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Abstract: The quantification of ascorbic acid (AA), dopamine (DA), and uric acid (UA) has been an
important area of research, as these molecules’ determination directly corresponds to the diagnosis
and control of diseases of nerve and brain physiology. In our research, graphene oxide (GO) with
nano pores deposited with gold nanoparticles were self-assembled to form three-dimensional (3D)
Au/holey-graphene oxide (Au/HGO) composite structures. The as-prepared 3DAu/HGO composite
structures were characterized for their structures by X-ray diffraction, Raman spectrum, scanning
electron microscopy, and transmission electron microscopy coupled with cyclic voltammograms.
Finally, the proposed 3DAu/HGO displayed high sensitivity, excellent electron transport properties,
and selectivity for the simultaneous electrochemical determination of AA, DA and UA with linear
response ranges of 1.0–500 µM, 0.01–50 µM and 0.05–50 µM respectively. This finding paves the way
for graphene applications as a biosensor for detecting three analytes in human serum.

Keywords: graphene; gold; electrochemical; ascorbic acid; dopamine; uric acid

1. Introduction

Ascorbic acid (AA), dopamine (DA), and uric acid (UA) are important molecules that exist in
human body fluids, and play an important role in the diagnosis and control of nerve and brain
diseases [1]. Their abnormal levels are usually a symptom of illnesses such as schizophrenia,
Parkinson’s, gout, scurvy, and cardiovascular diseases [2,3]. Moreover, their oxidation potentials
as common solid electrodes are close to each other, and it is therefore necessary to detect them
simultaneously in order to understand the mechanism for biomedical and diagnostic pathology.
A wide variety of analytical techniques, including fluorescence [4,5], chemiluminescence [6], and
electrochemistry [7] have been employed for the simultaneous determination of these biomolecules.
Among them, electrochemical biosensors based on a modified electrode with an interfacial structures
are widely considered the most effective solution to obtain well-separated peaks for their determination
because AA, DA, and UA are electroactive and easily oxidizable [8]. Many interfacial structures
with large areas and high electronic conductivities—especially carbon-based materials such as
mesoporous nitrogen/carbon [9], polymeric/multi-walled carbon nanotubes [1], graphene oxide/zinc
sulfide [9,10], graphene fibers [11], and carbon black [12]—have been investigated for their efficacy
in the simultaneous electrochemical determination of these biomolecules due to their remarkable
electrocatalytic properties. Among them, graphene composites such as vertically aligned ZnO
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nanowire arrays on three-dimensional (3D) graphene foam [13], 3D graphene hydrogel–gold
nanocomposite [14], graphene oxide-templated polyaniline microsheets [15], 3D hierarchical
bayberry-like Ni@carbon hollow nanosphere/rGO [16], porphyrin-modified graphene [17], graphene
and MgO nanobelts deposited tantalum wire [18], and ferrocene hybrid/3D graphene hydrogel [19]
display outstanding sensitivity and selectivity. New electrochemical sensors fabricated from graphene
composites with excellent conductivity and large areas still need to be developed for diagnostic and
analytical applications.

Three-dimensional graphene interfacial materials have been widely used as supporting materials
in electrochemical capacitors [20], fuel cells [21], solar cells [22], and energy-storage devices [23]
because they can enable fast electron transfer and rapid mass transport with large surface areas.
The introduction of pores into graphene can tune permeability by allowing certain molecules to pass
through [24]. Anchoring nanoscale noble metal particles onto specific supports is a wise strategy
for keeping their highly active centers from avoiding aggregation [25]. Three-dimensional graphene
interfacial structures serving as electrode materials are expected to show improved electron transfer and
mass transport during the electrochemical detection of small biomolecules. They have been prepared
by the fabrication of graphene or by chemical vapor deposition (CVD) approaches [26]. However,
the low-yield production of CVD-prepared 3D carbon interfacial structures and/or quite expensive
and/or unfriendly fabrication processes still hinders their wide application [27]. There is therefore
great interest and importance in developing a new approach to synthesizing 3D carbon structures.

Here, three-dimensional composite structures of gold nanoparticles with deposited graphene
oxide with nano pores were self-assembled with high conductivity and large active areas, and used
for the simultaneous electrochemical determination of AA, DA, and UA. A graphic illustration of
the fabrication and detection strategy is displayed in Scheme 1. Low detection limit, high sensitivity,
and good repeatability were all observed due to improved electron transfer and mass transport.
Additionally, the detection in serum obtained satisfactory recoveries, indicating the potential for
further practical application of this sensor. The graphene-based advanced structures open a new
avenue for electrochemical biosensors for use in new fields.Micromachines 2019, 10, x 4 of 13 
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Scheme 1. Schematic representation for the preparation of three-dimensional (3D) 

Au/holey-graphene oxide (Au/HGO)/glass carbon electrode (GCE) biosensor for simultaneous 

detection of ascorbic acid (AA), dopamine (DA), and uric acid (UA). PVP: polyvinyl pyrrolidone. 

