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Abstract: A micro piezoelectric precision drive system is proposed, which is advantageous due its
small size, large transmission ratio, and large output torque. The working principle of the proposed
piezoelectric precision drive system is presented, and the nonlinear dynamic model and equations of
the system are established. Using the Linz Ted-Poincaré and perturbation methods, the nonlinear
approximate solutions of the dynamic equations are calculated. The results indicate that the nonlinear
intensity of the drive system is inversely proportional to the number of meshing movable teeth. It
was also noted that the rotor is most affected by the nonlinear phenomenon. These results can be
utilized both to optimize the dimensions of the piezoelectric precision drive system and to reduce the
intensity of vibrations during operation.
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1. Introduction

With the development of science and technology, the precision transmission has been widely
utilized in society. At the same time, numerous novel transmissions such as the contactless air conveyor
system, magnetic coupling transmission, and piezoelectric drive system have been developed [1–4].
Among them, the piezoelectric drive system is attracting increasing attention from scholars.

The piezoelectric actuator has superior performances, such as a fast response, a large output force,
a small size, and no electromagnetic interference. As a result, it has been successfully used in the fields
of precision positioning, robot actuating, energy harvesting, and vibration reduction [5–8].

Numerous developments in piezoelectric driving have been achieved. Ozaki et al. [9] proposed
a bioinspired flapping-wing micro aerial vehicle with piezoelectric direct-driven actuation, and a
two-wing prototype with a wingspan of 114 mm was designed and fabricated. The total mass of
the aerial vehicle was 598 mg, and the maximum measured lift force was 6.52 mN at a driving
voltage of 100 V. Utilizing a piezoelectric bimorph, David et al. [10] developed an improved tactile
sensor. As the sensor can distinguish soft materials, it was used for brain tumor resection. Besides,
Zhang et al. [11] designed a finger joint based on a hybrid multi-degree of freedom (DOF) piezoelectric
ultrasonic motor. The stator of the piezoelectric motor consisted of a multi-layered piezoelectric
longitudinal vibrator and a sandwich bending vibrator, which could generate a high longitudinal
vibration velocity at a low input voltage. Through a testing experiment, a maximum torque of
23.5 mNm was obtained. Tajitsu [12] designed a piezoelectric poly-L-lactic acid fabric. The fabric
could feel people’s movement. Thus, it was used for controlling a humanoid robot. Moreover, a
novel piezoelectric-driven robot was proposed by Dharmawan et al. [13]. The robot consisted of
a piezoelectric unimorph actuator and a four-bar linkage. Driven by the piezoelectric force, two
four-bar linkages generated forward and backward movements. Fang et al. [14] proposed a precision
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position stage with a piezoelectric actuator. In addition, Zou et al. [15] developed an insect-scale
flapping-wing robot with a wingspan of 35 mm. The robot had piezoelectric actuators. Li [16]
proposed a novel piezoelectric-based unmanned underwater vehicle with the functions of piezoelectric
vibration reduction and piezoelectric energy harvesting.

Regarding the nonlinear dynamic characteristic of the piezoelectric system, numerous works
have also been conducted. Considering the inertial, geometric, and piezoelectric nonlinearities,
Abdelkefi et al. [17] presented a nonlinear calculating method for an energy harvester. Using the
Galerkin technique, Gauss law, and extended Hamilton principle, a reduced-order model of the
harvester was built. The effect of nonlinear piezoelectric coefficients on the system response was also
investigated. Moreover, Meesala et al. [18] developed a method of multiple scales as an approximate
solution, as well as amplitude and phase modulation equations, to capture the nonlinear behavior of an
energy harvester. With this method, the parameters of the nonlinear piezoelectric constitutive relations
were estimated. Takahashi et al. [19] studied the nonlinear behavior of the ferroelectric ceramic, which
excited at a resonant mode. It was found that an induced vibration stress had a greater effect on the
nonlinearity than an electric field. In addition, Ozaki et al. [20] studied nonlinear piezoelectric vibration
in resonant piezoelectric devices. The purpose of the study was to introduce a nonlinear parameter to
the finite elements method (FEM) and to establish a method for measuring the nonlinear parameter
by evaluating a nonlinear model for the piezoelectric vibration. The abovementioned studies have
focused on the nonlinear vibration of the piezoelectric material itself. However, the effects of the
piezoelectric nonlinear characteristic on the driving system have had fewer studies.

