u(k) (7)

According to the update rule of the P-type IL control [42], the feedback gain at the kth moment
can be given as:

G(k) = G(k− 1) + Φe(k− 1) (8)

where Φ and G(k) are the learning gain matrix and feedback gain matrix, respectively.
The feedback gain G(k) is stored in memory at the (k− 1)th moment and applied for the next

iteration when the system operates. The input voltage of the actuator is expressed as:

Va = −G
.

φ (9)

The electric load vector is defined as:

Fφ = CaVa (10)

where Ca is the capacitance constant of the piezoelectric actuator.
The control force can be defined as Fa = −KuφK−1

φφFφ and by combining with Equations (5), (9)
and (10), Fa can be rewritten as:

Fa = −KuφK−1
φφCaGK−1

φφKφu
.
u (11)

The control force generated by actuator is used to suppress structural vibration. Substituting
Equations (5), (9) and (10) into Equation (4), the vibration control equation of the piezoelectric smart
structure can be expressed as:

Muu
..
u + (Cuu + KuφK−1

φφCaGK−1
φφKφu)

.
u + K∗u = Fu (12)

3. Dynamic Transformation and Linearization of Vibration Control Equations

As a discrete-time system, the system (12) can be approximated by the following form at the
kth moment:

Muu
..
u(k) + [Cuu + KuφK−1

φφCaG(k)K−1
φφKφu]

.
u(k) + K∗u(k) = Fu(k) (13)

Again, using Equations (5) and (7), the system (13) can be rewritten as:

.
y(k) = −(K∗MCuuK−1

φuKφφ)y(k)− [K∗MK∗CG(k)]y(k) + K∗MF∗(k) (14)

where K∗M = K−1
φφKφuM−1

uu , K∗C = KuφK−1
φφCa, F∗(k) = K∗u(k)− Fu(k).

Similar to Equation (8), a time-varying version for P-type IL updating rule is given as [42]:

G(k) = G(k− 1) + Φ(k− 1)e(k− 1) (15)

where Φ(k− 1) is the learning gain matrix, which is now time-varying.
Because

.
y(k) = y(k+1)−y(k)

T for the sample period T, substituting Equation (15) into Equation (14),
the discrete-time form of the system (14) can be given as:

y(k + 1) = −T[K∗MCuuK−1
φuKφφ + K∗MK∗CG(k− 1) + K∗MK∗CΦ(k− 1)e(k− 1)− 1

T ]y(k) + TK∗MF∗(k) (16)

where Φ(k− 1) and y(k) are the system input and the system output, respectively.
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It can be known from Equation (16) that the partial derivatives of y(k + 1), with respect to output
y(k) and input Φ(k− 1), are continuous and the system is generalized Lipschitz. For system (16), with
‖[∆y(k), ∆Φ(k− 1)]T‖ 6= 0 for each fixed k, there must exist Ψ(k), named the PPD matrix, such that
Equation (16) can be transformed into the following equivalent full form dynamic linearization model:

∆y(k + 1) = Ψ(k)[∆y(k), ∆Φ(k− 1)]T (17)

where Ψ(k) = [ϕ1(k),ϕ2(k)], ϕ1(k), ϕ2(k) ∈ RN×N and ‖Ψ(k)‖ < b, b is a positive constant.

Proof. From Equation (16) we have

∆y(k + 1) = y(k + 1)− y(k)
= {−T[K∗MCuuK−1

φuKφφ + K∗MK∗CG(k− 1) + K∗MK∗CΦ(k− 1)e(k− 1)− 1
T ]y(k) + TK∗MF∗(k)}

−{−T[K∗MCuuK−1
φuKφφ + K∗MK∗CG(k− 1) + K∗MK∗CΦ(k− 2)e(k− 1)− 1

T ]y(k− 1) + TK∗MF∗(k)}
+{−T[K∗MCuuK−1

φuKφφ + K∗MK∗CG(k− 1) + K∗MK∗CΦ(k− 2)e(k− 1)− 1
T ]y(k− 1) + TK∗MF∗(k)}

+{−T[K∗MCuuK−1
φuKφφ + K∗MK∗CG(k− 2) + K∗MK∗CΦ(k− 1)e(k− 2)− 1

T ]y(k− 1) + TK∗MF∗(k− 1)}
−{−T[K∗MCuuK−1

φuKφφ + K∗MK∗CG(k− 2) + K∗MK∗CΦ(k− 2)e(k− 2)− 1
T ]y(k− 1) + TK∗MF∗(k− 1)}

−{−T[K∗MCuuK−1
φuKφφ + K∗MK∗CG(k− 2) + K∗MK∗CΦ(k− 1)e(k− 2)− 1

T ]y(k− 1) + TK∗MF∗(k− 1)}

(18)

θ(k), {−T[K∗MCuuK−1
φuKφφ + K∗MK∗CG(k− 1) + K∗MK∗CΦ(k− 2)e(k− 1)− 1

T ]y(k− 1) + TK∗MF∗(k)}
−{−T[K∗MCuuK−1

φuKφφ + K∗MK∗CG(k− 2) + K∗MK∗CΦ(k− 1)e(k− 2)− 1
T ]y(k− 1) + TK∗MF∗(k− 1)}

By virtue of the Cauchy differential mean value theorem, Equation (18) can be rewritten as

∆y(k + 1) =
∂y(k + 1)

∂y(k)
∆y(k) +

∂y(k)
∂Φ(k−2)

∆Φ(k−1) + θ(k) (19)

where ∂y(k+1)
∂y(k) is the partial derivative value of y(k + 1), with respect to output y(k), and ∂y(k)

∂Φ(k−2)
represents the partial derivative value of y(k), with respect to input Φ(k− 2).

For each fixed k, we consider the following equation with the numerical matrix H(k) ∈ RN×N .

θ(k) = H(k)[∆y(k), ∆Φ(k− 1)]T (20)

Since condition ‖[∆y(k), ∆Φ(k− 1)]T‖ 6= 0, Equation (20) must have at least one solution H∗(k).
In fact, it must have an infinite number of solutions for each k.