Scheme 1. Schematic representation for the preparation of three-dimensional (3D) Au/holey-graphene
oxide (Au/HGO)/glass carbon electrode (GCE) biosensor for simultaneous detection of ascorbic acid
(AA), dopamine (DA), and uric acid (UA). PVP: polyvinyl pyrrolidone.
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2. Materials and Methods

2.1. Regents and Apparatus

Graphite powder was prepared in our lab and ultra-sonicated to 0.1 mg·mL−1. Ascorbic acid (AA)
was obtained from Tianjin Fengchuan Reagent Company (Tianjin, China). Dopamine was obtained
from Nanjing Oddfoni Biological Technology Company (Nanjing, China). Uric acid was obtained
from Sangon Biotech (Shanghai, China). All other reagents were of analytical grade and used as
received without further purification unless otherwise specified. Phosphate-buffer solutions (PBS)
were prepared by mixing solutions of NaH2PO4 and Na2HPO4 and then adjusted with 100 mM NaOH
or H3PO4. Human serum was from Luoyang Blood Center. All the solutions were prepared with
twice-distilled water.

The morphologies were characterized by field emission scanning electron microscope (SEM, JEOL
JSM-7800F, JEOL Ltd, Tokyo, Japan) and transmission electron microscope (TEM, JEOL JTM-2100, JEOL
Ltd, Tokyo, Japan). X-ray diffraction (XRD) measurements were conducted by D8 ADVANCE X-ray
diffractometer (Bruker AXS Ltd., karlsruhe, Germany). The Raman spectrum of graphene was recorded
on a Renishaw Raman microscope with an excitation laser wavelength at 532 nm. All electrochemical
measurements were performed on a CHI660E workstation (Chenhua Instruments, Shanghai, China)
with a three-electrode system. Three-dimensional Au/holey-graphene oxide (3DAu/HGO)/glass
carbon electrode (GCE) or Au/HGO/GCE was used as the working electrode. Solutions were degassed
with nitrogen to remove O2. Differential pulse voltammograms (DPVs) were recorded at 0.1 M PBS
(pH 7.0) at different concentrations of AA, DA, and UA. For the detection of real samples, a human
serum sample was diluted with 0.1 M PBS (pH 7.0) and then transferred to the electrochemical cell for
electrochemical determination.

2.2. Preparation of Holey Graphene Oxide (HGO)

HGO was synthesized according to previously reported procedure [28]. Typically, 5 mL of 30%
H2O2 aqueous solution was mixed with 50 mL 2 mg·mL−1 GO aqueous dispersion and then heated at
100 ◦C for 2 h under stirring. The as-prepared HGO was purified by centrifuging and washing with
pure water to remove the residual H2O2, and then re-dispersed in pure water for 10 mins to be a dark
solution of HGO dispersion (2 mg·mL−1).

2.3. Preparation of Polyvinyl Pyrrolidone (PVP)-Protected Au Colloids

Typically, 10 mL of 2.0 mM HAuCl4 solution, 30 mL of H2O, and 0.0889 g of polyvinyl pyrrolidone
(PVP, average molecular weight 40,000) was mixed homogeneously. Then, 2.4 mL of 0.1 M NaBH4

aqueous solution was quickly added to the above solution. The mixture was stirred for 5 h, and the
resulting solution of Au colloids protected by PVP was obtained [29].

2.4. Synthesis of Au/Holey Graphene Oxide (Au/HGO)

The precursors of Au were dissolved in deionized water to produce a corresponding solution
with a requisite concentration of 10 mM directly. First, 30 mg of HGO was dispersed in 60 mL of water
and ultra-sonicated to form a homogeneous aqueous solution. Added into the above HGO suspension
was 1.69 mL 10 mM Au precursor solution. The whole process was performed in an ice bath and
kept stirring for 30 min. After centrifugation at 12,000 rpm for 30 min and washing with deionized
water 3–4 times until the ion concentration of the supernatant was less than 10 ppm, Au/HGO was
obtained [25].

