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Abstract: The aerodynamic lubrication performance of gas microbearing has a particularly critical
impact on the stability of the bearing-rotor system in micromachines. Based on the Duwensee’s slip
correction model and the fractal geometry theory, the interactive effects of gas rarefaction and surface
roughness on the static and dynamic characteristics were investigated under various operation
conditions and structure parameters. The modified Reynolds equation, which governs the gas
film pressure distribution in rough bearing, is solved by employing the partial derivative method.
The results show that high values of the eccentricity ratio and bearing number tend to increase the
principal stiffness coefficients significantly, and the fractal roughness surface considerably affects the
ultra-thin film damping characteristics compared to smooth surface bearing.

Keywords: gaseous rarefaction effects; fractal surface topography; modified Reynolds equation;
aerodynamic effect; bearing characteristics

1. Introduction

The microfluidic devices are widely used in many applications such as ultra-precision machine
tool spindles, inertial navigation system (INS), medical devices, and hard disk drives (HDDs) in
micro-electro-mechanical systems (MEMS). Since the development of microsystems engineering
technology, gas journal microbearing has been generally preferred over the electromagnetic bearing
and rolling bearing owing to its advantages of simple structure, high rotary accuracy, high running
speed, low friction power loss, and wide working temperature range [1–3]. The real surface of a
mechanical part produced by various machining and finish operations is composed of a large number
of distributed peaks and valleys. The lubricating film thickness between the surfaces of shaft and
bearing has continually decreased, which results in the increase of the roughness heights that are of
the same order of magnitude as the minimum clearance gap. Thus, the assumptions that the gas flow
is typically treated as a continuum flow with no slip boundary condition and the bearing surface
roughness is considered negligible in classical fluid mechanics have to be revised at microscales [4–7].
The interaction between rarefaction and surface roughness in microbearing can influence the reliability
and operational efficiency of micro rotating machinery obviously, so the gas journal microbearing
performance should be comprehensively analyzed.

