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Abstract: Currently, the elliptical vibration cutting/coining (EVC2) has been widely employed
in fabricating various functional microstructure surfaces applied in many significant engineering
fields. Therefore, for this study, a novel type of two-degree-of-freedom (2-DOF) piezoelectrically
actuated pseudo-decoupled compliant mechanisms (PDCMs) with non-orthogonal decoupling
structures, which can exactly generate the strict ellipse trajectories, was developed for improving the
forming accuracies of the EVC2 microstructures. First, the compliance matrices of 2-DOF PDCMs
were theoretically modeled using the popular finite beam-based matrix modeling (FBMM) and
the matrix-based compliance modeling (MCM) methods, then finite element analysis (FEA) was
adopted to verify the effectiveness of the built compliance model for the 2-DOF PDCM with arbitrary
structure parameters. Second, the static FEA method was employed to systematically reveal the
dependencies of the tracking accuracies of the elliptical trajectories on the decoupling structures
of 2-DOF PDCMs. Moreover, their main dynamic performances were also investigated through
the FEA-based harmonic response analysis and modal analysis. On these bases, the critical angle
of the decoupling structure was optimally set at 102.5◦ so that the PDCMs had minimum shape
distortions of the ellipse trajectories. Thirdly, a series of experiments was conducted on this PDCM
system for practically investigating its kinematic and dynamic performances. The actual aspect ratio
between the major axis and minor axis of the ellipse trajectory was approximately 1.057, and the
first-order and second-order resonant frequencies were 863 Hz and 1893 Hz, respectively. However,
the obtained testing results demonstrated well the effectiveness and feasibility of 2-DOF PDCM
systems in precisely tracking the ellipse trajectories with different geometric parameters. Several
critical conclusions on this study are summarized in detail in the final section of this paper.

Keywords: compliant mechanism; CM; elliptical vibration machining; EVM) pseudo-decoupled;
tracking accuracy; elliptical trajectory; flexure hinges

1. Introduction

Elliptical vibration machining (EVM) has been extensively explored and applied in many
significant fields, including the precise manufacturing of optical freeform surfaces and functional
microstructure surfaces on various difficult-to-cut materials such as ferrous materials and carbide
alloy [1–6]. Therefore, significant research efforts have been endlessly devoted to improving the
working performances of EVM devices, such as increasing the resonant frequency, enhancing the
motion accuracy, and optimizing the structure configurations. Based on these advantages of existing
developments, the scale characteristics of these components fabricated by EVM can range from
millimeter to micrometer and even to nanometer. In view of the EVM processes, both demand at least
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two high-frequency vibrations in the cutting-depth and up-feed directions, but the currently reported
non-resonant EVMs with flexure-based mechanisms have rarely taken the cross-coupling motions
across different vibrations into consideration [7,8], especially in those EVM systems that consist of
flexural mechanisms with parallel configurations. As an adverse result, the parasitic distortions can
be clearly observed on the elliptical trajectories generated by these EVM systems, which may further
deteriorate the forming precision of the functional microstructures fabricated by the elliptical vibration
cutting/coining (EVC2) [3,9]. It is therefore very important to innovatively develop a novel type of
decoupled EVM systems for precisely manufacturing various functional microstructure surfaces.

