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Abstract: The multiring disk resonator gyroscope (DRG) has been a candidate for high performance
gyroscopes, however nowadays the finite element method (FEM) is the main method for its analysis
due to its complex structure. In this paper we propose a new method to mathematically model
the DRG for its vibrating modes and lumped parameters based on the component mode synthesis
(CMS) method. Firstly, the natural frequencies and the associated mode shapes of the DRG are
mathematically modeled and a comparison with the FEM results is conducted. It shows that the
mode shapes of DRG obtained by FEM and mathematical modeling are identical and in the full
ranges of geometrical parameters, natural frequency error of the simulation, and calculation results
are limited in ±15%. It demonstrates the effectivity and feasibility of the mathematical modeling
method. Then, based on the calculated natural frequencies and mode shapes, the lumped mass-spring
model of the DRG and effects of geometry parameters on the lumped mass-spring parameters are
investigated, which can be used on the design of the DRG. This mathematical modeling method
can effectively improve the analyzing efficiency of the DRG and the method can also be used on the
analysis of other complex multiring-type resonators.

Keywords: mathematical modeling; dynamic model; disk resonator gyroscope; component mode
synthesis method

1. Introduction

Gyroscopes are used to measure the rate of rotation (rate gyroscopes) or the angles of turn (angle
gyroscopes), and various microgyroscopes have been reported in the literature [1–3]. Among them,
the micromachined disk resonator gyroscope (DRG) working on the degenerate modes attracted much
attention for its advantages of intrinsic mode matching, high quantity factor, high shock resistance,
and less sensitivity to environment vibrations [4–9]. The degenerate modes include driving mode and
sensing mode which ideally occur at the same frequency but have indistinguishable mode shapes.
Generally, the in-plane fundamental (n = 2) flexural modes, also known as the wineglass mode, are
utilized for rotating rate measurement in the DRG [10]. For the vibratory gyroscope in vibrating mode,
the natural frequencies and the associated mode shapes are the most fundamental and important
parameters. Calculation of the other performances of the gyroscope, such as effective mass, effective
stiffness, mechanical sensitivity, quality factor, resolution, and others, are all based on the natural
frequencies and the associated mode shapes [11,12].

In the previous literatures, natural frequencies and mode shapes are usually obtained by finite
elements analysis (FEA) with the simulating software [13,14]. However, for a complex structure, it will
take a long time to do the simulation and the meshing density has a great influence on the accuracy of
simulating results. Meanwhile, with the FEA method, only the numerical solution can be obtained
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which cannot reflect the inner relationship between the results and the parameters. Therefore the
development of a novel method for mathematical modeling of the frequencies and the associate mode
shapes of a vibratory gyroscope is in urgent.

So far, many literatures have presented mathematical modeling of the wineglass mode of vibratory
gyroscopes with simple structures. Refs. [15–17] presented the in-plane free vibration of a single-crystal
silicon ring, Refs. [18,19] presented the detailed model of the semicircular springs supported ring
gyroscope, and Refs. [11] presented the mathematical modeling of three-dimensional wineglass mode
gyroscope. However, as for the complex multiring DRGs, no method has been proposed for the
mathematical modeling.

In the vibrating DRG, modes of the different rings are different, meanwhile, the modes of each
ring are not standard fundamental (n = 2) flexural modes. Thus, it is difficult to obtain the mathematical
model of DRGs by utilizing the traditional method. In this paper, a method based on the component
mode synthesis (CMS) [20–26] technique is proposed to mathematically model the complex DRGs.
In the following sections, the design model and working principle of DRGs will be firstly described and
then the CMS technique is introduced. Then, the calculation method based on CMS is used to calculate
the natural frequencies and mode shapes of both the free vibrating and central-supported DRGs. Then,
results of the mathematical modeling and FEA method are compared to verify the feasibility of the
mathematical analysis method. Last, the calculated natural frequencies and mode shapes are used for
calculation of the lumped mass-spring model of the DRG and the effects of geometry parameters on
the lumped mass-spring parameters are investigated.

2. Materials and Methods

2.1. Design Model and Working Principle of the DRG

The design model of a typical DRG is shown in Figure 1a [5–10,13,14,27–29]. The DRG consists of
multiple concentric rings which are interconnected through 8 spokes on one layer that are anchored
at the center. Sixteen electrodes are set around the sensing structure for driving, sensing and tuning.
The DRG has a degenerate pair of in-plane wineglass modes, also called n = 2 cosine and sine modes
which have the identical natural frequency but indistinguishable mode shapes, as shown in Figure 1b.
It is driven to vibration at one of the wineglass modes and the Coriolis-based rotation rate signal is
detected at another wineglass mode. As the n = 2 sine mode can be easily obtained by transferring the
vibrating orientation of cosine mode from 0◦ to 45◦, in this paper, only the cosine mode is analyzed to
simplify the analyzing process.
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2.2. Component Mode Synthesis Technique

CMS techniques are widely used for the dynamic analysis of complex structures [20–26,30,31].
They can be classified as fixed-interface methods, free-interface methods, and hybrid methods,
depending upon whether the mode shapes used to define substructure coordinates are obtained
with the interface coordinates fixed, free, or a combination of them. Normally, the fixed-interface
methods can produce a better accuracy; however it is more complex than the free-interface methods.
So in this paper, the free-interface method is used.

Firstly, the entire system needs to be partitioned into multiple individual substructures and the
substructures are modeled individually. Secondly, dynamic models of all the substructures are simply
assembled to produce an uncoupled model of the entire structure. Thirdly, the coupling of interfaces is
built and the assembled uncoupled model is transferred to the coupled model of the entire system.
At last, by solving the coupled model, the natural frequencies, mode shapes, and dynamic equation
can be obtained. In the following section, mathematical modeling of the DRG is conducted following
the above steps.

2.3. Mathematical Modeling of Free Vibrating DRGs

2.3.1. Substructures Partition

Based on the periodic characteristic of the DRG sensing structure, the adjacent two rings and the
interconnected 8 spokes can be partitioned to the first level (level-1) substructures, while the single
ring and spoke can be seen as the second level (level-2) substructures, as shown in Figure 2. While
there are n-1 level-1 substructures in a DRG with n rings, there are 10 level-2 substructures (inner rings,
outer rings, and spoke A-H) in a level-1 substructure. As the spokes of adjacent layers are alternately
arranged, the level-1 substructures can be divided into two types: type I, in which spoke A is located
at −22.5◦, and type II, in which spoke A is located at 0◦.
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2.3.2. Mathematical Modeling of the Level-2 Substructures

The study of the free vibrations of beams, curved bars, and rings can be traced back to the
nineteenth century. Many hypothesis, theories, and methods have been proposed to solve the problem,
such as the Timoshenko beam theory, the Euler–Bernoulli hypothesis, the Love hypothesis, the
Hamilton’s principle, the Ritz method, among others [16,17,32–34]. In this paper the Ritz method is
used for the mathematical modeling of the level-2 substructures including rings and spokes.