In order to accurately predict the effects of surface roughness and rarefaction on the bearing
characteristics, many researchers devoted numerous research efforts to study the complicated flow
behaviors at very small clearances over the last few decades. In consideration of rarefaction effects in
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ultra-thin gas film lubrication, the Knudsen number Kn is utilized to describe the rarefied gas flow, which is
defined as the ratio of molecular mean free path λ0 to the characteristic length of gas film thickness.
Burgdorfer [8], Hsia et al. [9], and Mitsuya [10], based on the slip velocity boundary condition, derived
the classical first order, second order, and 1.5 order slip models in the slider/disk interface for HDDs to
take into account the effect of gas rarefaction. Fukui and Kaneko [11,12] developed a Poiseuille flow rate
database for a wide Knudsen number range to modify the compressible Reynolds type equation including
thermal creep flow and accommodation coefficient from linearized Boltzmann equation. In order to
account for the effect of surface roughness, Christensen and Tønder [13,14] presented a stochastic model
of hydrodynamic lubrication for finite width journal bearing in which they considered the lubricant film
thickness as a stochastic process. The operating characteristics of bearing was theoretically analyzed
with roughness pattern, nominal geometric features, and statistical properties by surface averaging
techniques. Via linear transformation of random matrices, the Gaussian or non-Gaussian distribution
of surface heights were generated by Patir [15] using the prescribed autocorrelation functions and
frequency density functions. Patir and Cheng [16] further derived the average Reynolds equation
suitable for various roughness structure and discussed the effect of roughness on mean hydrodynamic
pressure, mean viscous friction, and mean bearing inflow in finite slider bearings. The average flow
model of Patir and Cheng was extended by Tripp [17], in which the statistical expectation of flow
factors were calculated with a perturbation expansion of the film pressure. The results showed that
the flow factors are closely correlated with roughness parameters. White et al. [18] introduced the
transverse sinusoidal roughness pattern to study the influence of surface roughness on steady-state
pressure profiles of wedge bearing by variable grid implicit finite difference method and found that the
load capacity could be decreased to a limiting value at higher bearing numbers. For the applications of
perturbation technique and mapping function, Li et al. [19] studied the effects of roughness orientations
and rarefaction on static performance of magnetic recording systems. The results demonstrated
that the flow factors changed with the orientation angle and Peklenik number, and the effect of
moving surface on surface characteristics is more significant than that of the stationary surface.
Turaga et al. [20] proposed the stochastic finite method to solve Reynolds equation and obtained the
static and dynamic performance of hydrodynamic journal bearings with the longitudinal, transverse
and isotropic roughness pattern. Naduvinamani et al. [21] established the surface roughness by a
stochastic random variable with nonzero mean, variance and skewness, and the average Reynolds
equations were adopted to analyze the performance of porous step-slider bearings with Stokes couple
stress fluid. Zhang et al. [22,23] presented the modified Reynolds equation by including fractal
roughness effect and velocity slip boundary condition and concluded that the flow behaviors in
gas-lubricated journal microbearings was appreciably affected by Knudsen number, bearing number
and fractal dimension. The coupling effects of non-Newtonian micropolar fluids and roughness
on the dynamic characteristics of plane slider bearings were investigated by Lin et al. [24] on the
basis of the microcontinuum theory and Christensen stochastic roughness model. They indicated
that the transverse roughness serves to somewhat increase bearing dynamic property, whereas the
longitudinal roughness would tend to decrease the dynamic coefficients. Jao et al. [25] examined
the influences of surface roughness and anisotropic slips on hydrodynamic lubrication of journal
bearings. They described the lubricant flow in rough bearing surface by the product of flow factors
and flow in nominal film thickness, and also identified that boundary slip reduced the effect of
surface roughness. Kalavathi et al. [26] reported a generalized Reynolds equation for finite porous
slider bearing with both longitudinal and transverse roughness. The authors showed the surface
roughness enhanced the pressure distribution and load carrying capacity while the permeability
parameter diluted the load. Quiñonez [27] utilized the linear superposition of perturbation method
and Flourier transformation to provide a solution for the flow characteristics of wide exponential
land slider bearings with rough surfaces. The results were in good agreement with the cases of
sinusoidal and single Gaussian dent. The linear perturbation method was used by Wang et al. [28]
to solve the unsteady Reynolds equation for rough aerostatic journal bearings during the iterative
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process, and the dynamic performance was obtained by taking into account the interactions of journal
rotation and surface waviness. However, likely due to the nonlinear and complexity of dynamic
flow behavior, previous papers were mainly focusing on steady-state characteristics in rough journal
bearings, and the dynamic characteristics of hydrodynamic gas-lubricated microbearings were seldom
reported in the research literature. Moreover, the statistical parameters (such as root mean square of
asperity heights, surface slope, curvature, skewness, and kurtosis), which are conventionally applied to
characterize surface roughness, vary with the sampling length and resolution of measuring equipment.
A scale-invariant surface characterization should be considered. Hence, the analytical studies of
surface roughness effect on dynamic characteristics of gas slider bearings with rarefaction coefficients
in microfluidic engineering devices is motivated.

In this paper, the Weierstrass-Mandelbrot (W-M) fractal function is used to characterize the
homogeneous surface roughness, and the Boltzmann slip correction model is applied to represent
the rheological behavior of compressible rarefied gas film. The generalized Reynolds-type equation
considering gas rarefaction, as well as roughness effect, is mathematically derived and solved by
the partial derivative method and relaxation iteration algorithm. Bearing performances (including
the load-carrying capacity, friction coefficient and corresponding attitude angle, dynamic stiffness,
and damping coefficients) are presented and discussed in comparison with smooth surface bearings.
The work is expected to elucidate the performance characteristics of gas microbearings with Poiseuille
flow and random asperities, which is conducive to understand the fluid mechanisms of very low
clearance gas films for microfluidics devices.