Currently, a large number of piezoelectrically actuated compliant mechanisms (CMs) with two
degrees of freedom (2-DOF) may be the potential substitutes for developing the much-needed EVM
apparatuses. These 2-DOF CMs have already been very widely employed in optical and precision
engineering, such as the XY stages for micro-/nanopositioning [10–12], the manipulators and grippers
for micro-/nano-operation [13–15], and the fast tool servo (FTS) for micro-/nanomachining [16,17].
In general, various micro-/nanopositioning stages with parallel 2-DOF CMs can obtain high-precision
motions through complex decoupling substructures. For example, Polit and Dong [18] have
developed a parallel and decoupled XY positioning stage with a high working bandwidth for
micro-/nanomachining by employing a novel hybrid compliant-notch parallelogram mechanism.
However, the decoupling capacities of these XY stages will highly depend on the selections of
dimensional parameters, thus it is not a universal method for achieving accurate motions [16].
In addition, almost all the developed XY position stages have generally adopted bisymmetric or
serial configurations, but bisymmetric configurations will be difficult in compact structures and
cutting tool installations, whereas serial configurations will decrease their working bandwidth because
of increasing motion inertia [18–20]. In addition, the widely-used micro-/nanomanipulators and
grippers have similar restrictions for decoupled EVC systems. The 2-DOF FTS can strictly track
the elliptical trajectories for the EVC2 processes of functional microstructures due to their complete
decoupling motions between two different motion directions, but it is very difficult to develop 2-DOF
or multi-DOF parallel FTS mechanisms that can completely eliminate the cross-coupling motions across
different directions, which will seriously restrict the application potentialities of FTS mechanisms in
the significant EVC2 fields.

To summarize, the reported micro-/nanopositioning XY stages, micro-/nanomanipulators and
grippers cannot be directly applied to the EVC2 processes due to certain apparent limitations, and the
FTS mechanisms are too rigorous to be widely applied to the EVC2 processes because of their
development difficulties. Motivated by these potentials, this study aimed to develop a novel type
of two-DOF piezo-driven pseudo-decoupled compliant mechanisms (PDCMs) to construct various
elliptical vibration machining (EVM) systems by adopting the novel non-orthogonal decoupling
substructures instead of the orthogonal configurations in traditional EVM mechanisms, which will
greatly suppress or even eliminate the geometric distortions of elliptical trajectories. However,
the developed 2-DOF PDCMs cannot completely decouple the parasitic motions in different directions
although their tracking precision on elliptical trajectories can be greatly improved, so it is called
a “pseudo-decoupled” PDCM. In view of the issues involved in the proposed 2-DOF PDCMs,
the remainder of this paper is divided into several sections as follows. In Section 2, the compliance
model of 2-DOF PDCM is theoretically constructed based on the popular matrix-based compliance
modeling (MCM) and the powerful finite beam-based matrix modeling (FBMM) methods. Then,
the feasibility and effectiveness of the built compliance model for 2-DOF PDCM is validated based
on the finite element analysis (FEA) method. In Section 3, the decoupling characteristics as well
as the static and dynamic performances of the 2-DOF PDCMs are also investigated using the static
FEA method. In Section 4, we describe the series of testing experiments that were conducted on
an established 2-DOF PDCM system for investigating its main kinematic and dynamic performances,
involving the tracking precision and working bandwidth. Finally, several critical conclusions on
current research are summarized in Section 5.
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2. Basic Principle and Compliance Model

In the reported 2-DOF piezo-driven compliant mechanisms with decoupled motions,
the bisymmetric CM structures, which have been parallelly composed of two typical flexure units
shown in Figure 1a with central symmetric configurations, have extremely wide applications in the
fields of micro-/nanopositioning, micro-/nanomanipulating and micro-/nanomachining. However,
such types of bisymmetric CM structures are very difficult to integrate into elliptical vibration
cutting/coining (EVC2) because of the redundant decoupling structures and hard cutting tool
installations. Based on the above, the present study only adopted a typical flexure unit shown
in Figure 1a to construct the required EVC2 systems, but the bad cross-decoupling motions of these
asymmetric CM structures still had to be further eliminated to the best extent possible. Motivated
by the reasons mentioned above, a novel type of piezo-driven 2-DOF pseudo-decoupled compliant
mechanism (PDCM) was innovatively developed to precisely track the elliptical trajectories of EVC2