Let

Ψ(k) = H∗(k) + [
∂y(k + 1)

∂y(k)
,

∂y(k)
∂Φ(k− 2)

], (21)

Then, we have Equation (17).
Based on Equation (17), the system (16) can be rewritten in the following dynamic linearization

form:
y(k + 1) = ϕ1(k)∆y(k) +ϕ2(k)∆Φ(k− 1) + y(k) (22)

where the values of ϕ1(k) and ϕ2(k) are dynamic changed. �

4. Controller Design

4.1. MFA Control

Consider the following control input criterion function:

J(Φ(k− 1)) = ‖yd(k + 1)− y(k + 1)‖2 + γ‖Φ(k− 1)−Φ(k− 2)‖2 (23)
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where yd(k + 1) is the desired output signal and γ > 0 is a weighting constant. Φ(k− 1) is the MFA
control rate.

Substituting Equation (22) into Equation (23), then differentiating Equation (23) with respect to
Φ(k− 1), and letting it be equal zero, gives the following:

∆Φ(k− 1) =
(

ϕ2(k)
Tϕ2(k) + γI

)−1
ϕ2(k)

T × [yd(k + 1)− y(k)−ϕ1(k)∆y(k)] (24)

Equation (24) includes the calculation of the inverse matrix, which may cause computational
burden once the I/O matrixes of the system are of a high dimension. The simplified form of
Equation (24) can be expressed as follows:

ΦMFA(k− 1) = ΦMFA(k− 2) +
ρϕ2(k)

T [yd(k + 1)− y(k)−ϕ1(k)∆y(k)]

‖ϕ2(k)‖2 + γ
(25)

where ρ ∈ (0, 1] is a step-size constant, which is added to make Equation (25) general.
In this paper, a modified projection algorithm is used to estimate the unknown PPD matrix:

J(Ψ(k)) = ‖∆y(k)−Ψ(k)[∆y(k− 1), ∆Φ(k− 2)]T‖
2
+ µ‖Ψ(k)− Ψ̂(k− 1)‖2 (26)

where Ψ(k) = Ψ̂(k − 1) + ∆Ψ(k) = [ϕ̂1(k − 1),ϕ̂2(k − 1)] + [∆ϕ1(k), ∆ϕ2(k)], µ > 0 is a weighting
constant and Ψ̂(k− 1) is an estimated value of Ψ(k− 1).

Here, we differentiate Equation (26) with respect to Ψ(k), and letting it be equal to zero.
According to the simplified form in Equation (25), we can obtain the parameters of the estimation
algorithm as follows:

ϕ̂1(k) = ϕ̂1(k− 1) + η[∆y(k)−(ϕ̂1(k−1),ϕ̂2(k−1))(∆y(k−1),∆Φ(k−2))T ]∆y(k−1)T

µ+‖∆y(k−1)‖2+‖∆Φ(k−2)‖2

ϕ̂2(k) = ϕ̂2(k− 1) + η[∆y(k)−(ϕ̂1(k−1),ϕ̂2(k−1))(∆y(k−1),∆Φ(k−2))T ]∆Φ(k−2)T

µ+‖∆y(k−1)‖2+‖∆Φ(k−2)‖2

(27)

where η ∈ (0, 1] is a step-size constant, which is added to make Equation (27) general.

4.2. Robust MFA-IL Control

The discrete-time SM is used to compensate the external disturbances and guarantee the fast
convergence of feedback gain, which can increase the system robustness and control performance.
By assuming the discrete sliding surface is

s(k) = e(k) (28)

and combining Equations (6) and (22), the above equation can be rewritten as follows:

s(k + 1) = e(k + 1) = yd(k + 1)−ϕ1(k)∆y(k)−ϕ2(k)∆Φ(k− 1)− y(k) (29)

The sliding reaching law is defined as follows [43]: s(k + 1) = (1− qT)s(k)− εTfal(s(k), σ, δ)

δ >
(

εT
1−qT

) 1
1−σ , 0 < εT

1−qT < 1
(30)

where fal(s(k), α, δ) =

{
|s(k)|σsign(s(k)), |s(k)| ≥ δ

s(k)
δ1−σ , |s(k)| < δ

, 0 < σ < 1, 0 < δ < 1, ε > 0, q > 0,

1− qT > 0, T is the sample period.
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Substituting Equation (30) into Equation (29), gives the following:

∆Φ(k− 1) = ϕ2(k)
−1[yd(k + 1)−ϕ1(k)∆y(k)− y(k)− (1− qT)s(k) + εTfal(s(k), σ, δ)] (31)

Because the sliding mode reaching law is based on the transformed dynamic linearization, let
ΦSM(k− 1) = ∆Φ(k− 1). Then, the final learning gain of the IL controller is equal to Equation (25)
plus Equation (31), written as follows:

Φ(k− 1) = ΦMFA(k− 1) + ΓΦSM(k− 1) (32)

where Γ is a weighting factor which is added to make Equation (32) general. ΦSM(k− 1) is used to
compensate for the input disturbance and increase the convergence rate.

For convenience, a block diagram of the robust MFA-IL control approach is presented in Figure 1.

Micromachines 2019, 10, 196 9 of 29 

 

( ) ( )k ks e=  (28) 

and combining Equations (6) and (22), the above equation can be rewritten as follows: 

1 2( +1) ( +1) ( +1) ( ) ( ) ( ) ( 1) ( )ds e y y y  k k k k k k k k= = −  −  − −  (29) 

The sliding reaching law is defined as follows [43]: 

1

1

( +1) (1 ) ( ) fal( ( ), , )

0 1
1 1

s s s

−

= − −

  

    
− −  

σ

k qT k εT k σ δ

εT εT
δ

qT qT

  

,          
 (30) 

where 

1

( ) s ign( ( )), ( )

fal( ( ), , ) ( )
, ( )

s s s

s s
s

−

 


= 




σ

σ

k k k δ

k α δ k
k δ

δ

   

  
                  

, 0 1 σ , 0 1δ  , 0ε , 

0q , 1 0− qT , T  is the sample period.  