2. Characterization of Fractal Rough Surface

The distribution of asperity heights on the bearing surface consisting of long narrow ridges
and valleys in engineering practice. A rough surface is a random system and the fractal geometry
is introduced to characterize the random and multiscale topographies. Mandelbrot [29] initially
developed the fractal theory by researching the coastal geomorphology in 1967. He found that the most
machined surfaces can be constructed using Weierstrass-Mandelbrot (W-M) function with randomness,
multiscale nature, self-similarity, and self-affine property. Unlike the traditional characterization
parameters of surface roughness, fractal roughness parameters are independent of scan lengths and
provide all the surface topography information of rough profiles. The W-M function that explicitly
expressed the homogeneous rough surface in self-acting gas-lubricated journal bearings is given by

hr(x, y) = L
(

G
L

)D f−2
·
√

Inγ
M ·

M
∑

m=1

nmax
∑

n=0
γ(D f−3)n×(

cos φm,n − cos
{

2πγn
√

x2+y2

L · cos
[
tan−1( y

x
)
− πm

M
]
+ φm,n

}) (1)

where hr(x,y) is the height of rough surface, x and y are the measure distances in the vertical and
horizontal position, respectively. L is the sampling length of the profile of surface. Df is the fractal
dimension, varying from 2 to 3 in three-dimensional surface topography. G is the scaling constant
that relates to the roughness profile. γ is the scaling parameter (γ > 1), which determines the spectral
density, γ is equal to 1.5 for a Gaussian and isotropic surface. M is the number of overlapped ridges on
the surface, m and n are the frequency index, nmax = int[log(L/Ls)/logγ], ϕm,n is the random phase, Ls

is the cut-off length that depends on cut-off wavelength of resolution in measuring machines.
The values of asperity heights can be changed by the fractal dimension Df, comparisons of the

distributions of asperity heights for different Df are illustrated in Figure 1. It is seen that the heights of
rough surfaces increase as the fractal dimension decreases.
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Figure 1. Simulation of a three-dimensional fractal surface topography for different fractal dimensions.
(a) Df = 2.2, and G = 1 × 10−10 m; (b) Df = 2.3, and G = 1 × 10−10 m; (c) Df = 2.4, and G = 1 × 10−10 m.

In the three-dimensional isotropic roughness type, the schematic presentation of rough gas
microbearing is plotted in Figure 2.
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Figure 2. Schematic of a rough-surface gas-lubricated journal microbearings.

3. Numerical Model and Solution Method

In the current analysis, rarefied gas flow between the surfaces of bearing and journal is treated
as isothermal, laminar flow with uniform viscosity. and elastic deformation of bearing surface is not
considered. The Boltzmann slip correction is used to model the gas rarefaction effect at the gas-solid
interface for arbitrary Knudsen numbers. The physical configuration of micro gas bearing with rough
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surface is shown in Figure 3. The modified Reynolds equation incorporating gas rarefaction and
surface roughness effects in non-dimensional form appears as

∂

∂ϕ

(
QPH3 ∂P

∂ϕ

)
+

∂

∂λ

(
QPH3 ∂P

∂λ

)
= Λ

∂(PH)

∂ϕ
+ 2Λ

∂(PH)

∂T
(2)

where P = p/pa, H = h/cb, ϕ = x/R, λ = z/R are the dimensionless gas film pressure, the dimensionless
gas film thickness, and the coordinates in the circumferential and axial direction, pa is the ambient
pressure, cb is the radius clearance, R is the radius of journal, p is the local gas pressure, h is the
clearance spacing of ultra-thin gas film, ε is the eccentricity ratio and ε = e/cb, e is the eccentricity.
Λ = 6µωR2/(pacb

2) is the gas bearing number, µ is the viscosity coefficient, ω is the rotating angular
velocity of journal, T is the dimensionless time.
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The attitude angle θ of the gas-lubricated journal microbearing is calculated by 

Figure 3. Geometrical configuration of the micro gas-lubricated journal bearing with rough surface.

For the slip correction factors in rarefied gas flows under ultra-low spacing, the dimensionless
Poiseuille flow rate between rotor and bearing surfaces with the gas thickness h is given as [30]

QP =

1
2µ

∂p
∂x h3

(
b · Dc + a

√
π

2D + 1
6

)
−h3

2µD ·
∂p
∂x

= b · Dc+1 +
a
√

π

2
+

D
6

(3)

The Poiseuille flow rate ratio Q appears as

Q =
QP

Qcontinuum
=

b · Dc+1 + a
√

π
2 + D

6
D
6

= 1 +
3a
√

π

D
+ 6b · Dc (4)

where the inverse Knudsen number D =
√

π
2Kn

, the three adjustable coefficients a = 0.01807, b = 1.35355
and c = −1.17468. The Boltzmann Poiseuille flow rate ratio [31] Q is expressed as