processes. It similarly employed two right circular flexure modules (RCFMs) composed of a group
of parallel and symmetric right circular flexure hinges (RCFHs) as the driving and guiding units
in two different directions. Two pairs of parallel filleted leaf-spring flexure hinges (LSFHs) were
also adopted to construct two leaf-spring flexure modules (LSFMs) as the decoupling units in two
different directions, as shown in Figure 1b. The innovation of this PDCM lies in that two decoupling
LSFMs are non-perpendicularly configured with a decoupling angle Θ (i.e., Θ ≥ 90◦) instead of the
perpendicular configurations (i.e., Θ = 90◦) that have been widely found in the traditional 2-DOF
CMs for elliptical vibration machining (EVM). This novel type of PDCM cannot fully achieve the
decoupling motions, although the elliptical trajectories can be strictly generated in practice, so it is
called a “pseudo-decoupled” PDCM.
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Figure 1. Basic principle of the developed two-degree-of-freedom (2-DOF) pseudo-decoupled compliant
mechanism (PDCM). (a) Traditional orthogonal configuration; (b) Novel non-orthogonal configuration.

2.1. The Principle of The FBMM Method

In order to analytically investigate the elastic deformation behaviors of the developed 2-DOF
PDCMs, their compliance matrixes were mathematically modeled based on the popular matrix-based
compliance modeling (MCM) method. As basic substructures, the elastic deformation behaviors of
right circular flexure beams (RCFBs) and filleted leaf-spring flexure beams (LSFMs) must be first
characterized by modeling their compliance matrixes. This paper introduced the powerful finite
beam-based matrix modeling (FBMM) method developed by Zhu et al. and Wang et al. [21,22] to
effectively construct the compliance models of RCFBs and LSFBs, respectively. The basic modeling
principles are illustrated in Figure 2.
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For the FBMM processes, a flexure hinge was uniformly divided into N micro Euler–Bernoulli
beams with different rectangular cross-sections, where oi-xiyizi denotes the local Cartesian coordinate of
the i-th micro-beam. In addition, we had to make the assumption that the effects of stress distributions
on the elastic deformations of flexure beams could be ignored at first, and that each of the flexure
hinges would be regarded as a series connection of all the micro-beams. Based on Hooke’s law,
the relationship is first derived as follow:

∆ = C F, (1)

where F and ∆ are defined as the unit load vector and the corresponding elastic deformation vector,
respectively. C denotes the compliance matrix of the flexure hinge in the global coordinate, which can
be mathematically expressed based on the matrix-based modeling (MCM) method [16,23] as follows:

C =
N
∑

i=1
TiCiTT

i , Ti =

[
Ri Si(ri)Ri
0 Ri

]
, (2)

where Ti denotes the compliance transformation matrix (CTM) of the i-th local coordinate with respect
to the global coordinate [12,13,23,24]. N is the total number of the divided micro-beams. Ri denotes the
rotation matrix of the local coordinate with respect to the global coordinate. ri represents the position
vector of the local coordinate in the global coordinate. Si(ri) denotes the skew-symmetric operator for
the position vector ri.

Si(ri) =

 0 −zi yi
zi 0 −xi
−yi xi 0

, ri =

 xi
yi
zi


T

=

 dx · i
f u(xi)/2 + f d(xi)/2

0


T

(3)

Ci denotes the compliance matrix of the i-th single micro-beam in its local coordinate, which has been
proposed and widely employed in characterizing the elastic deformation behaviors of leaf-spring
flexure hinges [24,25], as mathematically expressed by the equation below:
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Ci =



dx
Ewhi

0 0 0 0 0

0 4dx3

Ewhi
3 +

αsdx
Gwhi

0 0 0 6dx2

Ewh3
i

0 0 4dx3

Ew3hi
+ αdx

Gwhi
0 − 6dx2

Ew3hi
0

0 0 0 dx
Gkwh3

i
0 0

0 0 − 6dx2

Ew3hi
0 12dx

Ew3hi
0

0 6dx2

Ewh3
i

0 0 0 12dx
Ewh3

i


. (4)

In Equation (4), E and G are the modulus of elasticity and the modulus of rigidity. dx, w, and hi
are the length, width, and thickness of the i-th micro-beam, hi is obtained by the formulations hi(x) =
|yi

u − yi
d| = | f u(xi) − f d(xi)|. k is the shape factor of torsional deformation [24], which is defined

as k=w/h. With the Poisson ratio µ, the shear coefficient αs was introduced for the micro-beams with
rectangular cross-sections [26].