Consider a ring, as shown in Figure 3a, of radius r, width b, and thickness h, respectively. θ is the
angle measured anticlockwise from the x axis. u and v are the radial and tangential displacements of the
point on the centerline in polar coordinates. Normally, the width of the ring is so small compared to the
radius that it can be seen as a thin ring and we adopt the Euler–Bernoulli hypothesis (that is, the plane
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of the cross-section remains plane which is perpendicular to the longitudinal axis during deformation
and there is no Poisson’s effect) for the analysis of the ring [16]. As proposed in the literature [18,19], the
vibrating ring can be analyzed using normal modes. To this end, any vibration-induced displacements
of the ring can be expressed as the superposition of a series of normal vibration modes:

v(θ, t) =
∞
∑

N=1

[
pr

N(t) sin Nθ + qr
N(t) cos Nθ

]
u(θ, t) =

∞
∑

N=1

[
pr

N(t)N cos Nθ − qr
N(t)N sin Nθ

] (1)
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Herein, in the thin ring with small deformation, u = v′. Dot and prime denote the derivative with
respect to time t and angle θ, respectively. pr

N(t) and qr
N(t) are the generalized (modal) coordinates

while cosNθ and sinNθ are the single ring’s normal modes. In this paper, only the n = 2 cosine mode of
the DRG is analyzed to simplify the analyzing process. Since the cosine mode is symmetrical about the
x axis at any time,

u(0 + α) = u(0− α) (2)

where α is random angle. Expanding Equation (2) with Equation (1), and simplifying the equation,
we get

∞

∑
N=1

[2qN(t) sin Nα] = 0 (3)

This function always exists with random angle α, requiring that the generalized coordinates

qr
N(t) = 0 (4)

This means that in the cosine mode of the DRG, the vibration mode of any ring only consists of
cosine modes while sine modes do not exist. So the vibration mode of any ring can be expressed as

v(θ, t) =
∞
∑

N=1

(
pr

N(t) sin Nθ
)
, u(θ, t) =

∞
∑

N=1

(
pr

N(t)N cos Nθ
)

(5)

Theoretically, the modes of each ring need to be expressed using the superposition of infinite
normal modes, but actually, the high-order modes have smaller proportion than the low-order modes.
More mode components will result in higher accuracy but also lead to a larger calculation amount.
So, based on the accuracy we prefer to achieve, some high order modes can be neglected. Meanwhile,
the n = 2 cosine mode has two basic properties—symmetry and periodicity—as shown in Figure 3b.
Firstly, the mode shape is symmetrical about the y axis, which means that

u(
π

2
+ α) = u(

π

2
− α) (6)
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Therefore we can derive that

∞

∑
j=1

pr
j (t) sin j

π

2
sin jα = 0 (7)

This function always exists with random angle α. As pj(t) cannot all be zero there must be

sin j
π

2
= 0 (8)

Which requires that j must be an even number, which is

j = 2, 4, 6, 8 · · · 2N · · · (9)

Another property of the mode shape is the periodicity. In the cos2θ mode, displacement will be
reversed after 90 degrees, which means that

u(
π

2
+ α) = −u(α) (10)

Then we can derive that
(cos j

π

2
+ 1) cos jα = 0 (11)

which exists with random angle α. Therefore,

cos j
π

2
= −1 (12)

Which requires that j must be twice of the odd number, which is

j = 2, 6, 10, 14, 18 · · · 4N − 2 · · · (13)

Besides, in this paper, the first Nr orders of normal modes are selected as the mode components of
each ring for the trade-off between the calculation amount and accuracy (mode number of ring Nr = 3
in this paper). So displacements of each ring can be briefly expressed as

v = pr
1 sin 2θ + pr

2 sin 6θ + pr
3 sin 10θ = ϕ(θ)pr(t)

u = pr
12 cos 2θ + pr

26 cos 6θ + pr
310 cos 10θ = ψ(θ)pr(t)

(14)

Herein,

ϕ(θ) =
[

sin 2θ sin 6θ sin 10θ
]
,ψ(θ) =

[
2 cos 2θ 6 cos 6θ 10 cos 10θ

]
pr(t) = [ pr

1(t) pr
2(t) pr

3(t) ]
T (15)

So the kinetic energy Tr can be expressed as

Tr = 1
2

∫ 2π
0 ρhbr

((
∂u
∂t

)2
+
(

∂v
∂t

)2
)

dθ = 1
2

3
∑

i=1

3
∑

j=1

.
pr

i
.
pr

i
∫ 2π

0 ρhbr
(
ψiψj + ϕi ϕj

)
dθ

= 1
2

3
∑

i=1

3
∑

j=1
mr

ij
.
pr

i
.
pr

j =
1
2

.
prTmr .

pr
(16)

where, ρ is density of the material and mass matrix mr can be expressed as

mr = πρhbr

 2 0 0
0 5 0
0 0 10

 = πρhbrmr
0 (17)
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Similarly, the potential energy Ur can be calculated by

Ur = 1
2

∫ 2π
0

Ehb3

12r3

(
u + ∂2u

∂2θ

)2
dθ = 1

2

3
∑

i=1

3
∑

j=1
pr

i pr
j
∫ 2π

0
Ehb3

12r3

(
ψi + ψ

′′
i
)(

ψj + ψ
′′
j

)
dθ

= 1
2

3
∑

i=1

3
∑

j=1
kr

ij p
r
i pr

j =
1
2 prTkrpr

(18)

where, E is the Young’s modulus of the material; the stiffness matrix k is also a diagonal matrix which
can be expressed as

kr = π
Ehb3

12r3

 0 0 0
0 36 0
0 0 576

 = π
Ehb3

12r3 kr
0 (19)

Take Equations (16) and (18) into the Lagrange’s equation of the free vibrating system as follows

d
dt

(
∂Tr

∂
.
pr

i

)
− ∂Tr

∂pr
i
+

∂Ur

∂pr
i
= 0(i = 1, 2, 3) (20)

Then dynamic equation of the single ring can be obtained:

mr ¨
p

r
+ krpr = 0 (21)

A schematic of the single spoke is shown in Figure 4a, where b and L are the width and length
of the spoke, respectively. As for the free vibration of the Euler–Bernoulli beam structure, the x-axis
displacement mainly includes the rigid displacement while neglecting the elastic displacement.
The y-axis displacement can be expressed as the superposition of the rigid mode, rotating mode,
and a series of normal flexural vibration modes. It can be expressed as

dx(x) = ps
1(t) · 1

dy(x) = ps
2(t) · 1 + ps

3(t) ·
x
L +

∞
∑

i=4
ps

i (t)
( x

L
)i−2 (22)
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Similar to the ring structure, more mode components will result in higher accuracy but also lead
to larger calculation amount. So, based on the accuracy we prefer to achieve, some high order modes
can be neglected. In this paper, the first Ns order mode components are used (mode number of spoke
Ns = 5 in this paper). By simplifying the above equation, it can be expressed with the matrix form

dx(x) = χ(x)ps(t) =
[

1 0 0 0 0
]
ps(t)

dy(x) = δ(x)ps(t) =
[

0 1 x/L (x/L)2 (x/L)3
]
ps(t)