In this study, a micro piezoelectric precision drive system is proposed. The system integrates
piezoelectric driving and a movable tooth transmission, and it has the advantages of being small in
size, with a large transmission ratio, and a large output torque. Compared with the electromagnetic
drive, it has merits such as a compact structure, a fast response, electromagnetic interference resistance.
The nonlinear dynamic performance results in a drive system with a deteriorated load-carrying
capability. For the proposed piezoelectric precision drive system, the nonlinear free vibration of the
transmission part [21] and the nonlinear dynamics of the driving part under piezoelectric excitation [22]
are investigated. Meanwhile, using the numerical method, the chaotic vibrations of the driving part,
transmission part, and nonlinear axis force are analyzed separately [23–25]. In [24], the chaotic
vibration of a movable tooth system was a special nonlinear vibration, but emphasis was placed
on the chaotic characteristic and the influence of parameters on chaotic vibrations. However, the
nonlinear response characteristic of a movable tooth transmission under piezoelectric excitation was
not investigated. Unlike previous works, this new research mainly focuses on the nonlinear solution
process, the influence law of parameters on the frequency characteristic, and force vibration rules,
which are the different from the previous chaotic characteristics.

The aim of this study is to reveal the nonlinear vibration response law under the nonlinear
piezoelectric effect. Using the dynamic theory of a discrete system, the nonlinear dynamic model of a
robot-used piezoelectric precision drive system is built. With the Linz Ted-Poincaré and perturbation
methods, the approximate nonlinear dynamic responses are solved. Furthermore, the effects of the
system parameters on the nonlinear natural characteristic and dynamic responses are analyzed. These
results can be used to reduce the vibration of the proposed drive system.

2. Operating Principle of the Drive System

The operating principle of the proposed micro piezoelectric precision drive system is shown
in Figure 1. It consists of the following parts: Piezoelectric actuator (1), displacement magnifying
mechanism (2), swaying rod (3), rotor (4), central gear (5), movable tooth (6), harmonic generator (7)
and preload spring (8). The system is driven by two piezoelectric actuators, with dimensions of 5 mm
× 5 mm × 30 mm, which are installed at the lower shell, with a phase difference of 90◦.

In the initial state, the two piezoelectric actuators maintain the original length, the harmonic rod
contacts tightly with the movable teeth under the force of the preloaded spring, and the swaying rod
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sways toward the displacement magnifying mechanism - the random movable tooth located at the
A-site in Figure 1a.

When the proposed piezoelectric precision drive system works, sinusoidal signals with a 90◦

phase difference are applied to the two piezoelectric actuators. Then, the actuators are lengthened
in their axis direction. Driven by the deformation force, a harmonic wave is generated under the
displacement amplification of the swaying rod. The harmonic force of the harmonic generator pushes
the movable teeth slide along the central gear profile.

When the swaying rod sways to the 90◦ position, the movable tooth moves into the middle
position of the adjacent addendum and root (see Figure 1b) and then moves into the adjacent roots at
the 180◦ position (see Figure 1c). Similarly, the swaying rod sways to the 360◦ position and returns
to the initial position, the movable tooth moves into B-site of the adjacent addendum in Figure 1a,
and it accomplishes the ϕ angle movement of a period. Thus, driven by the continuous input signal,
a continuous rotation of the rotor can be generated.

Micromachines 2018, 9, x FOR PEER REVIEW  3 of 17 

 

swaying rod sways toward the displacement magnifying mechanism - the random movable tooth 
located at the A-site in Figure 1a. 

When the proposed piezoelectric precision drive system works, sinusoidal signals with a 90° 
phase difference are applied to the two piezoelectric actuators. Then, the actuators are lengthened 
in their axis direction. Driven by the deformation force, a harmonic wave is generated under the 
displacement amplification of the swaying rod. The harmonic force of the harmonic generator 
pushes the movable teeth slide along the central gear profile.  