Q = 1 + 0.10842Kn + 9.3593/Kn
−1.17468 (5)
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Here the lubricant film thickness h is the sum of nominal smooth film thickness h0 and random
roughness hr measured from the nominal smooth height.

h = h0 + hr = cb(1 + ε cos ϕ) + L
(

G
L

)D f−2
·
√

Inγ
M ·

M
∑

m=1

nmax
∑

n=0
γ(D f−3)n×(

cos φm,n − cos
{

2πγn
√

x2+y2

L · cos
[
tan−1( y

x
)
− πm

M
]
+ φm,n

}) (6)

As in the steady state, the transient term ∂(PH)/∂T of Equation (2) can be ignored, the static
dimensionless modified Reynolds equation can be gained as

∂

∂ϕ

(
QPH3 ∂P

∂ϕ

)
+

∂

∂λ

(
QPH3 ∂P

∂λ

)
= Λ

∂(PH)

∂ϕ
(7)

In order to obtain the aerodynamic performance of gas microbearings, the modified Reynolds
equation for homogeneous surface roughness and gas rarefaction should be solved numerically.
Equation (2), governing the gas pressure distribution of the bearing, is a nonlinear two-dimensional
partial differential equation (PDE). It is difficult to get its analytical solution. So, the partial derivative
method [32,33], with a relaxation iteration algorithm, is employed to ensure a reasonable and efficient
solution. By introducing the mathematical transformation PH = S, (PH)2 = S2 = Π, Equation (2) can be
converted to the ellipse-type partial differential equation −∇ · (c∇u) + au = f in the following form:

−( ∂2Π
∂ϕ2 + ∂2Π

∂λ2 ) +
2Π
H ( ∂2 H

∂ϕ2 + ∂2 H
∂λ2 ) +

2Π
QH ( ∂Q

∂ϕ
∂H
∂ϕ + ∂Q

∂λ
∂H
∂λ ) =

− 1
H ( ∂H

∂ϕ
∂Π
∂ϕ + ∂H

∂λ
∂Π
∂λ ) +

1
Q ( ∂Q

∂ϕ
∂Π
∂ϕ + ∂Q

∂λ
∂Π
∂λ )−

2Λ
QH

∂S
∂ϕ −

4Λ
QH

∂S
∂T

(8)

The pressure boundary conditions for the Reynolds equation are:
P
∣∣∣ϕ,λ=± B

2R
= 1,

P
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ϕ=0,λ = P
∣∣
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(9)

where B is the bearing width.
The non-dimensional hydrodynamic gas film forces are obtained by integrating the film pressure

acting on the microbearing along the both horizontal and vertical directions.
Fx = paR2

∫ B
2R
− B

2R

∫ 2π
0 (P− 1) sin ϕdϕdλ

Fy = paR2
∫ B

2R
− B

2R

∫ 2π
0 (P− 1) cos ϕdϕdλ

(10)

The attitude angle θ of the gas-lubricated journal microbearing is calculated by

θ = arctan

(
Fx

Fy

)
(11)

The total non-dimensional load-carrying capacity is written as

CL =
W

paRB
=

R
B

∫ B
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− B
2R
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0
(P− 1) cos ϕdϕdλ (12)

The non-dimensional skin friction coefficient on the journal surface can be computed by

Fb = −
∫ B
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− B
2R

∫ 2π

0
(

Λ
6

1
H

+
H
2

∂P
∂ϕ

)dϕdλ (13)



Micromachines 2019, 10, 155 7 of 19

Suppose that the journal center whirls around its static equilibrium position with a small
amplitude periodic motion under the perturbation frequency ratio Ω, the linear perturbation method
is adopted for calculating the dynamic stiffness and damping coefficients. The steady-state position is
indicated as (ε0,θ0), and its dynamic disturbance about (ε0,θ0) are denoted as E and Θ. The positions of
eccentricity ratio ε and attitude angle θ of journal at a random position are represented by the static
and dynamic components as follows:{

ε = ε0 + E = ε0 + E0eiΩT

θ = θ0 + Θ = θ0 + Θ0eiΩT (14)

where E0 and Θ0 are the small perturbation amplitude of journal eccentricity ratio and attitude angle
in the complex field. The dimensionless perturbation frequency Ω, which is defined as the ratio of
journal disturbance frequency ν to rotating angular velocity ω of journal, i =

√
−1.