(23)
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Herein,

ps(t) =
[

ps
1(t) ps

2(t) ps
3(t) ps

4(t) ps
5(t)

]T
(24)

So the kinetic energy Ts can be expressed as

Ts = 1
2

∫ L
0 ρhb

((
∂dx
∂x

)2
+
(

∂dy
∂x

)2
)

dx = 1
2

5
∑

i=1

5
∑

j=1

.
ps

i
.
ps

j
∫ L

0 ρhb
(
δiδj + χiχj

)
dθ

= 1
2

5
∑

i=1

5
∑

j=1
ms

ij
.
ps

i
.
ps

j =
1
2

.
psTms .

ps
(25)

Herein,

ms = ρhbL


1 0 0 0 0
0 1 1/2 1/3 1/4
0 1/2 1/3 1/4 1/5
0 1/3 1/4 1/5 1/6
0 1/4 1/5 1/6 1/7

 = ρhbLms
0 (26)

Similarly, the potential energy Us can be expressed as

Us = 1
2

∫ L
0

Ehb3

12

(
∂2dy
∂2x

)2
dx = 1

2

5
∑

i=1

5
∑

j=1
ps

i ps
j
∫ L

0
Ehb3

12 δ
′′
i δ
′′
j dx

= 1
2

5
∑

i=1

5
∑

j=1
ks

ij p
s
i ps

j =
1
2 psTksps

(27)

Herein,

ks =
Ehb3

12L3


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 4 6
0 0 0 6 12

 =
Ehb3

12L3 ks
0 (28)

Then dynamic equation of the single spoke can also be obtained:

ms ¨
p

s
+ ksps = 0 (29)

2.3.3. Mathematical Modeling of the Level-1 Substructures

Schematic of the level-1 substructures are shown in Figure 5. Based on the difference in the spokes’
orientations, they can be divided into two types: type I, in which the spoke A locates at −22.5◦, and
type II, in which the spoke A locates at 0◦. In the n = 2 flexural mode of the DRG, the displacement
will be reversed after 90 degrees, so spokes A and E have the same mode shape, while A, C, and G
have reverse-phase mode shapes. Similarly, B and F have the same mode shape, while B, D, and H
have reverse-phase mode shapes. So only the mode shapes of spokes A and B need to be analyzed.
Uncoupled dynamic equation of the level-1 substructure i (including the ring i, ring i + 1 and the
interconnected spokes) can be expressed as

M0i
¨
Pi + K0iPi = 0 (30)

Herein, M0i, K0i, and Pi are the uncoupled mass matrix, stiffness matrix, and generalized
coordinate of the level-1 substructure i, respectively. Therefore,

M0i = diag
(
mr

i , mr
i+1, ms

iA, ms
iB
)
, K0i = diag

(
kr

i , kr
i+1, ks

iA, ks
iB
)

Pi =
[

pr
i pr

i+1 ps
iA ps

iB

]T (31)
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Figure 5. Schematic of the level-1 substructures.

Joints of the rings and spokes are shown in Figure 6a. As the ring width is much smaller than
the length of spoke and the radius of rings, it can be elucidated that the inner ring (ring i) and the
spoke α (α = A, B, . . . , H) are connected together at the point T, which is also the cross point of the
central line of the ring and spoke. Similarly, the spoke and the outer ring (ring i + 1) are connected at
point T′. For the small flexural deformation as shown in Figure 6b, to ensure that the structure is still
continuous, the rings and spokes must have the same radial displacement, tangential displacement,
and rotating angle at points T and T′. So, the coupling condition on the interface of ring and spoke can
be expressed as

ui(θT) = dxα(0),
vi(θT) = dyα(0),
φi(θT) = σα(0),

ui+1(θT) = dxα(L)
vi+1(θT) = dyα(L)
φi+1(θT) = σα(L)

(32)
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As for a thin ring i at small deformation, the rotating angle φi can be calculated as

φi =
1
ri
(vi + vi

′′ ) =
1
ri

(
ψ(θT) +ψ

”(θT)
)

pr
i = ηi(θT)pr

i (33)

While, as for a thin beam α at small deformation, the rotating angle σα is

σα =
∂dyα

∂x
=

∂δ(x)
∂x

ps
α = σ(x)ps

α (34)

By taking Equations (33) and (34) into Equation (32), the coupling of ring i, ring i + 1, and spokes
A and spoke B can be obtained:

ui(θT) = dx A(0),
vi(θT) = dy A(0),
φi(θT) = σA(0),

ui+1(θT) = dx A(L)
vi+1(θT) = dy A(L)
φi+1(θT) = σA(L)

ui(θT + π/4) = dxB(0),
vi(θT + π/4) = dyB(0),
φi(θT + π/4) = σB(0),

ui+1(θT + π/4) = dxB(L)
vi+1(θT + π/4) = dyB(L)
φi+1(θT + π/4) = σB(L)

(35)
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By taking the Equations (14), (15), (23), and (24) into Equation (35), the coupling relationships can
be expressed with the following coupling matrix.

ϕ(θT) 0 −χ(0) 0
ψ(θT) 0 −δ(0) 0
ηi(θT) 0 −σ(0) 0

0 ϕ(θT) −χ(L) 0
0 ψ(θT) −δ(L) 0
0 ηi+1(θT) −σ(L) 0

ϕ(θT + π/4) 0 0 −χ(0)
ψ(θT + π/4) 0 0 −δ(0)
ηi(θT + π/4) 0 0 −σ(0)

0 ϕ(θT + π/4) 0 −χ(L)
0 ψ(θT + π/4) 0 −δ(L)
0 ηi+1(θT + π/4) 0 −σ(L)




pr

i
pr

i+1
ps

iA
ps

iB

 = 0 (36)

Define the coupling matrix as Ci, it can be expressed as

Ci(θT)Pi(t) = 0 (37)

As for the two types of level-1 substructures, θT is different given that Ci(θT) values for the two
types of level-1 substructures are different. To simplify the analysis, we defined the innermost level-1
substructure as type I, as shown in Figure 2. Then, the coupling matrix Ci(θT) of the level-1 substructure
i is

Ci =

{
Ci(−π

8 ) i = 1, 3, 5, 7 . . .