Substituting Equation (30) into Equation (29), gives the following: 

1

2 1( 1) ( ) [ ( +1) ( ) ( ) ( ) (1 ) ( ) + fal( ( ), , )]y y y s s  − − = −  − − −dk k k k k k qT k εT k σ δ   (31) 

Because the sliding mode reaching law is based on the transformed dynamic linearization, let 

SM ( 1) ( 1)k k − =  − . Then, the final learning gain of the IL controller is equal to Equation (25) 

plus Equation (31), written as follows: 

MFA SM( 1) ( 1) + ( 1)k k Γ k− = − −    (32) 

where Γ  is a weighting factor which is added to make Equation (32) general. 
SM ( 1)k −  is used 

to compensate for the input disturbance and increase the convergence rate. 

For convenience, a block diagram of the robust MFA-IL control approach is presented in Figure 

1. 

The Piezoelectric 

Smart structure

Sensor 

Memory 

( )d ky
( )ke

MFA 

SM 

MFA ( )k

SM ( )k

Estimator ( 1)kG +

( )kG

Actuator

( )k

( )ky

( )kIterative 

Learning 

Fu

Fa

Γ

 

Figure 1. Block diagram of the robust model-free adaptive-iterative learning (MFA-IL) control. Figure 1. Block diagram of the robust model-free adaptive-iterative learning (MFA-IL) control.

5. The Design of the Stopping Criteria Based on Evidence Theory

5.1. Evidence Theory

The evidence theory is a mathematical theory and general framework for reasoning with
uncertainty information in systems, which allows one to combine multiple variables from multiple
sources, arriving at a degree of belief. The major definitions and concepts of the theory are briefly
introduced as follows [44,45].

Definition 1. Let a finite set of elements Θ = {Z1, Z2, · · · , ZL} be defined as the frame of
discernment. An element can be a hypothesis, object or state. The 2Θ, named the power set, is
the set of all subsets of Θ. It is composed of each element and multi-subset and can be indicated as
2Θ = {∅, {Z1}, {Z2}, · · · {Z1, Z2}, · · · , Θ}, where ∅ is an empty set.

Definition 2. A mass function is a mapping of m from 2Θ to [0, 1], and be formally defined as:

m : 2Θ → [0, 1] (33)

Additionally, the function satisfies the following equation:

m(∅) = 0, ∑
A⊆2Θ

m(A) = 1 (34)
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The function m is named basic probability assignment (BPA). m(A) expresses the proportion of all relevant
and available evidence. It is claimed that a particular element of Θ belongs to the set A, but to no particular
subset of A. If m(A) > 0, A is called a focal element of Θ. If m(A) = 0, it means that the proposition totally
lacks belief.

Definition 3. Suppose that two BPAs denoted by m1 and m2 are obtained from two different information sources
in the same frame of discernment Θ. The degree of conflict among the evidence is denoted as follows:

K = ∑
A∩B=∅

m1(A)m2(B) (35)

where if K = 0, it means that the two pieces of evidence are fully compatible with each other. On the contrary, if
K = 1, it means that the two pieces of evidence totally conflict with each other.

Dempster’s rule of combination is the most basic and widely used rule for the combination of
evidence: { 1

1−K ∑
A∩B=C

m1(A)m2(B) ∀C ⊆ 2Θ, C 6= ∅

0 C = ∅
(36)

Dempster’s combination rule is commutative and associates. Thus, the fusion result has nothing
to do with the order of the fusion process.

It has two characteristics [46]:

• Pieces of mutually supporting evidence are reinforced.
• Pieces of conflicting evidence weaken each other.

5.2. The Design of Stopping Criterions

Research on stopping criteria based on evidence theory in this paper involves extracting real-time
feedback gains from each controller in the vibration control system, constructing the frame of
discernment, choosing appropriate feature vectors that describe the learning process of the robust
MFA-IL algorithm, calculating the BPAs based on the input signals of actuator, forming the fused
BPAs using combination rule and diagnosing the learning states of the control method based on the
BPA results.

The real-time feedback gains from each controller can be considered as a piece of evidence for
diagnosing the system state, assuming M actuators are glued on the plate and that the feedback gains
of the corresponding controllers are measured vectors. For the sake of simplicity, suppose that all types
of states are independent of each another. Only one state can occur at any given time. Let Sω represent
the measurement obtained from the ωth controller (information source):

Sω = [sω1 sω2 · · · sωmω ] ω = 1, 2, . . . , M (37)

where sωi is the ith element of Sω , i = 1, 2, . . . , mω , mω is the number of elements provided by the ωth

controller and
M
∑

ω=1
mω = n, n is the number of features.

There are N types of states. The system states matrix can be described as [47]:

H =


X1

X2
...

XN

 =


x11 x12 · · · x1n
x21 x22 · · · x2n

...
...

...
...

xN1 xN2 · · · xNn

 (38)

where Xj is a feature vector describing the jth state, xji is the ith feature of the jth state, and
i = 1, 2, . . . , n, j = 1, 2, . . . , N.
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This paper uses the Minkowski distance for quantifying the objective evaluation of the BPAs.
The Minkowski distance between Sω and Xj is reconstructed as:

dωj =



[
mω

∑
i=1

( sωi−xji
xji

)r
]1/r

ω = 1mω

∑
i=1


sωi−x

j(i+
ω−1

∑
l=1

ml )

x
j(i+

ω−1
∑

l=1
ml )


r

1/r

ω = 2, 3 . . . , M
(39)

where dωj is the distance between Sω and Xj. r is a constant, such that if r = 2, then the distance
converges to the Euclidean distance. On the other hand, if r = 1, the distance converges to the corner
distance. The distances between all measurement vectors Sω and all state vectors Xj can be obtained in
a matrix form:

D =


d11 d12 · · · d1N
d21 d22 · · · d2N

...
...

...
...

dM1 dM2 · · · dMN

 (40)

The smaller the distance dωj, the more probable the jth state, based on the feedback gain acquired
from the ωth controller. By defining pωj = 1/dωj, a matrix form after normalizing can be expressed
as follows:

P =


p11 p12 · · · p1N
p21 p22 · · · p2N

...
...

...
...

pM1 pM2 · · · pMN

 =


P1

P2
...

PM

 (41)

where Pω =
[

pω1 pω2 · · · pωN

]
. Pω is the BPA assigned by the ωth controller to the set of

states, satisfying
N
∑

j=1
pωj = 1.