Thus, the non-dimensional gas-film pressure and gas-film thickness of the gas microbearing can
be expressed as {

P = P0 + Qgd = P0 + P̃0eiΩT

H = H0 + Hgd = H0 + H̃0eiΩT (15)

where H̃0 = E0 cos(ϕ− θ0) + ε0Θ0 sin(ϕ− θ0), P0 is the static gas-film pressure and H0 is the static
gas-film thickness. Qgd, Hgd are the dynamic gas film pressure and gas film thickness, respectively. P̃0

and H̃0 are the perturbation magnitudes in terms of complex numbers for dynamic gas film pressure
and gas film thickness.

Substituting Equation (15) into Equation (2), the generalized dynamic lubrication equation for
molecular model and surface roughness can be derived as:

∂
∂ϕ (QP0H0

3 ∂P̃0
∂ϕ ) + ∂

∂λ (QP0H0
3 ∂P̃0

∂λ ) + ∂
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(16)

As mentioned in Reference [34], some variables are defined by
PE = ∂P̃0

∂E0
,

Pθ = 1
ε0

∂P̃0
∂Θ0

,

HE = ∂H̃0
∂E0

,

Hθ = 1
ε0

∂H̃0
∂Θ0

(17)

After differentiating P̃0 and H̃0 in Equation (16) with respect to E0 and Θ0, and combining with
some mathematical transformation, the resulting dynamic PDE equations are obtained for rough
surface microbearings concerning the variables PE, Pθ , HE, and Hθ .
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HE = cos(ϕ− θ0) (19)
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∂
∂ϕ (QP0H0

3 ∂Pθ
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∂λ ) + ∂
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∂Q
∂Θ0

P̃0H0
3 ∂P0

∂ϕ )+
∂

∂λ (
∂Q
∂Θ0

P̃0H0
3 ∂P0

∂λ ) + 3QP0H0
3 ∂P0

∂ϕ
∂

∂ϕ (
Hθ
H0

) + 3QP0H0
3 ∂P0

∂λ
∂

∂λ (
Hθ
H0

)+

3 ∂
∂ϕ (

∂Q
∂Θ0

P0H0
2H̃0

∂P0
∂ϕ ) + 3 ∂

∂λ (
∂Q
∂Θ0

P0H0
2H̃0

∂P0
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H0

∂(P0 H0)
∂ϕ =

Λ ∂
∂ϕ (P0Hθ + Pθ H0) + i2ΛΩ(P0Hθ + Pθ H0)

(20)

Hθ = sin(ϕ− θ0) (21)

According to the coordinate system at the bearing midplane as illustrated in Figure 3,
by simultaneously solving the nonlinear Equations (18)–(21) using the partial derivative method
with iteration procedure, the dynamic stiffness coefficients Kij and dynamic damping coefficients Dij of
gas journal microbearing for fractal rough surface can be calculated by the following formula:

− R
B
s

A
PE cos ϕdϕdλ = Kyε + iΩDyε

R
B
s

A
PE sin ϕdϕdλ = Kxε + iΩDxε

− R
B
s

A
Pθ cos ϕdϕdλ = Kyθ + iΩDyθ

R
B
s

A
Pθ sin ϕdϕdλ = Kxθ + iΩDxθ

(22)

The dynamic coefficients in the Cartesian coordinate system are given by the transformation
matrix A. 

Kij =

(
Kxx Kxy

Kyx Kyy

)
= A

(
Kxε Kxθ

Kyε Kyθ

)

Dij =

(
Dxx Dxy

Dyx Dyy

)
= A

(
Dxε Dxθ

Dyε Dyθ

) , A =

(
− sin θ0 − cos θ0

cos θ0 − sin θ0

)
(23)

It was confirmed that the dynamic characteristics of the gas journal bearing can greatly affect
the critical speed, unbalance response, and instability threshold of a hydrodynamic gas-lubricated
bearing-rotor system after long-term research and practice. The comprehensive analysis of dynamic
coefficients is important in the design of gas microbearings in MEMS applications, the key findings
presented in the next section will reveal some insights into the ultra-thin gas film lubrication problems.