Ci(0) i = 2, 4, 6, 8 . . .
(38)

The mode number of each ring is Nr (Nr = 3) and the mode number of each spoke is Ns (Ns = 5),
thus there are 12 rows and 2(Nr + Ns) columns in the coupling matrix and there are 2(Nr + Ns)
generalized coordinates. However, due to the coupling between the rings and spokes, the number of
the independent generalized coordinates is less than 2(Nr + Ns), which is the difference of the total
mode numbers and rank of the coupling matrix R(Ci):

Nin = 2(Nr + Ns)− R(Ci) (39)

In this paper, R(Ci) is 11 and the number of independent generalized coordinates Nin is 5.
By applying row elementary transformation on the coupling matrix Ci, the linearly independent
coupling equation can be arranged at the first R(Ci) rows. Then, the coupling matrix Ci can be divided
into four parts:Micromachines 2019, 10, x FOR PEER REVIEW 10 of 21 
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Then the relationship between all the generalized coordinates Pi and the independent 
generalized coordinates Qi can be obtained: 

1

1( ) 1 ( ) ( ) ( )C C C C

IPP Q D Q
P C C

in in
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i i i i in

N NN
i

i i i iR R R R N
i i i
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where, Di is the transformation matrix of all the generalized coordinates Pi and of the independent 
generalized coordinates Qi. 

Take coupling Equation (43) into the uncoupled dynamic equation of the level-1 substructure 
(30), we can obtain the coupled dynamic equation of the level-1 substructure: 

M Q K Q 0i i i i = +  (44) 

Herein, Mi and Ki are the coupling mass matrix and stiffness matrix of the level-1 substructure i. 
Therefore, 

0 0
T T

i i i i i i i i= =M D M D K D K D，  (45) 

2.3.4. Mathematical Modeling of the Whole Sensing Structure 

Similar to the mathematical modeling of the level-1 substructures, the CMS method needs to be 
used again for the mathematical modeling of the whole DRG structure. 

Level-1 substructures are assembled layer by layer to form the whole sensing structure, as 
shown in Figure 2. The adjacent level-1 substructures have a common ring, which is the outer ring of 
the inner level-1 substructure; also it is the inner ring of the outer level-1 substructure, as shown in 
Figure 7. So mass of the shared ring needs to be equally distributed to the adjacent two level-1 
substructures, which can be achieved by defining the density of the shared rings as half of the 
original density of the material as shown in Figure 7. After the density of shared rings is changed, 
Equation (31) should also be modified as 

Herein, the vector of independent generalized coordinates, PNin×1
i , consists of all the generalized

coordinates of ring i Pr
i and part of the generalized coordinates of ring i + 1 (PL

i ). Defining the vector of
independent generalized coordinates as Q we ascertain

Qi = PNin×1
i =

[
Pr

i
PL

i

]
=


Pr

i
pr

i+1_1
...

pr
i+1_Nin−Nr

 (41)
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where, pr
i+1_x is the x order generalized coordinate of the ring i + 1. Expanding (40) with (41) to obtain

CR(Ci)×Nin
i Qi + CR(Ci)×R(Ci)

i PR(Ci)×1
i = 0⇒ PR(Ci)×1

i = −
[
CR(Ci)×R(Ci)

i

]−1
CR(Ci)×Nin

i (42)

Then the relationship between all the generalized coordinates Pi and the independent generalized
coordinates Qi can be obtained:

Pi =

[
PNin×1

i

PR(Ci)×1
i

]
=

 INin×Nin

−
[
CR(Ci)×R(Ci)

i

]−1
CR(Ci)×Nin

i

Qi = DiQi (43)

where, Di is the transformation matrix of all the generalized coordinates Pi and of the independent
generalized coordinates Qi.

Take coupling Equation (43) into the uncoupled dynamic equation of the level-1 substructure (30),
we can obtain the coupled dynamic equation of the level-1 substructure:

Mi
¨

Qi + KiQi = 0 (44)

Herein, Mi and Ki are the coupling mass matrix and stiffness matrix of the level-1 substructure
i. Therefore,

Mi = Di
TM0iDi, Ki = Di

TK0iDi (45)

2.3.4. Mathematical Modeling of the Whole Sensing Structure

Similar to the mathematical modeling of the level-1 substructures, the CMS method needs to be
used again for the mathematical modeling of the whole DRG structure.

Level-1 substructures are assembled layer by layer to form the whole sensing structure, as shown
in Figure 2. The adjacent level-1 substructures have a common ring, which is the outer ring of the inner
level-1 substructure; also it is the inner ring of the outer level-1 substructure, as shown in Figure 7.
So mass of the shared ring needs to be equally distributed to the adjacent two level-1 substructures,
which can be achieved by defining the density of the shared rings as half of the original density of the
material as shown in Figure 7. After the density of shared rings is changed, Equation (31) should also
be modified as

M0i =


diag

(
mr

i ,
1
2 mr

i+1, ms
A, ms

B

)
, i = 1

diag
(

1
2 mr

i ,
1
2 mr

i+1, ms
A, ms

B

)
, i = 2, 3 . . . , n− 2

diag
(

1
2 mr

i , mr
i+1, ms

A, ms
B

)
. i = n− 1

K0i = diag
(
kr

i , kr
i+1, ks

A, ks
B
)
, i = 1, 2, 3 . . . , n− 1

(46)
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Then, given Equations (32)–(45), the mass matrixes Mi and stiffness matrixes Ki of each level-1
substructure can be calculated. Then the uncoupled model of the whole sensing structure can be
expressed as

M0
¨

Q + K0Q = 0 (47)
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Herein, M0, K0, and Q are the uncoupled mass matrix, stiffness matrix, and generalized coordinate
of the whole sensing structure, respectively. Thus,

M0 = diag(M1, M2, · · · , Mn−1), K0 = diag(K1, K2, · · · , Kn−1)

Q =
[

Q1 Q2 · · · Qn−1

]T (48)

Equation (43) shows the relationship between all the generalized coordinates Pi and the
independent generalized coordinates Qi of the level-1 substructure i. Here, Di can be divided into four
parts according to the generalized coordinates of different level-2 substructures:
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So the number of linearly independent coupling equations between the adjacent level-1 
substructures is Nr (Nr = 3 in this paper). Then, once a level-1 substructure is added, number of the 
added independent generalized coordinates are Nin ‒ Nr. So the independent generalized coordinates 
of the whole sensing structure with n−1 level-1 substructures can be expressed as 

1 2 3 1
ˆ L L LQ Q p p pn− =  

 (52) 

Therefore,
pr

i = Din
i Qi, pr

i+1 = Dout
i Qi (50)

As the adjacent level-1 substructures share the same ring as shown in Figure 7

pr
i+1 = Dout

i Qi = Din
i+1Qi+1 (51)

So the number of linearly independent coupling equations between the adjacent level-1
substructures is Nr (Nr = 3 in this paper). Then, once a level-1 substructure is added, number of the
added independent generalized coordinates are Nin - Nr. So the independent generalized coordinates
of the whole sensing structure with n − 1 level-1 substructures can be expressed as

Q̂ =
[

Q1 pL
2 pL

3 · · · pL
n−1

]
(52)

The relationship between the independent generalized coordinates of the adjacent level-1
substructures can be obtained as

Qi+1 =

[
pr

i+1
pL

i+1

]
=

[
Dout

i Qi
pL

i+1

]
=

[
Dout

i
0(Nin−Nr)×Nin

]
Qi +

[
0Nr×(Nin−Nr)

I(Nin−Nr)×(Nin−Nr)

]
pL

i+1

= FiQi + GpL
i+1

(53)

So there is

Q1 = IQ1
Q2 = F1Q1 + GpL

2
Q3 = F2Q2 + GpL

3 = F2F1Q1 + F2GpL
2 + GpL

3
. . . . . . . . . . . . . . . . . .