According to Equation (35), the degree of conflicting evidence among the various controllers can
be calculated. Then, the fused BPAs are computed using the combination rule, denoted in Equation (36).
The fused BPAs are the pieces of evidence for state diagnosis. The threshold value was predefined as a
stopping criterion. Based on the values of BPAs for a certain state, decision making on a system state
can be fulfilled by comparing with the threshold value.

6. Numerical Examples

6.1. FE Model Validation

The purpose of this subsection is to examine the accuracy of the dynamic FE model established
by ANSYS, by comparison of the numerical and analytical results in the open literature.

Considering the square laminate plate, which composes of three layers of graphite-epoxy (GE,
carbon-fibre reinforced) composite material (0/90/0) covered by PZT-4 piezoelectric layers poled in the
z-direction (through-thickness). Then, a five-layer laminate plate (PZT-4/GE 0◦/GE 90◦/GE 0◦/PZT-4)
was formed. The geometrical data of the square laminated plate are given in Figure 2. The material
properties of the GE composite material and the piezoelectric material are given in Table 1, and the
densities of all materials considered are to be considered unitary (ρS = 1 kg/m3) for the purpose
of comparison. The assumed boundary conditions are simply supported. The SOLID46 3-D solid
element, which can be used to model the laminated composite beam or plate type structures with
various layer orientations, is used for simulating the GE composite plate and the SOLID5 3-D solid
element (which has a 3D piezoelectric and structural capability between the fields and is applied for
simulating piezoelectric layers).
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Table 1. Properties of the graphite-epoxy (GE) composite material and the piezoelectric material.

GE [48] PZT-4 [49]

Yong’s modulus (GPa) Elastic stiffness (GPa)
E11 = 132.38; C11 = 138.50; C12 = 77.37;

E22 = E33 = 10.76; C13 = 73.64; C33 = 114.75;
Shear modulus (GPa) C44 = 25.60; C66 = 30.60;

G12 = G13 = 5.65; Piezoelectric stain (C/m2)
G23 = 3.61; e16 = e25 = 12.72;

Poisson’s ratio e31 = e32 = −5.2;
v12 = v13 = 0.24; e33 = 15.08;

v23 = 0.49; Permittivity (F/m)
- ε11 = ε22 = 1.305× 10−8;
- ε33 = 1.151× 10−8;

The first five natural frequencies vx,y can be non-dimensionalized by the expression
λx,y = vx,yLS

2/HS
√

ρS × 103. The dynamic FE numerical analysis results in this paper are compared
to different approaches: (a) The finite element solution FPS (an equivalent single-layer approach and a
layerwise representation of the electric potential, using the finite element method with four nodes and
five degrees of freedom) by W. Larbi et al. [48]; (b) the finite element solution Q9-HSDT (higher shear
deformation theory, using the finite element method with nine nodes and eleven degree of freedom) by
Victor M. Franco Correia et al. [50]; (c) the finite element solutions TDST (third order shear deformation
theory, using the finite element method with four nodes and seven degrees of freedom) by Tatiane
Corrêa de Godoy et al. [49]; and (d) two-dimensional analytical solutions (layerwise first-order shear
deformation theory and quadratic electric potential) by Ayech Benjeddou et al. [51]. The present results
and their percent errors are relative to the published results (∆%) and are shown in Table 2. It was
found that a reasonably good approximation to FPS and Q9-HSDT theories was obtained, although
the relative errors for some natural frequencies were greater than 5%.

Table 2. First five frequencies parameters.

Mode Present FPS [48] Q9-HSDT [50] TSDT [49] 2D [51]

1 232.62 231.42 (0.52%) 230.46 (0.94%) 225.98 (2.94%) 246.07 (−5.47%)
2 523.90 521.88 (0.39%) 520.38 (0.68%) 542.29 (−3.39%) 559.62 (−6.38%)
3 665.75 667.91 (−0.32%) 662.91 (0.43%) 680.11 (−2.11%) 693.60 (−4.02%)
4 916.35 909.34(0.77%) 908.46 (0.87%) 906.09 (1.13%) 967.14 (−5.25%)
5 1023.40 1027.22 (−0.37%) 1022.09 (0.13%) 1099.05 (−6.88%) 1091.46 (−6.19%)
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6.2. Modeling and Choice of Controller Parameters

In this section, a piezoelectric smart plate is considered for vibration control simulations.
The piezoelectric smart plate is made of a host composite plate and six piezoelectric patches bonded
in pairs on both sides of the plate. From Figure 3, there are three piezoelectric actuator-sensor
pairs marked with a, b and c, respectively. The upper piezoelectric patches work as actuators to
control structural vibration, while the lower ones work as sensors to obtain vibration information.
The dimensions of the composite plate and the piezoelectric patches are 414 mm× 120 mm× 1 mm and
60 mm× 24 mm× 1 mm, and the configuration of the structure is shown in Figure 3. The localization
of the actuator-sensor pairs is selected by referencing to [52]. The host composite plate is made of a GE
composite material with five substrate layers, the stacking sequence of which is symmetric angle-ply
[0/90/0/90/0]. The properties of the GE composite material and the piezoelectric material are listed
in Table 3. The locations of points A, B and C are shown in Figure 3. A clamped boundary condition is
assigned in the root of the piezoelectric smart plate.

Micromachines 2019, 10, 196 14 of 29 

 

Table 2. First five frequencies parameters. 