4. Results and Discussion

On the basis of fractal geometry theory and the Boltzmann slip correction factor, the combined
effects of gas rarefaction and surface roughness on the static and dynamic characteristics of ultra-thin
film gas lubrication in journal microbearings are investigated in detail. The pressure distribution, load
carrying capacity, friction coefficient and attitude angles of bearing, dynamic stiffness and damping
properties are analyzed concerning the fractal dimension and bearing geometric parameters in this
section, the primary design parameters shown in Figure 3 are R = 1mm, B = 200 µm, c = 1 µm,
pa = 1.033 × 105 N/m2, and the aspect ratio is B/D = 0.1.

4.1. Steady-State Film Pressure

To verify the correctness of the developed theoretical model and program code employed in this
paper, the non-dimensional pressure profile for the middle cross-section along the sliding direction
obtained by the current solution is compared with Zhang et al. in Reference [22]. As indicated in
Figure 4, the simulation results are in close agreement with the numerical predictions reported by
Zhang et al. for ε = 0.7, B/D = 0.075, c = 12 µm, ω = 5 × 105 rpm. It can also be seen that the pressure
randomly fluctuates when the effect of surface roughness is considered.
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Figure 4. Comparison of dimensionless gas film pressure with Zhang et al. [20].

The influence of bearing number Λ, eccentricity ratio ε, and surface roughness on pressure
distributions P is shown in Figure 5. An important observation exhibited by Figure 4a,b is that the
maximum gas film pressure becomes larger as Λ increases for fixed fractal parameters G and D.
This phenomenon can be explained by the enhanced aerodynamic effect, which indicates that higher
angular velocity of the journal dilutes the pressure diffusion. In Figure 4a,c, increasing the eccentricity
ratio ε leads to the higher pressure distribution and magnitude of pressure fluctuations decrease.
In comparison with the smooth surface case, the roughness effect increases the pressure profile for the
rough surface at the same bearing number and eccentricity ratio, and the random surface roughness
makes the pressure distribution across the entire lubricating film unpredictable. The contour plots
show more clearly the detail and variation of pressure over the rough bearing surfaces. At greater
bearing number Λ the influence of surface roughness decreases and the contour lines approach that
of the smooth case, the fluctuations of the pressure contour plots are significant with the increase of
fractal roughness in gas bearing.
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Figure 5. Pressure distributions and contour plots of the gas-lubricated microbearing for different
bearing numbers and eccentricity ratios: (a) ε = 0.6, Λ = 20, Df = 2.3, and G = 1 × 10−10 m, (b) ε = 0.6,
Λ = 60, Df = 2.3, and G = 1 × 10−10 m, (c) ε = 0.3, Λ = 20, Df = 2.3, and G = 1 × 10−10 m, and (d) ε = 0.6,
Λ = 20, smooth.

4.2. Load-Carry Capacity and Friction Coefficient

Figures 6 and 7 predict the variation of non-dimensional load carrying capacity and attitude angle
as a function of eccentricity ratio for five different values of fractal dimension (Df = 2.2, 2.25, 2.3, 2.35,
2.4). As the eccentricity ratio increases, which denotes the film thickness is thinner, the load capacity
increases monotonically. The higher self-affine fractal dimensions yield the smaller roughness heights
distribution on rough surfaces, and it is noted that the load carrying capacity is increased gradually
when compared with the smooth bearing. The reason is that the increasing values of roughness heights
reduces the sidewise leakage of airflow and the flow is restricted by the surface asperities. However,
as the fractal dimension decreases further for Df = 2.2, the load carrying capacity tends to decline under
this condition. This is because the minimum air film clearance between rotor and bearing may become
too small so that the surface roughness effect which increases the load-carrying capacity is weaker
than the gaseous rarefaction effects which reduces the dimensionless load capacity, thus causing a
decrease in the bearing load capacity. The attitude angle θ is found to decrease with the growing
eccentricity ratio. The decrease in attitude angle is more accentuated for a rougher surface as compared
to a nominally smooth surface.