2.5. Preparation of PVP/Au/HGO

In a typical procedure, 80 mg of PVP was added into 100 mL of Au/HGO dispersion
(0.25 mg·mL−1), followed by stirring for 12 h. Thirty-five microliters of hydrazine solution (50% w/w)
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and 400 µL of ammonia solution (25% w/w) were then added to the resulting dispersion. After being
vigorously shaken or stirred for a few minutes, the mixture was stirred for 1 h at 95 ◦C. Finally, the
stable black dispersion was centrifuged two times and dissolved in 25 mL of water (1 mg·mL−1) [30].

2.6. Preparation of 3D Au/HGO Modified Glassy Carbon Electrode (3D Au/HGO/GCE)

A glass carbon electrode (GCE) was polished until mirror-like with 0.3 and 0.05 µm alumina
slurry (Beuhler) followed by sonicating in acetone, nitric acid solution (1:1, v/v), and pure water.
The electrode was dried at 4 ◦C for 24 h after 20 µL of 1.0 mg·mL−1 PVP/Au/HGO was dropped on
the surface for self-assembly to 3DAu/HGO/GCE for further electrochemical investigation.

3. Results

3.1. Characterization of 3DAu/HGO

Figure 1A,B shows the morphology of the as-prepared 3DAu/HGO, which was found to have
an obvious three-dimensional porous structure, with plates piling up to a flower-like shape with a
larger specific surface area (Figure S1 shows the role of PVP). The TEM of Figure 1C and the SEM of
Figure 1D display gold nanoparticles homogeneously decorated on the graphene sheets, with a size of
tens of nanometers. The influence of the concentration of Au precursor on the structures of Au/HGO
is shown in Figure S2. After increasing the concentration of Au precursor, HGO was decorated by
more and larger gold nanoparticles.

The structural characteristics of the as-prepared 3DAu/HGO composite structures were
investigated by X-ray diffraction (XRD), as shown in Figure 1E. The diffraction peaks observed
at 25.2◦ were ascribed to HGO. The diffraction peaks at 38.2◦, 44.3◦, and 64.5◦ corresponded to (111),
(200), and (220) crystal faces of the Au nanoparticles respectively. The characteristic peaks for Au
nanoparticles of 3DAu/HGO composite structures were much weaker, and could be ascribed to the
weight ratio of gold in the as-synthesized composite structures. They may have been relatively low, or
gold nanoparticles in the as-prepared Au/HGO composite structures could have been homogeneously
well-dispersed on the HGO surface [25].

Figure 1F shows the Raman spectra of 3DAu/HGO and HGO. The spectral features include a D
band at approximately 1349 cm−1 and G band at around 1576 cm−1. The D band is a characteristic
feature, indicating defects. It can be caused by excitation of the edges of graphene sheets and their
random orientation, which corresponds to the vibration of sp3 and sp2-hybridized carbon atoms.
Because the intensity of the G peak was somewhat stronger than that of the D peak, the 3DAu/HGO
had a much higher intensity ratio of D band to G band (D/G) in comparison with Au/HGO, which is
attributed to the increase in the spatially ordered crystal structure of graphene. This interconnected
porous structure enables fast electron transfer in electrochemical applications [26,31].
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Figure 1. (A) Low- and (B) high-magnification SEM images of as-prepared 3DAu/HGO. (C) TEM and
(D) SEM of Au/HGO. (E) X-ray diffraction (XRD) patterns and (F) Raman spectrum of 3DAu/HGO
and holey-graphene oxide (HGO). Arrows indicate gold nanoparticles.

3.2. 3DAu/HGO for the Electrochemical Determination of AA, DA, and UA

Figure 2A shows DPVs of Au/HGO/GCE and 3DAu/HGO/GCE in 0.1M PBS containing 400 µM
AA, 10 µM DA, and 15 µM UA. For the 3DAu/HGO/GCE, three well-separated anodic peaks
were observed at −0.276, 0.156, and 0.340 V, corresponding to the electro-oxidation of AA, DA,
and UA, respectively. The anodic peak potential differences were 0.432 V between AA and DA, 0.184V
between DA and UA, and 0.616 V between AA and UA. Moreover, the oxidation current densities
for these three biomolecules at 3DAu/HGO/GCE were much higher than those at Au/HGO/GCE.
The experiments confirmed that 3DAu/HGO/GCE possessed good electrocatalytic activity towards
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the oxidation of these molecules. The enhanced electrocatalytic activity of 3DAu/HGO/GCE could
probably be ascribed to the unique highly porous 3D structure of its large electrochemically active
surface area, which enabled the rapid and fast electron transport of analytes to the electrode surface
(as shown in Figure S1). Scheme 2 displays the mechanism of reactions between AA, DA, UA, and
3DAu/HGO/GCE. It can be seen from Scheme 2 that when the oxidation of hydroxyl groups of the
furan ring changed to carbonyl groups in AA, the oxidation of catechol changed to o-quinone in DA,
and the oxidation of bridging double-bond changed to hydroxyl groups in UA took place, anodic
peak responses could be observed by increases on the electrode. Furthermore, two protons and two
electrons were involved in the oxidation processes.