Mode Present FPS[48] Q9-HSDT[50] TSDT[49] 2D[51] 

1 232.62 231.42 (0.52%) 230.46 (0.94%) 225.98 (2.94%) 246.07 (−5.47%) 

2 523.90 521.88 (0.39%) 520.38 (0.68%) 542.29 (−3.39%) 559.62 (−6.38%) 

3 665.75 667.91 (−0.32%) 662.91 (0.43%) 680.11 (−2.11%) 693.60 (−4.02%) 

4 916.35 909.34(0.77%) 908.46 (0.87%) 906.09 (1.13%) 967.14 (−5.25%) 

5 1023.40 1027.22 (−0.37%) 1022.09 (0.13%) 1099.05 (−6.88%) 1091.46 (−6.19%) 

6.2. Modeling and Choice of Controller Parameters 

In this section, a piezoelectric smart plate is considered for vibration control simulations. The 

piezoelectric smart plate is made of a host composite plate and six piezoelectric patches bonded in 

pairs on both sides of the plate. From Figure 3, there are three piezoelectric actuator-sensor pairs 

marked with a, b and c, respectively. The upper piezoelectric patches work as actuators to control 

structural vibration, while the lower ones work as sensors to obtain vibration information. The 

dimensions of the composite plate and the piezoelectric patches are 414mm 120mm 1mm   and 

60mm 24mm 1mm  , and the configuration of the structure is shown in Figure 3. The localization of 

the actuator-sensor pairs is selected by referencing to [52]. The host composite plate is made of a GE 

composite material with five substrate layers, the stacking sequence of which is symmetric angle-ply 

[0/90/0/90/0]. The properties of the GE composite material and the piezoelectric material are listed in 

Table 3. The locations of points A, B and C are shown in Figure 3. A clamped boundary condition is 

assigned in the root of the piezoelectric smart plate.  

Top View

Side View

6mm

AC

a

b

c

60mm

96mm

192mm

1mm

1mm

18mm

48mm

Piezoelectric 

Actuators

Piezoelectric 

Sensors18mm

 

6
0
m

m

18mm

B

1
2

0
m

m

6
0
m

m

414mm

 

192mm

 

Figure 3. The piezoelectric smart plate. 

Table 3. Properties of the GE composite material and the piezoelectric material. 

GE PZT-5H 

Yong’s modulus ( GPa ) Elastic stiffness ( GPa ) 

11 40.51E = ; 11 126C = ; 12 79.5C = ; 

Figure 3. The piezoelectric smart plate.

Table 3. Properties of the GE composite material and the piezoelectric material.

GE PZT-5H

Yong’s modulus (GPa) Elastic stiffness (GPa)
E11 = 40.51; C11 = 126; C12 = 79.5;

E22 = E33 = 13.96; C13 = 84.1; C33 = 117;
Shear modulus (GPa) C44 = 23.3; C66 = 23;

G12 = G13 = 3.1; Piezoelectric stain (C/m2)
G23 = 1.55; e16 = e25 = 17;

Poisson’s ratio e31 = e32 = −6.5;
v12 = v13 = 0.22; e33 = 23.3;

v23 = 0.11; Permittivity (F/m)
Density (kg/m3) ε11 = ε22 = 1.503× 10−8;

ρ = 1830 ε33 = 1.3× 10−8;
- Density (kg/m3)
- ρ = 7500
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In this study, the layered solid element SOLID46 was used to model the composite plate, while
SOLID5 was used to model the piezoelectric patches. The composite plate was meshed with 69 × 20
× 1 elements, and each piezoelectric patch was meshed with 10 × 4 × 1 elements. It was assumed
that the same magnitude but the opposite electric field direction was applied to the upper and lower
piezoelectric patches. The degrees of electric freedom for the nodes at the top and bottom surfaces
of the piezoelectric patches were coupled by using the ANSYS command CP. Model analysis was
implemented to find out the natural frequencies of the plate and determine the sampling period for
the closed-loop system simulations [28]. The numerical and experimental results of the first three
natural frequencies are given in Table 4. The sampling period was defined as T = 1/(20 f1), where f1

is the first natural frequency. The Rayleigh damping coefficients were considered as α = 0.003 and
β = 0.0015.

Table 4. First three natural frequencies of the piezoelectric smart plate.

Mode Numerical (Hz) Experimental (Hz) Error

1 5.438 5.326 2.1%
2 24.217 21.259 13.9%
3 28.683 31.593 −9.2%

The initial value of feedback gain G(k) in Equation (15) was assumed to be zero. The parameters
of the robust MFA-IL controller are given in Table 5. There are three actuator-sensor pairs in the system,
and the corresponding controllers offer measurements. The frame of discernment for system state
diagnosis was constructed with two types of states, namely the normal learning state and the learning
stopping state. The feedback gains of the controllers were chosen as the feature parameters. Let r = 2
in Equation (39) and the distance converges to the Euclidean distance. The BPAs can be calculated
using the method based on information sources in Section 5.2. The stopping criteria of the robust
MFA-IL control algorithm are defined as follows: (a) According to Dempster’s rule of combination,
each row vector of the BPA matrix P can be fused. The threshold value was set 0.985. If the fused
BPA is higher than the threshold value, the learning processes of all controllers should be stopped.
(b) Controllers connected to the actuators at different locations may lead to distinct learning speeds.
To make all controllers learn sufficiently, the threshold value for the BPAs of each controller should
also be proposed. If the BPAs from a certain controller are higher than 0.800, the learning process of the
corresponding controller should be stopped. If one of the above conditions is met, the learning process
of the controller is then terminated. Otherwise, the controller is in normal learning state. Considering
the vibrations generated by various external disturbances, different simulations were investigated
to evaluate the effectiveness of the proposed method. In the design of the P-type IL controllers, the
maximum number of iterations was limited to 500 as the stopping criterion, and the fixed learning
gains were selected as Φ1 = 0.063 and Φ2 = 0.100 for various cases.

Table 5. The control parameters.

Parameter Value Parameter Value

λ 1 α 0.5
ρ 0.1 δ 1.5
µ 1 ε 6
η 0.1 q 60
- - Γ 0.5

6.3. Harmonic Excitation

In this case, the first mode control was tested by applying the harmonic force f (t) = 6 cos(ω1t)N
at the point C, where ω1 = 17.083 rad/s (5.4377 Hz). Due to the symmetry of the piezoelectric smart
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structure and the excitation location, sensors a and b have the same control feedback signals in the
process of vibration.