When the swaying rod sways to the 90° position, the movable tooth moves into the middle 
position of the adjacent addendum and root (see Figure 1b) and then moves into the adjacent roots 
at the 180° position (see Figure 1c). Similarly, the swaying rod sways to the 360° position and 
returns to the initial position, the movable tooth moves into B-site of the adjacent addendum in 
Figure 1a, and it accomplishes the φ angle movement of a period. Thus, driven by the continuous 
input signal, a continuous rotation of the rotor can be generated. 

o
o

o
o

ooB

A

(b)

(d)

(c)

o o

1

2

3
4 5

6
7

8

(a)

10
8

Φ 68

 

Figure 1. Operating principle of the micro piezoelectric precision drive system. (a) Initial position 
and 360° position; (b) 90° position; (c) 180° position; (d) 270° position. 
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Figure 1. Operating principle of the micro piezoelectric precision drive system. (a) Initial position and
360◦ position; (b) 90◦ position; (c) 180◦ position; (d) 270◦ position.

3. Dynamic Models and Equations

The driving source of the proposed micro piezoelectric precision drive system is derived from the
two piezoelectric actuators. Thus, its exciting force is piezoelectric excitation. From the piezoelectric
equations [26], the output force of the piezoelectric actuator can be obtained. The forces of the
displacement amplification mechanism and the swaying rod are shown in Figure 2, where Fc is the
exciting force of the movable tooth system. From the force balance theorem, the force Fc can be
written as :

FC =
(Fpl1−MO)l5−kδkl3(l5+l6)

l3(l5+l6+l7)

=
[(2lpc33s33P+c33d33 ApUp)l1−2lp MO]l5−2lpkδkl3(l5+l6)

l3(l5+l6+l7)

, (1)

where c33, d33, and s33 are elasticity modulus, elastic flexibility factor, and piezoelectric strain constant
of the piezoelectric actuator, respectively; P is preload of piezoelectric actuator; lp and Ap are the per
piezoelectric pieces thickness and cross-sectional area of piezoelectric actuator, respectively; Up is the
exciting voltage, Up = Up−p[1+ sin(ωt)], Up−p is the peak-peak value of voltage, ω is the exciting
frequency; Mo is the torque of O point; li is the length of each part, here, l1 = 6 mm, l2 = 11 mm,
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l3 = 35 mm, l5 = 6 mm, l6 = 16 mm, l7 = 44 mm; k and δk are the stiffness and deformation of preloaded
spring, respectively.

Figure 3 shows the dynamic model of the drive system, where subscripts s, c, r and p represent
the harmonic rod, central gear, rotor and movable tooth, respectively. Variables xj, yj, uj represent
the x direction, y direction, and circumferential direction linear displacement, respectively. The
nonlinear dynamic equations were built in [24], and the modeling process is simplified in this report.
The nonlinear equations are used to analyze the nonlinear response characteristic. Substituting the
nonlinear meshing stiffness into the dynamic model, the nonlinear dynamic equation of the drive
system can be given as follows:

M
..
q + Kq = F + ∆F + ∆Fe, (2)

where M, K, and q are the mass matrix, stiffness matrix and generalized coordinate array, respectively.
F, ∆F, and ∆Fe are the outer force array, nonlinear meshing force increment array and exciting meshing
force array, respectively (here, the force comes from the piezoelectric actuator).
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The regularization dynamic equation can be written as:

∆
..
qN + KN∆qN = ∆FN + ∆FeN, (3)

where KN is regular stiffness matrix, ∆FN and ∆FeN are the regular meshing force array and regular
outer force array, respectively, and ∆FN = AT

N∆F = BkuiεPT
N, ∆qN is the regular coordinate array.

First, the nonlinear free vibration was investigated through the Linz Ted-Poincaré method. In this
condition, the outer force array was zero, that is ∆FeN = 0.
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Assuming a regular coordinate array ∆qN, natural frequency ωi can be expressed in the
following forms: {

∆qN = qN0 + εqN1 + ε2qN2 + . . .
ω2

i = ω2
0i
(
1 + εσ1 + ε2σ2 + . . .