Qn−1 =
1

∏
i=n−2

FiQ1 +
2

∏
i=n−2

FiGpL
2 + · · ·+

m
∏

i=n−2
FiGpL

m + · · ·+ GpL
n−1
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Therefore, the matrix form of the above equations is


Q1
Q2
Q3
...
Qn−1

 =



I 0 0 · · · 0
F1 G 0 · · · 0

F2F1 F2G G · · · 0
...

...
...

...
...

1
∏

i=n−2
Fi

2
∏

i=n−2
FiG

3
∏

i=n−2
FiG · · · G




Q1
pL

2
pL

3
...
pL

n−1

 (54)

Defining the coupling matrix between the level-1 substructures as S:

Q = SQ̂ (55)

Taking the coupling Equation (55) into the uncoupled dynamic equation of the whole sensing
structure (47), we can get the coupled dynamic equation of the whole sensing structure:

M
¨

Q̂ + KQ̂ = 0 (56)

Herein, M and K are the coupled mass matrix and stiffness matrix of the whole sensing structure,
respectively. Therefore,

M = STM0S, K = STK0S (57)

Generalized coordinate Q is the periodic function of the time t

Q̂ = ξ sin(ωt + ϕ) (58)

where, ω is the natural frequency, ϕ is the phase, and ξ is the undetermined coefficient vector.
Taking (58) into (56):

Kξ−ω2Mξ = 0⇒M−1Kξ = ω2ξ (59)

Thus, the square of the angular natural frequencies is the eigenvalues of the dynamic matrix
M−1K. Since we have simplified the mode components of each substructure according to vibration
characteristics of the n = 2 flexural mode of the DRG, the minimum frequency is exactly the natural
frequencyω0 of the preferred n = 2 cosine mode:

ω0
2 = min(λ(M−1K)), f0 =

ω0

2π
(60)

Then, taking the value ofω0 into the equation:[
K−ω0

2M
]
ξ0 = 0 (61)

We can solve the corresponding eigenvector ξ0. The independent generalized coordinates can then be
expressed as

Q̂0 = ξ0 sin(ω0t + ϕ) (62)

By taking Equation (62) into Equations (54) and (55), the independent generalized coordinates of
each level-1 substructure can be obtained:

Q1
Q2

...
Qn−1

 = Q0 = SQ̂0 = Sξ0 sin(ω0t + ϕ) (63)
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The generalized coordinates of each level-2 substructure can also be obtained by Equation (49):
pr

i
pr

i+1
ps

iA
ps

iB

 =


Din

i Qi
Dout

i Qi
DA

i Qi
DB

i Qi

, i = 1, 2, 3 . . . n− 1 (64)

Thus, the mode shape of all the rings and spokes in the DRG structure can be expressed as

u1

u2

u3
...

un


=



ψ(θ)pr
1

ψ(θ)pr
2

ψ(θ)pr
3

...
ψ(θ)pr

n


,



v1

v2

v3
...

vn


=



ϕ(θ)pr
1

ϕ(θ)pr
2

ϕ(θ)pr
3

...
ϕ(θ)pr

n


,

dx A_i = χ(x)ps
iA,

dxB_i = χ(x)ps
iB,

dy A_i = δ(x)ps
iA,

dyB_i = δ(x)ps
iB.

i = 1, 2 . . . n− 1 (65)

In summary, by using the analysis algorithm based on CMS technique, the natural frequency and
mode shapes of each ring and spoke in the complex DRG structure can be calculated. Even though the
simple analytical solution cannot be obtained due to the complex structure, the analysis algorithm can
be easily achieved by computing software such as MATLAB and it is very useful for the analysis of the
multiring resonators. The process of the algorithm is summarized in Figure 8.Micromachines 2019, 10, x FOR PEER REVIEW 14 of 21 
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2.4. Mathematical Modeling of the Central-supported DRG

In the above section, all the rings and spokes are assumed to vibrate freely. However, in
disk resonator gyroscopes, the structure must be fixed to the substrate and the DRG is always
central-supported to reduce the support damping, as shown in Figure 1. So in the multiring DRG
model in Figure 2, the innermost ring should be completely fixed for the calculation. However, it is
more complex for the mathematical modeling of a restrained structure than a free vibrating structure.
So in this paper a simple way is proposed for the mathematical modeling of the central-supported DRG.

As known to us, the fixed ring has very small deformation in the vibration of the DRG, and it
also can be achieved by greatly enlarging the stiffness of the innermost ring instead of fixing it. In this
paper, the Young’s modulus of the innermost ring is set much larger than the other rings to achieve
larger stiffness and small deformation, as shown in Figure 9. In this way, the analysis algorithms of the
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free vibrating DRG and the central-supported DRG are unified, which greatly decreases the complexity
of the analysis algorithms of the central-supported DRG.
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3. Results

3.1. Validation by Finite Element Analysis (FEA)

To verify the analysis algorithm for the natural frequencies and mode shapes of DRG proposed in
this paper, FEA results are obtained with the commercial modeling tools software COMSOL, which is
commonly used for this kind of simulation. The FEA results are compared with the calculation results
obtained by MATLAB. The geometry parameters are shown in Figure 1. Thickness of the structure is
set as 150 µm and the anchor radius is set as 1 mm. According to the common geometry parameters
in micromachined DRGs, in the comparison, the range of the ring numbers, ring widths, and radius
steps were set as 8–16, 2 µm–12 µm, and 40 µm–160 µm, respectively. To simplify the process, the ring
widths and radius steps of different layers are set to be identical.

As for the free vibrating DRGs, the comparison of natural frequencies at different geometry
parameters obtained by the simulation and calculation are shown in Figure 10a. Their relative errors
at different geometry parameters are shown in Figure 10b. Here, the relative error of the simulation
results (fs) and the calculation results (fc) is calculated by

error =
fs − fc

fs
× 100% (66)
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It can be seen that the changing rules of the simulated and calculated natural frequencies with the
changing geometry parameters are identical. Meanwhile, in the full ranges of geometry parameters,
the natural frequency error of the simulation and calculation results are limited to ±15%.