αs =
12 + 11µ

10(1 + µ)
(5)

In addition, based on the definition of this ratio zi = wi/hi, a new torsion compliance, which is
independent on the ratio of width to the thickness, was adopted to more accurately characterize the
torsion behavior θx/Mx of the i-th micro-beam [27].

Ci
θx ,Mx

=
7dx
2G

(
1

wibi
3 +

1
wi

3bi

)
zi

2 + 2.609zi + 1
1.17zi

2 + 2.191zi + 1.17
(6)

Finally, the notch-shape functions f rc(•) and f ls(•) of the RCFB and LSFB were geometrically
defined, then their compliance matrix Crcfb and Clsfb was mathematically formulated as follows:

Crcfb =
N

∑
i=1

TiCiTT
i

∣∣∣∣∣ f u
rc(i · dx)

f d
rc(i · dx)

, (7)


f u
rc(x) = t1/2 + R1 −

√
R2

1 − (x + l1 + R1)
2 , |x + l1 + R1| < R1

f u
rc(x) = t1/2 + R1, −l1 ≤ x ≤ −2R1

f u
rc(x) = t1/2 + R1 −

√
R2

1 − (x + R1)
2 , |x + R1| < R1

; f d
rc(x) = − f u

rc(x) , (8)

Clsfb =
N

∑
i=1

TiCiTT
i

∣∣∣∣∣ f u
ls(i · dx)

f d
ls(i · dx)

, (9)


f d
ls(x) =

√
R2

2 − (x + l2 + R2)
2 − t2/2− R2 , −l2 − 2R2 ≤ x < −l2 − R2

f d
ls(x) = −t2/2, −l1 − R2 ≤ x ≤ −R2

f d
ls(x) =

√
R2

2 − (x + R2)
2 − t2/2− R2 , −R2 < x ≤ 0

; f u
ls(x) = t2/2 . (10)

2.2. The Compliance Model of The 2-DOF PDCM

Based on the popular RCFBs and LSFBs mentioned above, the right circular flexure modules
(RCFMs) and leaf-spring flexure modules (RCFMs) were constructed to develop a type of 2-DOF
pseudo-decoupled compliant mechanisms (PDCM), as shown in Figure 3. In order to understand
the basic attributes of the flexural mechanisms, the matrix-based compliance modeling (MCM)
method was adopted to model the compliances of the 2-DOF PDCM for analytically characterizing
its elastic deformation behaviors. First, the driving and guiding RCFM was constructed through the
parallel connection of four identical RCFBs with perfectly symmetrical configurations. Its structural
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features and the dimensional parameters are illustrated in Figure 3a. Based on the MCM method,
the compliance matrix of the adopted RCFM can be mathematically expressed by the following:

Crcfm =

[(
CRight

rcfm

)−1
+
(

CLe f t
rcfm

)−1
]−1

, (11)

CRight
rcfm = T3

rcfmC3
L
(
T3

rcfm
)T

+

{[
T1

rcfmC1
rcfb
(
T1

rcfm
)T
]−1

+
[
T2

rcfmC2
rcfb
(
T2

rcfm
)T
]−1
}−1

+ T4
rcfmC4

L
(
T4

rcfm
)T

, (12)

where CL represents the basic compliance matrix of the LSFHs in its local coordinate and Ti
rcfm (i = 1, 2,