The variation of friction coefficient with the eccentricity ratio for different values of fractal
dimension with fixed values of Λ = 20 and G = 1 × 10−11 is depicted in Figure 8. It can be seen
that friction coefficients monotonically increase as ε increases. Although the contact area between
the rarefied gas flow and the surface asperities is larger when the homogeneous surface roughness
becomes more and more obvious, the static friction coefficients show a slightly more gradual increase
with fractal dimension. As the fractal dimension Df is equal to 2.2, the friction coefficient is lower than
that of smooth surface for the same reason that the gaseous rarefaction effect is more pronounced and
thus friction coefficient drops.
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Figures 9 and 10 describe the effect of increasing bearing number on the load carrying capacity
and attitude angle with various fractal dimensions for ε = 0.6 and G = 1 × 10−10. It is found that
increasing the values of the bearing number from Λ = 3 up to Λ = 100 increases the carrying capacity
and reduces the corresponding attitude angle of gas journal microbearing. The surface roughness
effect in aerodynamic lubrication enhances the load capacity as compared with the smooth-bearing
case, especially for the bearing operating at high bearing number. Figure 11 shows the comparison
of the static friction coefficients with bearing number for different fractal dimensions. The friction
coefficients exhibit a near-linear increasing trend with increasing Λ, while the increase extent in static
friction coefficient is even higher at smaller Df values. Consequently, the strengthened gas-lubricated
hydrodynamic effect and the bearing surface with roughness undulations have a significant influence
on the skin friction at the interface.
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4.3. Dynamic Stiffness and Damping Coefficients

The variation of dynamic stiffness and damping coefficients with dimensionless perturbation
frequency Ω for different values of fractal dimensions is plotted in Figures 12 and 13. The principal
stiffness coefficients Kxx and Kyy increases as the perturbation frequency increases and the Kyy is much
greater than Kxx because of the rarefied gas lubricating film supports the weight of journal in the
vertical direction. The cross-couple stiffness Kxy increases at first, then decreases slightly with the
growth of Ω, while Kyx decreases quickly at lower perturbation frequencies. Furthermore, the enhanced
dynamic stiffness coefficients are seen for the rough bearing surface as compared to that of smooth
bearing case. When Ω > 2, all the dynamic stiffness coefficients of micro gas-lubricated journal bearing
at the fractal dimension Df = 2.3 are obviously greater than other rough surfaces. This is mainly due
to the fact that the larger asperity heights lead to an increased Poiseuille flow component along the
sliding direction and the side flow suffers the constriction resistance caused by homogeneous surface
roughness. The influence of perturbation frequency on dynamic damping coefficients for different
fractal roughness parameters can be observed from Figure 13. The principal damping coefficient Dxx

first increases with increasing dimensionless perturbation frequency, reaches a maximum, then starts
to decline slowly. The absolute values of the cross-coupling terms of damping coefficients Dxy and Dyx

decrease quickly at low Ω, then approaches to zero. The result show that the damping coefficients
Dxx, Dyx increase with the increase in the isotropic and homogeneous roughness heights of gas slider
bearing surface, and the Dxy and Dyy are first decreases and then dramatically increases as the fractal
dimension Df decreases, whereas the difference in damping coefficients of rough and smooth cases
appear to converge at higher values of Ω.

Figures 14 and 15 display the relationship between the dynamic coefficients of gas microbearing
and eccentricity ratio with various fractal dimensions. It is found that the dynamic stiffness coefficients
increase as the eccentricity ratio increases for fixed values of Λ = 20 and G = 1 × 10−11. The higher
ε corresponds to the thinner gas film thickness, which results in the increase of Knudsen number
Kn. With the growth of the fractal surface roughness, the stiffness coefficients first increase gradually,
then decrease significantly at the same ε. As illustrated in Figure 15, the damping coefficients increase
marginally as the eccentricity ratio increases and the effect of fractal dimension on damping coefficient
Dxy is negligible at lower eccentricity ratios. The damping coefficients become more sensitive to
surface roughness at higher eccentricity ratios about ε > 0.7. It can be seen that increasing the random
roughness heights increase the effect of gas rarefaction in small spacing.
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Figure 12. Effect of perturbation frequency on dynamic stiffness coefficients with different fractal
dimensions. (a) Kxx vs. Ω; (b) Kxy vs. Ω; (c) Kyx vs. Ω; (d) Kyy vs. Ω.
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Figure 13. Effect of perturbation frequency on dynamic damping coefficients with different fractal
dimensions. (a) Dxx vs. Ω; (b) Dxy vs. Ω; (c) Dyx vs. Ω; (d) Dyy vs. Ω.
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Figure 14. Effect of eccentricity ratio on dynamic stiffness coefficients with different fractal dimensions.
(a) Kxx vs. ε; (b) Kxy vs. ε; (c) Kyx vs. ε; (d) Kyy vs. ε.
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Figure 15. Effect of eccentricity ratio on dynamic damping coefficients with different fractal 