Mode shapes of the free vibrating DRG working at ~7.2 kHz (ring width, radius step, anchor
radius and ring number are 6 µm, 36 µm, 1 mm, and 16, respectively) are obtained by simulation and
calculation methods, as shown in Figure 11. It can be seen that the DRG mode shape obtained by
simulation with the software COMSOL and the mode shape obtained by calculation with the software
MATLAB are completely identical.Micromachines 2019, 10, x FOR PEER REVIEW 16 of 21 
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As for the central-supported DRGs, the comparison of the natural frequencies at different
geometry parameters obtained by the simulation and calculation are shown in Figure 12. It can
be seen that in the full ranges of geometry parameters the natural frequency error is also limited
to ±15%. Errors come from both the simulation and calculation methods. The errors in simulation
method mainly come from the meshing density of the structure. The errors in calculation method
mainly come from the Euler–Bernoulli beam assumption, which is only suitable for the thin rings
whose radius is much larger than the width.
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Mode shapes of the central-supported DRG working at ~26 kHz (ring width, radius step, anchor
radius and ring number are 10 µm, 70 µm, 1 mm, and 15, respectively) are shown in Figure 13.
As is the same with the free vibrating DRG, the mode shapes obtained by the two methods are
completely identical.Micromachines 2019, 10, x FOR PEER REVIEW 17 of 21 
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Figure 13. Comparison of the mode shapes of the central-supported DRG which are simulated by
COMSOL and calculated by MATLAB (spokes are neglected).

From Figures 10–13, it can be learnt that the mathematical modeling algorithm for the analysis
of the DRG natural frequencies and mode shapes proposed in this paper is effective and feasible.
Although the FEA can also be used for the calculation of DRG natural frequencies, the mode shape
function of every point in the structure cannot be obtained by this way. Furthermore, in order to get
more accurate results, the meshing density of the FEA should be increased; however it will take a
longer time for computation. For example, to get one group of frequency and mode shape of a DRG
with certain structural parameters, it takes ~15 min with COMSOL; it only takes less than half a minute
with MATLAB. To obtain the results in Figure 10a, we spend more than 7 days with COMSOL while
only about 6 h is needed with MATLAB.

3.2. Derivation and Investigation of the Lumped Mass-Spring Model of DRG

The resonant frequency and mode shape obtained by the mathematical modeling can be applied
on the investigation of the DRG lumped mass-spring model, the frequency splitting theory, the DRG
performance analysis, and so on. Here, they are used for the investigation of the DRG lumped
mass-spring model. In the analysis of gyroscopes, the lumped mass-spring model is always used
instead of the distributed mass-spring model [3,11,12]. The mathematical model of the lumped
model parameters is derived and the effects on them with different DRG geometry parameters
are investigated.

The simplified motion equations of the DRG dynamic system can be expressed by [11,12]

me f f
..
q1 + me f f

ω0
Q

.
q1 + me f f ω0

2q1 = F0 sin(ω0t)
me f f

..
q2 + me f f

ω0
Q

.
q2 + me f f ω0

2q2 = 2γΩz
.
x

(67)

where, q1 and q2 are the generalized displacement of the two normalized n = 2 flexural modes of DRG,
which are separated by 45 degrees in Cartesian coordinates. meff is the effective mass, γ is the Coriolis
mass, ω0 is the angular resonant frequency, Ωz is the applied angular rate, and F0 is the amplitude
of the driving force. Q is proportional to the inverse of total energy dissipated. Many dissipation
mechanisms contribute to the total energy dissipation, such as thermoelastic dissipation (TED), anchor
loss, air damping, etc. [35]. Therefore it is difficult to mathematically model the Q factor of DRGs, and
this will be studied in our future work. In this study, the effects of the geometry parameters on the
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lumped mass-spring system parameters, including the effective mass, Coriolis mass, natural frequency,
and angular gain, are investigated.

In the in-plane vibration, the vibration motion in the polar coordinate is expressed as the sum
of the product of the generalized displacement (q1 and q2) and the corresponding normalized mode
shape parameters (φr1, φθ1, φr2, and φθ2):

U(θ, t) = φr1(θ)q1(t) + φr2(θ)q2(t), V(θ, t) = φθ1(θ)q1(t) + φθ2(θ)q2(t) (68)

Herein, modes 1 and 2 denote the n = 2 cosine and sine mode of DRG:[
φr1(θ)

φθ1(θ)

]
=

1
q1(t)

[
U1(θ, t)
V1(θ, t)

]
,

[
φr2(θ)

φθ2(θ)

]
=

1
q2(t)

[
U2(θ, t)
V2(θ, t)

]
(69)

In the mathematical modeling in Section 4, the generalized coordinates are corresponding to
the normal modes of each ring and spoke. The motion equations and generalized coordinates
corresponding to the normal modes are shown in Equations (56) and (65). So in order to get the
lumped mass-spring model, the generalized coordinates corresponding to the normal modes need to
be transferred to the generalized displacement corresponding to the normalized n = 2 flexural modes.
By combining Equations (65) and (68), we can obtain the normalized n = 2 flexural modes of each ring:

φr1_i(θ) =
ui
q1

=
1

max
(√

u2 + v2
)ψ(θ)pr

i , φθ1_i(θ) =
ui
q1

=
1

max
(√

u2 + v2
)ϕ(θ)pr

i (70)

where the contribution of spokes is neglected in the lumped mass-spring model, the n = 2 sine mode
can be obtained by rotating the cosine mode for 45 degrees:

ψ2(θ) = ψ(θ + π/4) =
[
−2 sin 2θ 6 sin 6θ −10 sin 10θ

]
ϕ2(θ) = ϕ(θ + π/4) =

[
cos 2θ − cos 6θ cos 10θ

] (71)

And we can obtain that

φr2_i(θ) =
1

max
(√

u2 + v2
)ψ2(θ)p

r
i , φθ2_i(θ) =

1

max
(√

u2 + v2
)ϕ2(θ)pr

i (72)

The maximum displacement in the cosine mode q1 can be replaced by the radial displacement
amplitude of the point locates at 0 degree on the outermost ring. So the effective mass meff can be
calculated as [11,12]

me f f =
n
∑

i=1

∫ 2π
0 ρhbiri

(
φ2

r1_i + φ2
θ1_i

)
dθ =

n
∑

i=1

∫ 2π
0 ρhbiri

(
φ2

r2_i + φ2
θ2_i

)
dθ

= πρhbiri(
3
∑

j=1
(j2+1)pnj

)2

n
∑

i=1

3
∑

j=1
(j2 + 1)p2

ij
(73)

The Coriolis mass γ can be calculated as

γ =
t

V
ρh(φr1φθ2 − φr2φθ1)dV = ρhbiri

n
∑

i=1

3
∑

j=1

3
∑

s=1
pij pis

∫ 2π
0

(
ψj ϕ2s − ϕjψ2s

)
dθ

= 2π2ρhbiri(
3
∑

j=1
(j2+1)pnj

)2

n
∑

i=1

3
∑

j=1

[
(−1)j+1(4j− 2)

]
p2

ij
(74)
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The angular gain of DRG is defined as

Ag =
γ

2Me f f
=

π
n
∑

i=1

3
∑

j=1

[
(−1)j+1(4j− 2)