) , (4)

Substituting Equation (9) into Equation (8), with ∆FeN = 0, the nonlinear dynamic equation can be
changed into a linear equation set as follows:

..
qN0 + ω2

0iqN0 = 0
..
qN1 + ω2

0iqN1 = −σ1
..
qN0 + PNBku0i

..
qN2 + ω2

0iqN2 = −σ1
..
qN1 − σ2

..
qN0 + σ1PNBku1i

. . . . . .

, (5)

Solving the above equation set with a zero initial condition, the solutions of the zero-order
equation, first-order equation and second-order equation can be expressed by:

qi
N0 = Ai

N0 cos(ω0it), (6)

q1
N1 = PN1Bk

(
A2

N1 A2
N0

cos ω02t−cos ω01t
ω2

01−ω2
02

+ A3
N0 A3

N1
cos ω03t−cos ω01t

ω2
01−ω2

03

)
q2

N1 = PN2Bk

(
A1

N0 A1
N1

cos ω02t−cos ω01t
ω2

01−ω2
02

+ A3
N0 A3

N1
cos ω03t−cos ω02t

ω2
03−ω2

02

)
q3

N1 = PN3Bk

(
A1

N0 A1
N1

cos ω03t−cos ω01t
ω2

01−ω2
03

+ A2
N0 A2

N1
cos ω03t−cos ω02t

ω2
02−ω2

03

) , (7)



q1
N2 =

P2
N1B3

k A1
N1(cos ω02t−cos ω01t)

ω2
02−ω2

01

(
PN2 A1

N0 A1
N1 A2

N1
ω2

02−ω2
01

+
PN2 A3

N0 A2
N1 A3

N1
ω2

02−ω2
03

+
PN3 A2

N0 A2
N1 A3

N1
ω2

02−ω2
03

)
+

P2
N1B3

k A1
N1(cos ω03t−cos ω01t)

ω2
03−ω2

01

(
PN2 A3

N0 A2
N1 A3

N1
ω2

03−ω2
02

+
PN3 A1

N0 A1
N1 A3

N1
ω2

03−ω2
01

+
PN3 A2

N0 A2
N1 A3

N1
ω2

03−ω2
02

)
q2

N2 =
P2

N2B3
k A2

N1(cos ω02t−cos ω01t)
ω2

02−ω2
01

(
PN1 A2

N0 A2
N1 A1

N1
ω2

01−ω2
02

+
PN1 A3

N0 A1
N1 A3

N1
ω2

01−ω2
03

+
PN3 A1

N0 A1
N1 A3

N1
ω2

02−ω2
03

)
+

P2
N2B3

k A2
N1(cos ω03t−cos ω02t)

ω2
03−ω2

02

(
PN1 A3

N0 A1
N1 A3

N1
ω2

03−ω2
01

+
PN3 A1

N0 A1
N1 A3

N1
ω2

03−ω2
02

+
PN3 A2

N0 A2
N1 A3

N1
ω2

03−ω2
02

)
q3

N2 =
P2

N3B3
k A3

N1(cos ω02t−cos ω03t)
ω2

02−ω2
03

(
PN1 A2

N0 A2
N1 A1

N1
ω2

02−ω2
01

+
PN3 A1

N0 A1
N1 A2

N1
ω2

02−ω2
01

+
PN3 A3

N0 A2
N1 A3

N1
ω2

02−ω2
03

)
+

P2
N1B3

k A3
N1(cos ω01t−cos ω03t)

ω2
01−ω2

03

(
PN1 A3

N0 A2
N1 A1

N1
ω2

01−ω2
02

+
PN1 A3

N0 A1
N1 A3

N1
ω2

01−ω2
03

+
PN3 A1

N0 A2
N1 A1

N1
ω2

01−ω2
02

)

, (8)

From qi
N0, qi

N1 and qi
N2, the response displacement can be written as:

q = AN

(
qN0i + εqN1i + ε2qN2i

)
, (9)

From the first-order equation and second-order equation, to eliminate the secular term, σi
1 can

be achieved:

σi
1 = −

Ai
N1PNiBk

ω2
0i

, (10)
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σ1
2 =

PN1Bk A1
N1

ω2
01 A1

N0

[(
P2

N1B2
k A1

N1
ω2

01
− PN1Bk

)(
A2

N0 A2
N1

ω2
01−ω2

02
+

A3
N0 A3

N1
ω2

01−ω2
03

)
+

PN1B2
k A1

N0 A1
N1

ω2
01

(
PN2

ω2
01−ω2

02
+ PN3

ω2
01−ω2

03

)]
σ2

2 =
PN2Bk A2

N1
ω2

2 A2
N0

[(
P2

N2B2
k A2

N1
ω2

02
− PN2Bk

)(
A1

N0 A1
N1

ω2
02−ω2

01
+

A3
N0 A3

N1
ω2

02−ω2
03

)
+

PN2B2
k A2

N0 A2
N1

ω2
02

(
PN1

ω2
02−ω2

01
+ PN3

ω2
02−ω2

03

)]
σ3
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N1
ω2

03 A3
N0

[(
P2

N3B2
k A3

N1
ω2

03
− PN3Bk

)(
A1

N0 A1
N1

ω2
03−ω2

01
+

A2
N0 A2

N1
ω2

03−ω2
02

)
+

PN3B2
k A3

N0 A3
N1

ω2
03

(
PN1

ω2
03−ω2

01
+ PN2

ω2
03−ω2

02

)]

, (11)

Thus, the nonlinear natural frequency can be written in the following form:

ω2
i = ω2

0i

(
1 + εσ1 + ε2σ2

)
, (12)

In Equation (3), when ∆FeN is not a zero value, the equation changes into a nonlinear forced
vibration equation. Using the perturbation method, the nonlinear forced vibration equation can be
solved. Firstly, transfer Equation (3) into a linear equation set as follows:

..
qN0 + ω2

0iqN0 = 0
..
qN1 + ω2

0iqN1 = −σ1
..
qN0 + PNBku0i + Ck cos(ωet)PeN

..
qN2 + ω2

0iqN2 = −σ1
..
qN1 − σ2

..
qN0 + σ1PNBu1i + Ckσ1 cos(ωet)PeN

. . . . . .

, (13)

where Ck is constant parameter.
Solving the above linear equation set, the solution can be given as:

qi
N0 = Ai

N0 cos(ω0it), (14)

q1
N1 = PN1Bk

(
A2

N1 A2
N0

cos ω02t−cos ω01t
ω2

01−ω2
02

+ A3
N0 A3

N1
cos ω03t−cos ω01t

ω2
01−ω2

03

)
+

Ck PeN1ω2
01(cos ωet−cos ω01t)

ω2
01−ω2

e

q2
N1 = PN2Bk

(
A1

N0 A1
N1

cos ω02t−cos ω01t
ω2

01−ω2
02

+ A3
N0 A3

N1
cos ω03t−cos ω02t

ω2
03−ω2

02

)
+

Ck PeN2ω2
02(cos ωet−cos ω02t)

ω2
02−ω2

e

q3
N1 = PN3Bk

(
A1

N0 A1
N1

cos ω03t−cos ω01t
ω2

01−ω2
03

+ A2
N0 A2

N1
cos ω03t−cos ω02t

ω2
02−ω2

03

)
+

Ck PeN3ω2
03(cos ωet−cos ω03t)

ω2
03−ω2

e

, (15)
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q1
N2 =

PN1B2
k A2

N1(cos ω02t−cos ω01t)
ω2

02−ω2
01

[
PN2 A1

N0 A1
N1

ω2
02−ω2

01
+

(PN2 A3
N0+PN3 A2

N0)A3
N1

ω2
02−ω2

03

]
+

[
PN3 A1

N0 A1
N1

ω2
03−ω2

01
+

(PN2 A3
N0+PN3 A2

N0)A2
N1

ω2
03−ω2

02

]
PN1B2

k A3
N1(cos ω03t−cos ω01t)

ω2
03−ω2

01
+ PN1Bk PeN2Ck(cos ω02t−cos ω01t)

(ω2
01−ω2

02)(ω2
02−ω2

e )
+

PN1Bk PeN3Ck(cos ω03t−cos ω01t)
(ω2

03−ω2
01)(ω2

e −ω2
03)

+

(
PeN1 +

PN1Bk PeN1
ω2

02−ω2
e

+ PN1Bk PeN3
ω2

03−ω2
e

)
Ck(cos ωet−cos ω01t)