3, 4) denotes the compliance transformation matrix (CTM) of the i-th flexure structure in the global
coordinate of the RCFM. Based on the structure symmetry, the compliances of the left half can be
simply obtained by rotating the compliance of the right half, which can be mathematically derived by
the following equation:

CLe f t
rcfm = Try(π)CRight

rcfm Try(π)T, (13)

where Try(π) denotes the rotation transformation matrix around the y-axis with an angle of π.
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Second, the decoupling LSFM was constructed through the parallel connection of two LSFBs,
as shown in Figure 3b. The compliance matrix of the LSFM can be mathematically expressed as follows:

Clsfm = T3
lsfmC3

L
(
T3

lsfm
)T

+

{[
T1

lsfmC1
lsfb
(
T1

lsfm
)T
]−1

+
[
T2

lsfmC2
lsfb
(
T2

lsfm
)T
]−1
}−1

+ T4
lsfmC4

L
(
T4

lsfm
)T

, (14)

where Ti
lsfm (i = 1, 2, 3, 4) denotes the CTM of the i-th flexure structure with respect to the global

coordinate of the LSFM. Finally, a single-DOF compliant mechanism was constructed through the
series connection of an RCFM and an LSFM, then two such single-DOF compliant mechanisms were
parallelly and non-orthogonally connected to construct the developed 2-DOF PDCM, as illustrated in
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Figure 3c. Based on the MCM method, the compliance model of this PDCM can be mathematically
formulated as follows:

Cpdcm =

{[
T1

pdcmC1
rcfm

(
T1

pdcm

)T
+ T2

pdcmC2
lsfm

(
T2

pdcm

)T
]−1

+

[
T3

pdcmC3
rcfm

(
T3

pdcm

)T
+ T4

pdcmC4
lsfm

(
T4

pdcm

)T
]−1

}−1

, (15)

where Ti
pdcm (i = 1, 2, 3, 4) denotes the CTM of the i-th flexure module with respect to the global

coordinate of the developed 2-DOF PDCM.

3. Finite Element Analysis of The 2-DOF PDCM

3.1. FEA Verification

At this stage, the effectiveness of the built compliance model must first be verified, and a series
of FEA processes was therefore conducted on the 2-DOF PDCM with an arbitrary set of dimension
parameters, as listed in Table 1. Then, the compliances of dominant motions and parasitic motions,
namely, dx/Fx and dx/Fy or dy/Fy and dy/Fx, were obtained, as listed in Table 1. In addition,
the FEA results were considered the “accurate” values to evaluate the prediction accuracy of the built
compliance model, and the relative deviations between the analytical results and FEA results were
further calculated. From the comparative analysis listed in Table 1, the relative deviations between the
FEA results and the analytical results in the compliances dx/Fx and dx/Fy are approximately 8.7% and
5.2%, respectively, which distinctly indicates that the compliance model can effectively characterize
the elastic deformation behaviors of the developed 2-DOF PDCM. However, the relatively large error
may stem mainly from the complex shear effects and stress concentration effects in the connections of
the RCFMs and LSFMs.

Table 1. The dimension parameters and result comparisons for the 2-DOF PDCM.

Dimension parameters

LSFM t1 = 1 mm R1 = 2.5 mm l1 = 10 mm h1 = 4 mm d1 = 10 mm
RCFM t2 = 1 mm R2 = 3.0 mm l2 = 10 mm h2 = 4 mm d2 = 7.0 mm

Result analysis

FBMM FEA Deviation
dx/Fx or dy/Fy 1.15 × 10-7 m/N 1.26 × 10-7 m/N 8.7%
dy/Fx or dx/Fy 1.45 × 10-9 m/N 1.53 × 10-9 m/N 5.2%