dimensions. (a) Dxx vs. ε; (b) Dxy vs. ε; (c) Dyx vs. ε; (d) Dyy vs. ε. 
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coefficients exhibit similar trends to the fractal dimension, namely the principal damping Dxx, Dyy 
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Figure 15. Effect of eccentricity ratio on dynamic damping coefficients with different fractal dimensions.
(a) Dxx vs. ε; (b) Dxy vs. ε; (c) Dyx vs. ε; (d) Dyy vs. ε.

Figures 16 and 17 show the comparisons of the dynamic characteristics between rough and smooth
bearing surfaces with different bearing numbers for the fixed values of ε = 0.6 and G = 1 × 10−10.
Increment of the bearing number means the larger operating conditions. The principal stiffness Kyy

is near proportionally dependent on Λ and dynamic stiffness coefficients Kxx, Kxy and Kyx increase
gradually with increasing bearing number. It is also observed that the increase in the dynamic
stiffness coefficients is more accentuated for the fractal roughness surface as compared to the smooth
surface bearing with the enhanced aerodynamic effect in gas journal bearings. The damping coefficients
exhibit similar trends to the fractal dimension, namely the principal damping Dxx, Dyy and cross-couple
damping Dxy for rough bearing surface become larger than the ones in the smooth bearing, whereas
the roughness effect is rather marginal in the case of the cross-couple damping Dyx in Figure 17c.
The damping coefficients Dxx, Dyy and Dxy increase quickly at first and then decreased, while the
damping coefficient Dyx decreases with increasing bearing number. Therefore, the dynamic stiffness
and damping characteristics of gas microbearings with isotropic and homogeneous roughness show
relatively high values since the aerodynamic effect of the bearing is enhanced.
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Figure 16. Effect of bearing number on dynamic stiffness coefficients with different fractal dimensions.
(a) Kxx vs. Λ; (b) Kxy vs. Λ; (c) Kyx vs. Λ; (d) Kyy vs. Λ.
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Figure 17. Effect of bearing number on dynamic damping coefficients with different fractal dimensions.
(a) Dxx vs. Λ; (b) Dxy vs. Λ; (c) Dyx vs. Λ; (d) Dyy vs. Λ.
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5. Conclusions

The coupled effects of gas rarefaction and surface roughness on the static and dynamic characteristics
of gas microbearings are studied using fractal geometry theory and Boltzmann model for Poiseuille flow.
Based on the results mentioned in previous section, the following conclusions have been drawn:

1. Surface roughness and gaseous rarefaction effects are of great importance to the lubrication
performance of gas journal microbearings. At small asperity height distributions, the gas film pressure
distributions increase for higher bearing numbers and eccentricity ratios, consequently leads to an
increment of load-carrying capacity.

2. The attitude angle increases with the larger fractal dimensions compared with smooth surface,
whereas the skin friction coefficient yields a reversed trend because of the long narrow ridges and
furrows impose a series of constrictions on gas lubricant in the sliding direction.

3. The principal stiffness coefficients increase with the increase in dimensionless perturbation
frequency and all the stiffness coefficients become larger and larger at higher eccentricity ratios and
bearing numbers. The damping coefficients increase as the eccentricity ratio increases and the principal
damping can be first magnified and then diminished with increasing bearing number.

4. The stiffness coefficients increase as the fractal dimension decreases at the same perturbation
frequency and bearing number, while the stiffness coefficients first increase and then decrease for
increasing eccentricity ratio. The damping coefficients increase with decreasing fractal dimension
except for the Dyx at large bearing number values.

5. It seems that the fractal rough surface does not merely increases the steady-state and dynamic
performance of gas microbearings. When the degree of rarefaction effect is more pronounced,
the static load capacity and dynamic coefficients decrease quickly for larger values of distribution of
asperity heights.
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