ω2
01−ω2

e
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N2 =
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+
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+
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N1
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03−ω2
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]
PN2B2

k A3
N1(cos ω03t−cos ω02t)
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(ω2
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02)(ω2
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e )
+
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(ω2
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+
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PeN2 +
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e
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e
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03
+
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N0)A1
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]
+

[
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N0 A3
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03
+

(PN1 A2
N0+PN3 A1

N0)A2
N1
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03

]
PN3B2

k A1
N1(cos ω03t−cos ω01t)

ω2
03−ω2

01
+ PN3Bk PeN2Ck(cos ω03t−cos ω02t)

(ω2
02−ω2

03)(ω2
02−ω2

e )
+

PN3Bk PeN1Ck(cos ω03t−cos ω01t)
(ω2

01−ω2
03)(ω2

e −ω2
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+

(
PeN3 +

PN3Bk PeN1
ω2

01−ω2
e

+ PN3Bk PeN2
ω2

02−ω2
e

)
Ck(cos ωet−cos ω03t)

ω2
03−ω2

e

, (16)

Substituting Equations (14)–(16) into Equation (9), the displacement of nonlinear forced vibration
can be acquired.

4. Results and Discuss

4.1. Nonlinear Free Vibration Analysis

Table 1 presents the system parameters of the drive system. By substituting the parameters into
the frequency equation, Equation (12), the nonlinear natural frequencies of the proposed piezoelectric
precision drive system were found (see Table 2). Meanwhile, by selecting the harmonic offset a, movable
tooth radius rp, and harmonic plate radius rs as research parameters, the effect of the parameters on
nonlinear natural frequencies was investigated, as presented in Figure 4. In Table 2 and Figure 4, ωi
and ∆ωi represent nonlinear natural frequencies and the frequency difference between nonlinear and
linear frequencies. From Table 2 and Figure 4, it can be observed that:

(1) Under the influence of the nonlinear effect, the first-order and second-order frequencies are
larger than their linear natural frequencies, whereas the third-order frequency is smaller than its linear
natural frequency. As the frequency order increases, the frequency difference between the nonlinear
and linear frequencies grows. When the number of meshing movable teeth is 16, the frequency
difference is less than that with 15 meshing teeth. Hence, the less meshing teeth there are, the stronger
the nonlinear phenomenon.

(2) As the harmonic offset a grows, the nonlinear frequency of each order increases. This is because
the meshing forces between the movable tooth and each element become larger with an increase in
a, resulting in growth of their meshing stiffness. For the first-order and second-order conditions, the
frequency difference ∆ωi increases when a increases, while it decreases for the third-order condition.
Thus, the nonlinear phenomenon of the first-order and second-order frequencies strengthens with the
increase of harmonic offset a.

(3) The variation rules of nonlinear frequencies ωi and frequency difference ∆ωi are similar to
the change in movable tooth radius rp and harmonic plate radius rs. As rp and rs grow, the nonlinear
frequencies decrease, and the reason for this lies in the decreasing meshing stiffness. The frequency
differences of the first-order and second-order conditions are reduced with the increase in rp and
rs, while the value is increased for the third-order condition. Hence, the nonlinear intensities of the
first-order and second-order conditions are directly proportional to changes in rp and rs, while that of
the third-order condition is inversely proportional.
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Figure 4. Effect of the parameters on nonlinear natural frequencies. (a) Harmonic offset a change;
(b) movable tooth radius rp changes; (c) harmonic plate radius rs.

The influence of parameters on nonlinear free vibration responses was also investigated. For
this purpose, the parameters of the number of meshing movable teeth f, harmonic offset a, movable
tooth radius rp, and harmonic plate radius rs were selected to be investigated. The acquired results
are shown in Figures 5–8. In the figures, ∆us, ∆uc, and ∆ur represent the torsional responses of the
harmonic rod, central gear, and rotor. In Figures 5–8, it can be observed that:

(1) The number of meshing movable teeth f has an important influence on the nonlinear
displacement responses of the novel drive system. When the number of meshing movable teeth
f changes from 16 to 15, the amplitude of ∆us reduces by a third, whereas the values of ∆uc and ∆ur

increase 5- and 6-fold. Hence, with less meshing movable teeth, the nonlinear torsional vibration of the
harmonic rod weakens, and the nonlinear torsional vibration of the central gear and rotor increases.