3.2. Decoupling Analysis

Based on the above-mentioned built compliance model, the traditional 2-DOF PDCM with the
orthogonal decoupling configuration was analytically constructed to minimize the cross-coupling motions by
optimally determining the structure parameters of RCFMs and LSFMs. Subsequently, another type of 2-DOF
PDCM with an innovative non-orthogonal configuration was developed to generate pseudo-decoupled
motions for the widely-used elliptical vibration cutting/coining (EVC2), but the crucial decoupling angle
Θ of the non-orthogonal configuration had uncertain influences on the tracking precision of elliptical
trajectories at the time. Therefore, this study investigated the influences of the two-DOF PDCMs’ decoupling
angle Θ on the tracking accuracies of elliptical trajectories based on the static FEA method, and further
determined the optimal decoupling angle Θ. In addition to a greater operational optimization of the
decoupling angle, this study introduced a dimensionless aspect ratio (DAR) λ of the major semi-axis a to the
minor semi-axis b of the ellipse trajectory. All the major semi-axes of the elliptical trajectories are specifically
equal to the minor semi-axes, namely λ = a/b =1. Then the results obtained from the FEA-based decoupling
analysis are shown in Figures 4 and 5.

In the FEA investigations about the effects of the decoupling angle Θ, two equal-amplitude
harmonic motions with a 90◦ phase difference were respectively employed in driving the Y-axis and
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Z-axis of the 2-DOF PDCMs with different decoupling angles Θ, thereby making the input elliptical
trajectories perfectly circular. Driven by the circular trajectories, the 2-DOF PDCMs with different
decoupling angles generated the elliptical trajectories with different elliptical parameters based on
the FEA method, as illustrated in Figure 4. Subsequently, in order to quantitatively evaluate the
decoupling capacities of the developed 2-DOF PDCMs, the corresponding elliptical trajectories whose
decoupling angles Θ ranged from 90◦ to 110◦ were mathematically fitted with the least square method
(LSM). Then the influences of the decoupling angle Θ on the geometric parameters of the elliptical
trajectories were analytically investigated, involving the major semi-axis a, minor semi-axis b and
aspect ratio λ, as shown in Figure 5. The dependency of the aspect ratio λ on the decoupling angles Θ
was also fitted with a three-order polynomial.
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As shown in Figure 4a, the traditional 2-DOF PDCM with orthogonal configuration (Θ = 90◦)
had an obvious geometric distortion on its output trajectory. However, the trajectory distortions of
the innovative 2-DOF PDCMs with non-orthogonal configurations gradually decreased when the
decoupling angle Θ ranged from 90◦ to 102.5◦, as shown in Figure 4b–d. Meanwhile, the trajectory
distortions of the 2-DOF PDCMs gradually increased when the decoupling angles Θ were greater
than 102.5◦, but the inclined angles of the output ellipse trajectories had opposite directions with
the ellipse trajectories whose decoupling angles were less than 102.5◦, as shown in Figure 4d–f.
From the fitted results shown in Figure 5, the major semi-axes a of the ellipse trajectories had gradually
decreasing lengths when the decoupling angle Θ increasingly ranged from 90◦ to 102.5◦, whereas the
lengths of the major semi-axes a gradually increased when the decoupling angles Θ exceeded 102.5◦.
The minor semi-axes b of the ellipse trajectories had contrary changing laws with the major semi-axes
a, but the major and minor semi-axes had respectively the minimum and maximum lengths when Θ
was 102.5◦. Similarly, the defined aspect ratio λ of the ellipse trajectories gradually decreased when
the range of the decoupling angle Θ increased from 90◦ to 102.5◦, but increased with the increasing
angle Θ (Θ > 102.5◦), as shown in Figure 5b. It is clear that the dimensionless aspect ratio λ also
had the minimum value (1.003756) when Θ = 102.5◦, which is very close to the perfect DAR (λ = 1).
To summarize, the developed 2-DOF PDCM generated an approximately perfect ellipse trajectory
when its decoupling angle was optimally chosen to be 102.5◦. Of particular note is that the output
trajectories of the 2-DOF PDCM with different decoupling angles were slightly larger than the input
trajectories, as shown in Figure 5, which indicates that the 2-DOF PDCMs can definitely amplify the
input motions. This provides an interesting potential to develop other compliant mechanisms (CMs)
in those fields that urgently require large displacements.