The displacement responses of points A and B are displayed in Figure 4a,b, where it can be seen
that both the robust MFA-IL control and the P-type IL control can effectively suppress the first mode
vibration. The control effectiveness of the actuators is obvious at the positions with sensors (e.g.,
point A) and without sensors (e.g., point B). However, it is noteworthy that these results are different
from Saleh′s [13], which claimed that the P-type IL control was able to compensate for the unwanted
vibration at the observation point, while not being effective at other points. In addition, it was also
pointed out that the P-type IL method cannot effectively attenuate the amplitude as long as the smart
structure is excited by its first natural frequency.
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An effective control system has the ability to suppress the structural vibration of the whole plate
rather than a small portion of the plate area. The control strategy plays an important role in designing
a vibration control system for obtaining a desired performance. Besides, the locations and sizes of
the piezoelectric actuators and sensors should also be seriously considered [53]. The areas of the
structure where the mechanical strain is highest are always the best locations for actuators and sensors.
To guarantee the actuators generate the desired control forces to suppress structural vibration, the
dimensions of the actuators should also be designed appropriately. The sizes of sensors should also be
chosen properly, so that accurate information of structural deformation can be obtained. A misread
or incorrect sensor measurement signal may lead to unreasonable measurements and inappropriate
control force generation, which will deteriorate the dynamic behavior. As long as the locations and
the sizes of the actuators and sensors are selected appropriately, the P-type IL control presents good
performance on first mode control. Furthermore, both the locations with sensors and the positions
without sensors on the smart plate can provide good controllability of structural vibration.

The displacement responses of points A and B are given in Figure 4a,b. The output voltages of
sensor a/b and sensor c are shown in Figure 5c,d. By comparing with the P-type IL approach, a smaller
amplitude can be obtained when the system is controlled by the robust MFA-IL method. In this paper,
the root mean square (RMS) values of the amplitude at points A and B and output electric potential are
used to quantitatively evaluate the control performance of the robust MFA-IL control and the P-type IL
control. The data used to calculate the RMSs were recorded after all the controllers stopped learning,
and the RMSs of amplitude are given in Table 6.
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Figure 5. The time-domain responses of actuators/sensors: (a) Actuator a/b, (b) actuator c, (c) sensor
a/b, (d) sensor c.

Table 6. Root mean square (RMS) values of amplitude.

Algorithm Case 1 Case 2 Experiment

Point
A

Point
B

Sensor
a/b

Sensor
c

Point
A

Point
B

Sensor
a/b

Senso
c

Sensor
a/b

Sensor
c

Uncontrolled 0.0027 0.0106 8.9034 5.1768 0.0024 0.0087 8.1071 3.9265 3.7644 2.1672
P-type IL 0.0018 0.0071 5.4976 3.2501 0.0016 0.0055 5.0016 2.3231 2.5570 1.4806

Robust MFA- IL 0.0017 0.0067 5.2075 3.0731 0.0015 0.0053 4.7678 2.2119 2.4876 1.4510

The control voltages applied to actuators a/b and actuator c are shown in Figure 5a,b. In the
process of iterative learning, the actuation voltages changed sharply under the control of the P-type
IL algorithm at 4.3 s. After the learning was terminated, the amplitude recovered to a smooth value.
The feedback gain of the controllers at different locations had a distinct convergence rate, which
may cause the control force produced by controllers to mismatch among each other. If an actuator
fails to perform as expected, the performance of its neighboring actuators will be negatively affected.
In order to avoid this problem, more iterations are necessary to reach satisfying level of control
stability. A smaller iterative number may directly cause control spillover or even system instability.
The controllers connected with actuators a/b have the same learning processes, as shown in Figure 6a.
Figure 6b presents the learning processes of the feedback gains in actuator e. Observing the results
of Figures 5 and 6, the robust MFA-IL control has a faster convergence rate when compared with
the P-type IL method, and the input voltages of the actuators change smoothly. Therefore, it can be
seen that the proposed method enables the system to enhance control effectiveness and maintain
superior stability.
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The main contribution of the robust MFA-IL control is the improvement of learning speed.
Two parts influence the learning speed of the proposed algorithm: The MFA control and the SM
control. Both of these two methods accelerate the convergence speed of the feedback gains in the
learning processes. Their contribution percentages to the feedback gains are shown in Figure 7, where
it can be seen that the SM control plays a more important role than the MFA control.
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actuator c.

Real-time monitoring for the fused BPA results and the BPA from each controller was implemented
and is shown in Figure 8. The BPAs update at each period and the monitoring curve moves forward
over time. First, the BPAs obtained from actuator c meet the stopping criteria. After a short period, the
controller connected with actuators a/b stops learning. All controllers can learn sufficiently based on
the evidence theory, and thus preferable control performance can be obtained.

Micromachines 2019, 10, 196 19 of 29 

 

short period, the controller connected with actuators a/b stops learning. All controllers can learn 

sufficiently based on the evidence theory, and thus preferable control performance can be obtained. 

 

Figure 8. The basic probability assignment (BPA) curves. 

6.4. Random Excitation 

In the last simulation, a random excitation (shown in Figure 9) was applied to point C to drive 

the piezoelectric smart plate. 

 

Figure 9. The random excitation. 

Figure 10a,b presents the dynamic displacement responses of points A and B, respectively. The 

control voltages applied on actuators a/b and actuator c are depicted in Figure 11a,b. The output 

signals of the corresponding sensors are shown in Figure 11c,d. By comparing with the robust 

MFA-IL method, the actuation voltage amplitudes controlled by the P-type IL method are smaller 

in the initial stage of simulation. Under the control of the P-type IL algorithm, the actuators cannot 

work effectively to consume the energy of the vibration system in the initial period. According to 

Figures 10 and 11, it can be seen that the P-type IL control cannot suppress structural vibration in the 

short term. Since several hundreds of iterations lead to convergence rate of feedback gain slow. 

However, the learning speed of the robust MFA-IL algorithm is faster than that of the P-type IL 

method which has fixed gain. The time-varying learning gain is updated using I/O data, which can 

reflect the system dynamic behavior in real-time. 

Figure 8. The basic probability assignment (BPA) curves.



Micromachines 2019, 10, 196 17 of 27

6.4. Random Excitation

In the last simulation, a random excitation (shown in Figure 9) was applied to point C to drive the
piezoelectric smart plate.
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Figure 9. The random excitation.