Micromachines 2019, 10, x 6 of 11 

 

Figure 1F shows the Raman spectra of 3DAu/HGO and HGO. The spectral features include a D 

band at approximately 1349 cm−1 and G band at around 1576 cm−1. The D band is a characteristic 

feature, indicating defects. It can be caused by excitation of the edges of graphene sheets and their 

random orientation, which corresponds to the vibration of Sp3 and Sp2-hybridized carbon atoms. 

Because the intensity of the G peak was somewhat stronger than that of the D peak, the 3DAu/HGO 

had a much higher intensity ratio of D band to G band (D/G) in comparison with Au/HGO, which is 

attributed to the increase in the spatially ordered crystal structure of graphene. This interconnected 

porous structure enables fast electron transfer in electrochemical applications [26,31]. 

3.2. 3DAu/HGO for the Electrochemical Determination of AA, DA, and UA 

Figure 2A shows DPVs of Au/HGO/GCE and 3DAu/HGO/GCE in 0.1M PBS containing 400 μM 

AA, 10 μM DA, and 15 μM UA. For the 3DAu/HGO/GCE, three well-separated anodic peaks were 

observed at −0.276, 0.156, and 0.340 V, corresponding to the electro-oxidation of AA, DA, and UA, 

respectively. The anodic peak potential differences were 0.432 V between AA and DA, 0.184V 

between DA and UA, and 0.616 V between AA and UA. Moreover, the oxidation current densities 

for these three biomolecules at 3DAu/HGO/GCE were much higher than those at Au/HGO/GCE. 

The experiments confirmed that 3DAu/HGO/GCE possessed good electrocatalytic activity towards 

the oxidation of these molecules. The enhanced electrocatalytic activity of 3DAu/HGO/GCE could 

probably be ascribed to the unique highly porous 3D structure of its large electrochemically active 

surface area, which enabled the rapid and fast electron transport of analytes to the electrode surface 

(as shown in Figure S1). Scheme 2 displays the mechanism of reactions between AA, DA, UA, and 

3DAu/HGO/GCE. It can be seen from Scheme 2 that when the oxidation of hydroxyl groups of the 

furan ring changed to carbonyl groups in AA, the oxidation of catechol changed to o-quinone in DA, 

and the oxidation of bridging double-bond changed to hydroxyl groups in UA took place, anodic 

peak responses could be observed by increases on the electrode. Furthermore, two protons and two 

electrons were involved in the oxidation processes. 

 

B 
A 

-0.2 0.0 0.2 0.4 0.6

0

40

80

UA

DA

AA

C
u
rr

e
n
t 
/μ

A

Potential / V

 3D Au/HGO/GCE

 Au/HGO/GCE

-0.4 -0.2 0.0 0.2 0.4 0.6

0

40

80

120

160

UA(0.05~50μM)

DA(0.01~50μM)

AA(1~500μM)

C
u
rr

e
n
t 
/ 
μ

A

Potential / V

0 100 200 300 400 500
0

10

20

30

40

c
u
rr

e
n
t 
/μ

A

c /μM

0 10 20 30 40 50
0

10

20

30

40

50
UA

C
u

rr
e

n
t/
μ

A

c /μM
0 10 20 30 40 50

20

40

60

80

100

120
DA

C
u
rr

e
n
t 
/ 
μ

A

c /μM

AA D C 

Figure 2. (A) Differential pulse voltammograms (DPVs) at Au/HGO/GCE and 3D Au/HGO/GCE
containing 400 µM AA, 10 µM DA, and 15 µM UA at a scan rate of 50 mV·s−1. (B) DPVs of 3D
Au/HGO/GCE for the simultaneous determination of AA, DA, and UA in 0.1 M phosphate-buffered
saline (PBS). Calibration curves of 3DAu/HGO/GCE for simultaneous determination of (C) AA,
(D) DA, and UA (inset of (C)). The points on calibration curves correspond to different concentrations
of AA, DA, and UA which are displayed in different colors in Figure 2B.
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Scheme 2. Electrochemical reaction mechanism for AA, DA, and UA on 3DAu/HGO electrode.