(2) As the parameter a increases, the amplitude of ∆us increases, while that of ∆uc and ∆ur

decreases. Thus, the nonlinear vibration of the harmonic rod enhances as a increases, and those of the
central gear and rotor weaken. From the large variation of ∆uc and ∆ur, the influence of the nonlinear
effect on the central gear and rotor is larger than that of the harmonic rod.
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(3) The effect laws of movable tooth radius rp and harmonic plate radius rs on the displacement
response are similar. As rp and rs increase, the amplitude of ∆us decreases, the amplitude of ∆uc firstly
increases and then decreases, and that of ∆uc firstly decreases and then increases. In addition, the
range of ∆us is smaller to that of ∆uc and ∆ur.

In summary, under all conditions, the effect of the number of meshing movable teeth f on the
displacement response is the most obvious. Further, for the nonlinear torsional vibration of each
element, the rotor is most affected by the nonlinear phenomenon.

Table 1. Parameters of the drive system.

Parameters Rotor Central Gear Harmonic Rod Movable Tooth

mj (Kg) 1.31 × 10−2 5.64 × 10−2 2.59 × 10−2 3.30 × 10−5

Ij (Kg) 9.34 × 10−3 8.41 × 10−2 1.30 × 10−2 1.32 × 10−5

rj (mm) 31.6 33.2 29 2

Table 2. Nonlinear natural frequencies of the drive system.

Number of
Meshing Teeth

Frequencies
(rad/s) ω01 ω02 ω03

16

ω0i 347,066 233,801 230,295
ωi 349,023 249,219 191,179

∆ωi 1957 15,418 39,116
∆ωi/ω0i × 100 0.56 6.59 16.99

15

ω0i 346,874 235,535 229,473
ωi 336,116 269,738 168,614

∆ωi 10,758 34,202 60,858
∆ωi/ω0i × 100 3.10 14.52 26.52
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Figure 5. Effect of the meshing movable teeth f on nonlinear free vibration responses. (a) ∆us response;
(b) ∆uc response; (c) ∆ur response.
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Figure 6. Effect of the harmonic offset a on nonlinear free vibration responses. (a) ∆us response; (b) ∆uc

response; (c) ∆ur response.
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Figure 7. Effect of the movable tooth radius rp on nonlinear free vibration responses. (a) ∆us response;
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(b) ∆uc response; (c) ∆ur response.

4.2. Nonlinear Forced Vibration Analysis

From Equations (14)–(16) and Equation (9), the nonlinear forced vibration responses of the
proposed drive system can be determined. When the outer exciting frequency (ωe = 1000 rad/s) was
far from the resonance frequency, this effected the displacement responses of the drive system, as
shown in Figure 9. When the outer exciting frequency was close to the first-order resonance frequency,
this effected the close resonance responses, which are presented in Figure 10. From Figures 9 and 10, it
is known that:

(1) When the outer exciting frequency is far from the resonance frequency, the amplitude of each
element is quite small.

(2) The translational vibration displacements of the harmonic rod and movable teeth are larger
than those of other elements. In addition, these characteristics are consistent with the motion feature
of the proposed piezoelectric precision drive system. When the drive system operates, the swaying
movement of harmonic rod occurs. Then, the harmonic forces push the movable teeth to generate
two-dimensional motion.

(3) When the outer exciting frequency is close to the resonance frequency, the response amplitudes
in the xs and ys directions are obviously larger than that far from the resonance frequency. At this point,
resonances in the xs and ys directions occur, and the resonance in the xs direction is much more severe.
Hence, the vibration mode is translational vibration of the harmonic rod for the first-order resonance.