Figure 10a,b presents the dynamic displacement responses of points A and B, respectively.
The control voltages applied on actuators a/b and actuator c are depicted in Figure 11a,b. The output
signals of the corresponding sensors are shown in Figure 11c,d. By comparing with the robust MFA-IL
method, the actuation voltage amplitudes controlled by the P-type IL method are smaller in the
initial stage of simulation. Under the control of the P-type IL algorithm, the actuators cannot work
effectively to consume the energy of the vibration system in the initial period. According to Figures 10
and 11, it can be seen that the P-type IL control cannot suppress structural vibration in the short term.
Since several hundreds of iterations lead to convergence rate of feedback gain slow. However, the
learning speed of the robust MFA-IL algorithm is faster than that of the P-type IL method which has
fixed gain. The time-varying learning gain is updated using I/O data, which can reflect the system
dynamic behavior in real-time.Micromachines 2019, 10, 196 20 of 29 
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The learning processes for feedback gain for the controllers connected actuators a/b and actuator
c are shown in Figure 12. The percentages contributed by the MFA control and the SM control are
shown in Figure 13, where it can be seen that the SM control has a larger impact on the convergence
rate of feedback gain than the MFA control.Micromachines 2019, 10, 196 21 of 29 
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The RMSs of amplitude were calculated and are shown in Table 6. A similar control effect to
the previous simulation can be observed. The robust MFA-IL control in this simulation presents a
better control performance and makes the learning speed of the controller faster by comparing with
the P-type IL control. The real-time monitoring results of the fused BPAs and the BPAs from each
controller are depicted in Figure 14.
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Figure 14. The BPAs curves.

In order to test the robustness of the proposed method, the harmonic noise signal f (t) = cos(152 · t)N
was added to the external excitation at point C. The controller’s parameters were set up the same
as mentioned above. Figure 15 shows the sensor output signals. The added noise resulted in a
decrease of system performance and divergence as long as the system was controlled by the P-type IL
method, while the robust MFA-IL control could maintain the stability of the control system. These
comparative results validate that the proposed control method possesses excellent control performance
and robustness to the noise from external excitation.
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7. Experimental Investigations

7.1. Experimental Model

To verify the feasibility and the performance of the robust MFA-IL algorithm, an active
vibration control system was established. The experimental devices are illustrated in Figure 16.
The robust MFA-IL control algorithm and the P-type IL control algorithm were implemented in a
MATLAB/Simulink environment. The real-time code was automatically operated in the real-time
semi-physical simulation system. The dimensions of the specimen were the same as in the numerical
simulations above, and exciting position point C was replaced by a metal patch. The experimental
setup was composed of a piezoelectric smart plate, an electric-eddy current exciter (JZF-1, Beijing,
China), a voltage amplifier (YE5872A, State College, PA, USA), a high voltage amplifier (E70, Harbin,
China), a real-time semi-physical simulation system (Quarc, Toronto, ON, Canada) and a personal
computer (PC) with a signal acquisition instrument. The piezoelectric patches were glued on the host
plate using commercial cyanoacrylate glue.
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A block diagram of the experimental system is illustrated in Figure 17. The experimental system
includes three subsystems, namely: The vibration exciting system, the signal acquisition system and
the vibration control feedback system. The signal transfer paths of these three subsystems are marked
by red, green and blue color with different line types.
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For the vibration exciting system, the excitation signal was produced by the signal generator, 

which was used to simulate the external excitation of the piezoelectric smart plate. After digital to 
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obtain the vibration information of the piezoelectric smart plate. The dynamic signals from the 

piezoelectric sensors were sent to the PC after analog to digital (A/D) conversion, which were then 

used to estimate the performance of the investigated control algorithms. 

For the vibration control feedback system, the dynamic signals from the piezoelectric sensors 

were fed to a A/D convertor. To remove high-frequency noise, the input signals were passed 

through a low-pass filter set to 14 Hz. The controllers conduct both signal processing and controlling 

design in the MATLAB/Simulink 2014a environment. Running the control algorithms, the control 

signals were computed and sent through the D/A convertor. After amplification from the high 

voltage amplifier, the control signals were applied to the actuators for suppressing structural 

vibration. The experimental sample period was specified as 3 ms.  

7.2. Modal Identification 

A chirp signal is utilized to determine the natural frequencies of the piezoelectric smart plate. 

Actuator a was excited by a chirp signal with an amplitude of 100V, while the output voltages of the 

Sensor a were stored after filtering. The starting frequency was 0.5 Hz, and the stopping frequency 

was 50 Hz. The sweep time was 100 s. Then, the fast Fourier transform (FFT) of the time response 

was calculated. Figure 18b depicts the frequency responses of sensor a when applying FFT to the 

time-domain signal plotted in Figure 18a. The experimental natural frequencies obtained from the 

FFT plot are given in the same table (Table 4) for comparison. The biggest difference, 13.9%, occurs 

in the second natural frequency.  

Figure 17. Block diagram of the experimental system.

For the vibration exciting system, the excitation signal was produced by the signal generator,
which was used to simulate the external excitation of the piezoelectric smart plate. After digital to
analog (D/A) conversion, the excitation signal was amplified by the voltage amplifier. The signal was
transmitted to the electric-eddy current exciter, which could then convert the electrical signal into the
vibration excitation.

For the signal acquisition system, three piezoelectric sensors (sensors a, b and c) were used
to obtain the vibration information of the piezoelectric smart plate. The dynamic signals from the
piezoelectric sensors were sent to the PC after analog to digital (A/D) conversion, which were then
used to estimate the performance of the investigated control algorithms.

For the vibration control feedback system, the dynamic signals from the piezoelectric sensors
were fed to a A/D convertor. To remove high-frequency noise, the input signals were passed through
a low-pass filter set to 14 Hz. The controllers conduct both signal processing and controlling design in
the MATLAB/Simulink 2014a environment. Running the control algorithms, the control signals were
computed and sent through the D/A convertor. After amplification from the high voltage amplifier,
the control signals were applied to the actuators for suppressing structural vibration. The experimental
sample period was specified as 3 ms.