]
p2

ij

n
∑

i=1

3
∑

j=1
(j2 + 1)p2

ij

(75)

In the design of DRGs, the outer diameter of the DRG is always firstly confirmed based on the
requirement of the sensor’s size and then the other parameters are confirmed based on the preferred
performances. Here, the numerical solution and changing rules of the natural frequencies, effective
mass, Coriolis mass, and angular gain with different geometrical parameters are studied as shown
in Figure 14a–d. The outer diameter of the DRG is set at a constant 8 mm. The anchor radius, R0,
ring number, n, and the ring width, b, ranging from 0.5 mm to 2.5 mm, 7 to 40, and 2 µm to 20,
µm, respectively.
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From Figure 14a, it can be seen that for a DRG with a certain diameter, the natural frequency
is linear with relation to the ring width, while it has slight dependence on the other geometrical
parameters. From Figure 14b,c, it can be learnt that the effective mass and Coriolis mass of the DRG
are approximately linear with the ring width and the ring number. Figure 14d shows that the ring
width has no influence on the angular gain of the DRG and the angular gain will be stable about 0.396
when the ring number is 10 or more. The changing rules can be used in the design of the DRG.

4. Conclusions

This paper proposes a method based on component mode synthesis (CMS) technique to
mathematically model complex multiring DRGs for the first time. Firstly, the design model and
working principle of multiring DRGs are described and then the CMS technique is used to calculate
the natural frequencies and mode shapes of the DRGs. Comparison of natural frequencies and mode
shapes obtained by the mathematical modeling and FEA methods demonstrates the feasibility and
effectivity of the mathematical analysis method. At last, the natural frequencies and mode shapes
are used for calculation of the lumped mass-spring model of the DRG and the effects of geometrical
parameters on the lumped mass-spring parameters are investigated which is useful for the DRG
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design. As the mathematical model is theoretical in nature, it is unavoidable having differences with
the experimental results of the fabricated devices. To make the theoretical results more accurate, this
paper assumes that the geometrical parameters and material properties of the devices are identical
with that used in the theoretical model; meanwhile, the devices are well fabricated without any defects
and correctly tested. This mathematical modeling method can also be used on the analysis of other
modes of the DRG or other multiring-type resonators.

Author Contributions: Conceptualization, D.X.; Methodology, Q.L.; Software, X.Z.; Validation, Y.X.;
Formal Analysis, Q.L.; Investigation, X.Z.; Data Curation, Z.H.; Writing—Original Draft Preparation, Q.L.;
Writing—Review and Editing, D.X.; Visualization, M.Z.; Supervision, Project Administration, and Funding
Acquisition, X.W.

Funding: This research was funded by the National Natural Science Foundation of China, grant numbers 51335011
and 51575521.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Yazdi, N.; Ayazi, F.; Najafi, K. Micromachined inertial sensors. Proc. IEEE 1998, 86, 1640–1659. [CrossRef]
2. Xia, D.; Yu, C.; Kong, L. The Development of Micromachined Gyroscope Structure and Circuitry Technology.

Sensors 2014, 14, 1394–1473. [CrossRef] [PubMed]
3. Shkel, A.M. Type I and Type II Micromachined Vibratory Gyroscopes. In Proceedings of the 2006 IEEE/Ion

Position, Location and Navigation Symposium, Coronado, CA, USA, 25–27 April 2006; pp. 586–593.
4. Abdul-Wahed, A.M.; Mahmoud, M.A.E. A novel multiple-shell vibratory ring gyroscope. In Proceedings of

the 2015 Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP), Montpellier,
France, 27–30 April 2015; pp. 1–4.

5. Su, T.H.; Nitzan, S.H.; Taheri-Tehrani, P.; Kline, M.H.; Boser, B.E.; Horsley, D.A. Silicon MEMS Disk Resonator
Gyroscope with an Integrated CMOS Analog Front-End. IEEE Sens. J. 2014, 14, 3426–3432. [CrossRef]

6. Ahn, C.H.; Nitzan, S.; Ng, E.J.; Hong, V.A.; Yang, Y.; Kimbrell, T.; Horsley, D.A.; Kenny, T.W. Encapsulated
high frequency (235 kHz), high-Q (100 k) disk resonator gyroscope with electrostatic parametric pump.
Appl. Phys. Lett. 2014, 105, 243504. [CrossRef]

7. Taheri-Tehrani, P.; Izyumin, O.; Izyumin, I.; Ahn, C.H.; Ng, E.J.; Hong, V.A.; Yang, Y.; Kenny, T.W.;
Boser, B.E.; Horsley, D.A. Disk resonator gyroscope with whole-angle mode operation. In Proceedings of the
International Symposium on Inertial Sensors and Systems (ISISS), Hapuna Beach, HI, USA, 23–26 March
2015; pp. 1–4.

8. Ahn, C.H.; Ng, E.J.; Hong, V.A.; Yang, Y.; Lee, B.J.; Ward, M.W.; Kenny, T.W. Geometric compensation of (100)
single crystal silicon disk resonating gyroscope for mode-matching. In Proceedings of the 17th International
Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII),
Barcelona, Spain, 16–20 June 2013; pp. 1723–1726.

9. Zhou, X.; Li, Q.; Xiao, D.; Hou, Z.; Chen, Z.; Wu, Y.; Wu, X. The mechanical sensitivity optimization of a
disk resonator gyroscope with mutative ring thickness. In Proceedings of the International Symposium on
Inertial Sensors and Systems (ISISS), Laguna Beach, CA, USA, 22–25 February 2016; pp. 54–57.

10. Challoner, A.D.; Ge, H.H.; Liu, J.Y. Boeing Disc Resonator Gyroscope. In Proceedings of the 2014 IEEE/ION
Position, Location and Navigation Symposium (PLANS), Monterey, CA, USA, 5–8 May 2014; pp. 504–514.

11. Cho, J.Y. High-Performance Micromachined Vibratory Rate- and Rate-Integrating Gyroscopes. Ph.D. Thesis,
University of Michigan, Ann Arbor, MI, USA, 2012.

12. Putty, M.W. A Micromachined Vibrating Ring Gyroscope. Ph.D. Thesis, University of Michigan, Ann Arbor,
MI, USA, 1995.