The simultaneous determination of AA, DA, and UA was carried out in PBS buffer solutions
(Figure 2B). The calibration curves were linear with the following concentration ranges: 1.0–500 µM
for AA, 0.01–50 µM for DA, and 0.05–50 µM for UA. The LODs (limit of detections) for AA, DA,
and UA were 0.1, 0.005, 0.01 µM, respectively. Figure 2C,D shows the calibration curves at increased
concentrations of AA, DA, and UA obtained on 3DAu/HGO/GCE. The individual detections of
AA, DA, and UA are shown in Figure 3A,C,E. The linearity range for AA, DA, and UA obtained in
the separated measurements, displayed in Figure 3B,D,F, was the same as that in the simultaneous
measurements. The LOD obtained in the separated measurements was comparable with that in
the simultaneous measurements, indicating that 3DAu/HGO/GCE had an excellent ability for the
simultaneous electrochemical determination of AA, DA, and UA. These results were compared with
other nanomaterial-modified electrodes in the literature, and the results are summarized in Table 1.
The 3DAu/HGO/GCE exhibited broader linear range and lower detection limit for AA, DA, and UA
than most of the electrodes listed below.

The relative standard deviations for three continuous measurements were 3.2%, 4.0%, and
2.9% for AA, DA, and UA, respectively, in 0.1 M PBS buffer solutions containing 400 µM AA,
10 µM DA, and 15 µM UA. In addition, the 3DAu/HGO/GCE showed no obvious current response
decay after being stored in 0.1 M PBS at 0 ◦C for two weeks, indicating the good stability of the
3DAu/HGO/GCE electrode.
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Figure 3. DPVs for 3DAu/HGO/GCE under increased concentrations of (A) AA, (C) DA, and (E) UA.
Calibration curves for (B) AA, (D) DA, and (F) UA. Electrochemical parameters were the same as in
Figure 2B.

Table 1. Comparison of different carbon-based materials for the simultaneous determination of AA,
DA, and UA.

Modified Electrode
Linear Range (µmol·L−1) Detection Limit (µmol·L−1)

Ref.
AA DA UA AA DA UA

Polymer/Multi-walled Carbon
Nanotubes 3.0–1500 10–600 2.0–60 1.65 2.01 0.46 [1]

Mesoporous Nitrogen/Carbon 1.0–700 0.001–30 0.01–80 0.01 0.001 0.01 [9]
Graphene Oxide/Zinc Sulfide 50–1000 1.0–500 1.0–500 30 0.5 0.4 [10]

Flexible Graphene Fibers 200–750 1.0–13 10–260 50 0.1 0.2 [11]
Carbon Black 1.02–20.2 0.9–18.6 0.79–11.7 0.008 0.117 0.138 [12]
3DAu/HGO 1.0–500 0.01–50 0.05–50 0.1 0.005 0.01 This work
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3.3. Real Sample Analysis

To examine the application of the 3DAu/HGO/GCE electrode, it was used for the detection
of AA, UA, and DA in human serum samples using the standard addition method. Each sample
was diluted five times with 0.1 M PBS (pH 7.0) before measurement. The satisfactory recoveries
obtained were between 94.7% and 106% for all the analytes (Table 2). These results confirmed that the
3DAu/HGO composite structures are a good material for the detection of small biomolecules with low
detection limits and high sensitivities. The 3DAu/HGO composite structures can meet real application
requirements in the linear range after simple dilution.

Table 2. Recovery of AA, DA, and UA in real samples (n = 5).

Samples
Added (µM·L−1) Found (µM·L−1) Recoveries (%)

AA DA UA AA DA UA AA DA UA

Serum 1 10.00 1.00 5.00 10.19 9.81 5.19 101.9 98.1 103.8
Serum 2 30.00 5.00 10.00 31.80 5.12 9.93 106.0 102.4 99.3
Serum 3 150.00 30.00 30.00 142.05 30.35 28.86 94.7 101.2 96.2

4. Conclusions

In this study, graphene oxide with nano pores was prepared via a convenient mild
defect-etching reaction, and then gold nanoparticles were deposited on it. The resulting gold
nanoparticle-deposited holey-graphene oxide was self-assembled on glass carbon electrodes thereafter
to form three-dimensional composite structures for sensing. Results showed high specific surface area
and high electrical conductivity in the simultaneous electrochemical detection of AA, DA, and UA.
Ultra-low detection limits and high sensitivity were obtained. In addition, the electrode successfully
detected human serum samples. This work demonstrates an electrode material that is superior for the
electrochemical detection of biomolecules in practical analysis.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-666X/10/2/84/s1,
Figure S1: 3D Au/HGO self-assembly by Au/HGO protected (a) with PVP and (b) without PVP; Figure S2: TEM
of Au/HGO Prepared with Different Concentrations of Au Precursor: (a) 5 mM, (b) 10 mM, and (c) 20 mM.
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