7.2. Modal Identification

A chirp signal is utilized to determine the natural frequencies of the piezoelectric smart plate.
Actuator a was excited by a chirp signal with an amplitude of 100V, while the output voltages of the
Sensor a were stored after filtering. The starting frequency was 0.5 Hz, and the stopping frequency
was 50 Hz. The sweep time was 100 s. Then, the fast Fourier transform (FFT) of the time response
was calculated. Figure 18b depicts the frequency responses of sensor a when applying FFT to the
time-domain signal plotted in Figure 18a. The experimental natural frequencies obtained from the FFT
plot are given in the same table (Table 4) for comparison. The biggest difference, 13.9%, occurs in the
second natural frequency.
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Figure 18. Measured vibration responses excited by actuator a: (a) Time-domain responses of sensor a,
(b) frequency responses of sensor a.

Conditions that may lead to the difference of modal frequencies between the numerical solutions
and experimental solutions are considered as follows: (1) The clamp-free boundary condition in the
simulations is ideal. While in the experiments, the boundary of the plate may not be totally clamped.
(2) The geometric parameters and material properties of the piezoelectric smart plate cannot be known
accurately enough. The parameters used in the numerical simulations are not precisely consistent with
those of the plate applied in the experimental material. (3) The mass of both the glue and the connected
signal wire of the piezoelectric patches are not considered in the simulations. The modal analysis
in simulations is used to provide an approximate solution for verifying the feasibility of the control
algorithms, the difference of modal frequencies between the numerical results and the experimental
results is acceptable. It is clear that the FE model sufficiently predicts the natural frequencies of the
piezoelectric smart plate. Filters were designed and utilized in the experiments to deal with high
frequency noise. For investigating the control algorithms, the designed low-pass filters were applied.
The cutoff frequency of the low-pass filters was specified at 30 Hz.

7.3. Experiments Results and Discussions

During the experiments, the robust MFA-IL control and P-type IL control algorithms were used
to suppress the structural vibration of the cantilevered plate. The first mode control was tested in this
section, where the parameters of the P-type IL controller are chosen as follows: The fixed learning gain
Φ = 0.54. The maximum number of iterations was set to 1500 as to avoid control spillover or system
instability. The parameters of the robust MFA-IL controller are listed in Table 7. The stopping criteria in
the experiment are the same with those in Section 6.2. The sensor output signals (shown in Figure 19a,b)
were moved forward to compensate for the phase lag effect. Five seconds after harmonic excitation
driving, the proposed control algorithms were implemented to suppress the structural vibration.

Table 7. The control parameters.

Parameter Value Parameter Value

λ 1 α 0.5
ρ 0.1 δ 1.5
µ 1 ε 16
η 0.05 q 150
- Γ 0.8
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The measured signals of sensors a/b and sensor c, and the corresponding actuation voltages
obtained from the robust MFA-IL controller and the P-type IL controller are shown in Figure 19.
The sensor a/b and sensor c output signals used to calculate the RMS values were recorded after
learning termination. The RMS values (shown in Table 6) were used to quantitatively evaluate the
control performance of the various methods. From the RMS values, it can be seen that the P-type
IL control provides a 31.9% reduction and the robust MFA-IL control provides a 33.73% reduction.
It is clear that the robust MFA-IL control is more effective at reducing the vibration amplitude of the
flexible plate than the P-type IL control. It can be concluded that the proposed control method exhibits
excellent performance when integrating MFA control and SM control. The learning processes of the
feedback gains are shown in Figure 20. Under the control of the robust MFA-IL method, the structural
vibration can be suppressed faster when compared with the robust MFA-IL algorithm.
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The percentages of contributed feedback gain from the MFA and SM methods are shown in
Figure 21, where it can be seen that SM control has a larger impact on the convergence speed of
feedback gain than MFA control. The real-time monitoring curves of the fused BPA results and the
BPAs from each information source are shown in Figure 22. By applying evidence theory to the
design of the stopping criteria, the learning processes of all controllers can be evaluated in real-time.
The decision-making based on the appropriate stopping criteria makes all controllers learn sufficiently,
so that a better control performance is obtained.
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Comparing the experimental results with the numerical results, it can be seen that the vibration
suppression trends performed similarly. Due to the difference of the sample period and the unknown
nature of the experimental system, the parameters selected in the simulations and experiments
are different.

8. Conclusions and Outlooks

A robust MFA-IL control method was developed for the active vibration control of piezoelectric
smart structures. Considering the uncertainty of interaction among all actuators in the control process,
the MFA control was incorporated into P-type IL control for the adjustment of learning gain. In order
to achieve a fast control response and enhance the stability of the system, SM control was adopted to
ensure a fast dynamic response and compensate for the influence of uncertain noise. The multi-source
information fusion method based on the evidence theory was adopted to design the stopping criteria
of the robust MFA-IL method. The vibration control equations of piezoelectric smart structures were
derived from the dynamic FE equations of a linear elastic system. The dynamic linear method was
applied to transfer the vibration control equations for the design of the robust MFA-IL controller.
The simulation and experimental results were presented and compared with the corresponding results
using the P-type IL control approach.
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As long as the locations and sizes of actuators and sensors are chosen appropriately, both P-type IL
control and robust MFA-IL control can effectively suppress structural vibration when the piezoelectric
smart plate is excited by its first natural frequency. Furthermore, the whole structure presents good
controllability, rather than small portions bonded with piezoelectric sensors, using both the P-type IL
method and the robust MFA-IL method.

The robust MFA-IL control method accelerates the learning speed of the controller. Based on the
comprehensive comparative analysis of the numerical and experimental results, the proposed control
method can achieve better control performance and is more robust to external disturbances when
compared with the P-type IL control. In other words, the proposed control method overcomes the
inherent drawbacks of P-type IL control and achieves the desired control performance.

Although the robust MFA-IL control method was applied for a plate structure in this paper,
considering its advantages presented above, this approach can be applied for other structures, like
beam structures, extending the possibilities of engineering and research applications. Dynamic
linearization was an effective method in developing the proposed method for nonlinear systems.
Dynamic linearization mainly introduces optimal technology as a tool for the controller design and
analysis. In future work, it will be expected that the dynamic linearization method will be combined
with an online model identification technique to deal with much more practical problems, those
typically encountered in industrial applications. This may result in a simpler controller structure and
obtain a better degree of control precision.
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