Micromachines 2019, 10, 159 11 of 16Micromachines 2018, 9, x FOR PEER REVIEW  12 of 17 

 

  

(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

0 1 2 3 4 5
x 10-4

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

t/s

Δx
s/m

m

0 1 2 3 4 5
x 10-4

-0.04

-0.02

0

0.02

0.04

t/s

Δy
s/m

m

0 1 2 3 4 5
x 10-4

-3

-2

-1

0

1

2

3 x 10-4

t/s

Δu
s/m

m

0 1 2 3 4 5
x 10-4

-4

-2

0

2

4 x 10-3

t/s

Δx
c/m

m

0 1 2 3 4 5
x 10-4

-8

-4

0

4

8 x 10-3

t/s

Δy
c/m

m

0 1 2 3 4 5
x 10-4

-6

-4

-2

0

2

4

6 x 10-3

t/s

Δu
c/m

m

0 1 2 3 4 5
x 10-4

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

t/s

Δx
r/m

m

0 1 2 3 4 5
x 10-4

-0.01

-0.005

0

0.005

0.01

t/s

Δy
r/m

m

Figure 9. Cont.



Micromachines 2019, 10, 159 12 of 16
Micromachines 2018, 9, x FOR PEER REVIEW  13 of 17 

 

  
(i) (j) 

 
(k) 

Figure 9. Displacement responses of the drive system far from resonance. (a) Δxs response; (b) Δys 
response; (c) Δus response; (d) Δxc response; (e) Δyc response; (f) Δuc response; (g) Δxr response; (h) 
Δyr response; (i) Δur response; (j) Δxp1 response; (k) Δyp1 response. 

  

(a) (b) 

  
(c) (d) 

0 1 2 3 4 5
x 10-4

-0.01

-0.005

0

0.005

0.01

t/s

Δu
r/m

m

0 1 2 3 4 5
x 10-5

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

t/s

Δx
p1

/m
m

0 1 2 3 4 5
x 10-5

-0.06

-0.03

0

0.03

0.06

t/s

Δy
p1

/m
m

0 1 2 3
x 10-3

-4

-2

0

2

4

t/s

Δx
s/m

m

0 1 2 3
x 10-3

-0.4

-0.2

0

0.2

0.4

t/s

Δy
s/m

m

0 1 2 3
x 10-3

-1.5

-1

-0.5

0

0.5

1 x 10-3

t/s

Δu
s/m

m

0 1 2 3
x 10-3

-0.1

-0.05

0

0.05

0.1

t/s

Δx
c/m

m

Figure 9. Displacement responses of the drive system far from resonance. (a) ∆xs response; (b) ∆ys

response; (c) ∆us response; (d) ∆xc response; (e) ∆yc response; (f) ∆uc response; (g) ∆xr response;
(h) ∆yr response; (i) ∆ur response; (j) ∆xp1 response; (k) ∆yp1 response.
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4.3. Simulation Verification Analysis

To verify the correctness of the theoretical model, a finite element method (FEM) software, ANSYS,
was used to simulate the nonlinear frequencies of the system. When building the 3D model, the number
of meshing movable teeth was set to 16. The FEM model and first-order vibration mode are shown in
Figure 11. The theoretical and simulated nonlinear natural frequencies are presented in Table 3.
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(b) first-order vibration mode.

Table 3. Comparison of nonlinear frequency simulation results.

Order ω1 ω2 ω3

Theoretical value (rad/s) 349,023 249,219 191,179
Simulation value (rad/s) 362,690 254,236 190,217

Error (%) 3.92 2.01 0.50

The results show that the first-order and second-order simulated frequencies were larger than
their theoretical values, while the third-order simulation frequency was smaller than its theoretical
value. As the frequency order increased, the errors between the theoretical and simulated frequencies
were reduced. The largest error was less than 4%.

5. Conclusions

In this study, a micro piezoelectric precision drive system was proposed, and its operating
principle was presented. Considering the nonlinear effect of the change in the number of meshing
movable teeth, the nonlinear dynamic model and equations of the proposed drive system were
established. Using the Linz Ted-Poincaré and perturbation methods, the solutions of the nonlinear
responses were calculated. The results indicate that:

(1) The nonlinear intensity of the drive system is inversely proportional to the number of meshing
movable teeth.

(2) Regarding the nonlinear torsional vibration of each element, the rotor is most affected by the
nonlinear phenomenon.

(3) For the first-order resonance, translational vibration is obvious in the system.
These results can be used for optimizing the structure and improving the dynamic properties of

the proposed micro piezoelectric precision drive system.
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