13. Zhou, X.; Wu, Y.; Xiao, D.; Hou, Z.; Li, Q.; Yu, D.; Wu, X. An investigation on the ring thickness distribution
of disk resonator gyroscope with high mechanical sensitivity. Int. J. Mech. Sci. 2016, 117, 174–181. [CrossRef]

14. Zhou, X.; Xiao, D.; Hou, Z.; Li, Q.; Wu, Y.; Wu, X. Influence of the Structure Parameters on Sensitivity and
Brownian Noise of the Disk Resonator Gyroscope. J. Microeletromech. Syst. 2017, 26, 519–527. [CrossRef]

15. Eley, R.; Fox, C.H.J.; McWilliam, S. Anisotropy Effects on the Vibration of Cirlular Rings Made from
Crystalline Silicon. J. Sound Vib. 1999, 228, 11–35. [CrossRef]

http://dx.doi.org/10.1109/5.704269
http://dx.doi.org/10.3390/s140101394
http://www.ncbi.nlm.nih.gov/pubmed/24424468
http://dx.doi.org/10.1109/JSEN.2014.2335735
http://dx.doi.org/10.1063/1.4904468
http://dx.doi.org/10.1016/j.ijmecsci.2016.08.020
http://dx.doi.org/10.1109/JMEMS.2017.2679726
http://dx.doi.org/10.1006/jsvi.1999.2404


Micromachines 2019, 10, 181 20 of 20

16. Chang, C.-O.; Chang, G.-E.; Chou, C.-S.; Chien, W.-T.C.; Chen, P.-C. In-plane free vibration of a single-crystal
silicon ring. Int. J. Solids Struct. 2008, 45, 6114–6132. [CrossRef]

17. Chang, C.O.; Chang, G.E.; Chou, C.S.; Shieh, F.H. Single-crystal silicon micro-ring gyros copes-attitude
sensors. In Proceedings of the 3rd International Conference on Recent Advances in Space Technologies,
Istanbul, Turkey, 14–16 June 2007; pp. 608–613.

18. Sheng, W.; Wei, X.M. A new calculation of potential energy of supporting springs and the application in
design of vibrating ring gyroscope. Aerosp. Sci. Technol. 2011, 15, 409–415. [CrossRef]

19. Yoon, S.W.; Lee, S.; Najafi, K. Vibration sensitivity analysis of MEMS vibratory ring gyroscopes.
Sens. Actuators A Phys. 2011, 171, 163–177. [CrossRef]

20. Hurty, W.C. Dynamic analysis of structural systems using component modes. AIAA J. 1965, 3, 678–685.
[CrossRef]

21. MacNeal, R.H. Special Issue on Structural Dynamics A hybrid method of component mode synthesis.
Comput. Struct. 1971, 1, 581–601. [CrossRef]

22. Papadimitriou, C.; Papadioti, D.-C. Component mode synthesis techniques for finite element model updating.
Comput. Struct. 2013, 126, 15–28. [CrossRef]

23. Hinke, L.; Dohnal, F.; Mace, B.R.; Waters, T.P.; Ferguson, N.S. Component mode synthesis as a framework
for uncertainty analysis. J. Sound Vib. 2009, 324, 161–178. [CrossRef]

24. Bampton, M.C.C.; Craig, J.R.R. Coupling of substructures for dynamic analyses. AIAA J. 1968, 6, 1313–1319.
[CrossRef]

25. Bathe, K.-J.; Dong, J. Component mode synthesis with subspace iterations for controlled accuracy of
frequency and mode shape solutions. Comput. Struct. 2014, 139, 28–32. [CrossRef]

26. Seshu, P. Substructuring and Component Mode Synthesis. Shock Vib. 1997, 4, 199–210. [CrossRef]
27. Xiao, D.; Zhou, X.; Li, Q.; Hou, Z.; Xi, X.; Wu, Y.; Wu, X. Design of a Disk Resonator Gyroscope with High

Mechanical Sensitivity by Optimizing the Ring Thickness Distribution. J. Microelectromech. Syst. 2016, 25,
606–616. [CrossRef]

28. Ahn, C.H.; Ng, E.J.; Hong, V.A.; Yang, Y.; Lee, B.J.; Flader, I.; Kenny, T.W. Mode-Matching of
Wineglass Mode Disk Resonator Gyroscope in (100) Single Crystal Silicon, Microelectromechanical Systems.
J. Microelectromech. Syst. 2015, 24, 343–350. [CrossRef]

29. Ahn, C.H.; Ng, E.J.; Hong, V.A.; Huynh, J.; Wang, S.; Kenny, T.W. Characterization of Oxide-Coated
Polysilicon Disk Resonator Gyroscope Within a Wafer-Scale Encapsulation Process. J. Microelectromech. Syst.
2015, 24, 1687–1694. [CrossRef]

30. Craig, R.; Chang, C.J. Free-interface methods of substructure coupling for dynamic analysis. AIAA J. 1976,
14, 1633–1635. [CrossRef]

31. Ohayon, R.; Soize, C. Clarification about component mode synthesis methods for substructures with physical
flexible interfaces. Int. J. Aeronaut. Space Sci. 2014, 15, 113–122. [CrossRef]

32. Kim, W.; Chung, J. Free Non-linear Vibration of a Rotating Thin Ring with the In-plane and Out-of-plane
Motions. J. Sound Vib. 2002, 258, 167–178. [CrossRef]

33. Bashmal, S.; Bhat, R.; Rakheja, S. In-plane free vibration of circular annular disks. J. Sound Vib. 2009, 322,
216–226. [CrossRef]

34. Chidamparam, P.; Leissa, A.W. Vibrations of Planar Curved Beams, Rings, and Arches. Appl. Mech. Rev.
1993, 46, 467–483. [CrossRef]

35. Yang, J.; Ono, T.; Esashi, M. Energy dissipation in submicrometer thick single-crystal silicon cantilevers.
J. Microelectromech. Syst. 2002, 11, 775–783. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.ijsolstr.2008.07.033
http://dx.doi.org/10.1016/j.ast.2010.09.004
http://dx.doi.org/10.1016/j.sna.2011.08.010
http://dx.doi.org/10.2514/3.2947
http://dx.doi.org/10.1016/0045-7949(71)90031-9
http://dx.doi.org/10.1016/j.compstruc.2012.10.018
http://dx.doi.org/10.1016/j.jsv.2009.01.056
http://dx.doi.org/10.2514/3.4741
http://dx.doi.org/10.1016/j.compstruc.2014.03.003
http://dx.doi.org/10.1155/1997/147513
http://dx.doi.org/10.1109/JMEMS.2016.2558197
http://dx.doi.org/10.1109/JMEMS.2014.2330590
http://dx.doi.org/10.1109/JMEMS.2015.2478034
http://dx.doi.org/10.2514/3.7264
http://dx.doi.org/10.5139/IJASS.2014.15.2.113
http://dx.doi.org/10.1006/jsvi.2002.5104
http://dx.doi.org/10.1016/j.jsv.2008.11.024
http://dx.doi.org/10.1115/1.3120374
http://dx.doi.org/10.1109/JMEMS.2002.805208
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Design Model and Working Principle of the DRG 
	Component Mode Synthesis Technique 
	Mathematical Modeling of Free Vibrating DRGs 
	Substructures Partition 
	Mathematical Modeling of the Level-2 Substructures 
	Mathematical Modeling of the Level-1 Substructures 
	Mathematical Modeling of the Whole Sensing Structure 

	Mathematical Modeling of the Central-supported DRG 

	Results 
	Validation by Finite Element Analysis (FEA) 
	Derivation and Investigation of the Lumped Mass-Spring Model of DRG 

	Conclusions 
	References