However, all the FEA-based investigations, which were conducted on the 2-DOF PDCM with
different decoupling angles, completely adopted the circular trajectories to expediently verify their
decoupling performances. The decoupling performances of the 2-DOF PDCM with the optimal
decoupling angle Θ (102.5◦) on the ellipse trajectories must be further discussed in detail. Therefore,
the input motions with different elliptical parameters were similarly employed in analyzing the
geometric distortions of the corresponding ellipse trajectories based on the FEA method. The results
obtained under different vibration amplitudes and phase differences are illustrated in Figure 6.
More specifically, Figure 6a,b shows the elliptical trajectories with different vibration amplitudes
in the Y-axis and Z-axis, respectively, Figure 6c,d shows the elliptical trajectories with different phase
differences, and Figure 6e,f shows the elliptical trajectories with both different vibration amplitudes
and phase differences. Almost all the output ellipse trajectories can strictly track the input motions
except for the slight geometric expansions, and their elliptical distortions along the major axis are
much larger than those along the minor axis. However, all the resulted ellipse trajectories distinctly
indicate that the developed 2-DOF PDCM with the optimal configuration can precisely generate the
pseudo-decoupled elliptical trajectories with different parameters, which proves the effectiveness
and feasibility of this type of developed 2-DOF PDCM in constructing various elliptical vibration
cutting/coining (EVC2) apparatuses that have been widely employed in the manufacture of many
functional microstructure surfaces.
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3.3. Static and Dynamic Analysis

Except for the tracking accuracy of the elliptical trajectory, the developed 2-DOF PDCM also
ensured its maximum stress within the allowable value of material strength. Considering the chosen
piezoelectric stack (PZT) actuators (P-887.51) with a stiffness of 100 N/µm and a stroke of 15 µm, as well
as their preloading effects and the stiffnesses of the PDCM, the estimated maximum displacements
of the PDCM’s input-ends were both chosen as 10 µm in the Y and Z directions. As a consequence,
the total displacement and von Mises stress of the 2-DOF PDCM was simulated based on the static FEA
method, and then the corresponding displacement nephogram and stress nephogram were obtained,
respectively, as shown in Figure 7.
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From the displacement nephogram shown in Figure 7a, the maximum output displacement of the
PDCM is approximately 14.99 µm when its input-ends in the Y and Z directions are both driven with
PZT maximum strokes of 10 µm. At that time, the corresponding maximum stress of the PDCM is
approximately 82.84 MPa, which is located at the intersection of the two decoupling LSFMs, a value
much less than the allowable strength of the chosen material (spring steel 65Mn) for the PDCM.
However, the FEA results clearly suggest that the 2-DOF PDCM can completely guarantee the elastic
deformations with long-term linearity and repeatability.

Moreover, dynamic performances such as the working bandwidth were also very important
for this developed 2-DOF PDCM, especially for the EVC2 processes that require that the elliptical
vibrations have the highest available frequencies. Therefore, a harmonic response analysis and a modal
analysis had to be further conducted to investigate the dynamic performances of the optimal PDCM
using a commercial FEA software, respectively. Subsequently, the amplitude-frequency characteristics
and the modal shapes of the first three vibrations were obtained, as illustrated in Figure 8. From the
resulting harmonic analysis shown in Figure 8a, the resonant frequencies of the PDCM from the
first order to the third order are 4038.2 Hz, 4939.6 Hz, and 5139.8 Hz, respectively. The vibrations of
the output platform in the elliptical trajectory plane (Y-O-Z plane) are found in the first-order and
second-order models shown in Figure 8b,c, respectively, but the vibrations of the output platform in
the Y-O-Z plane occur in the third-order mode shown in Figure 8d. Fortunately, the second-order and
third-order frequencies were much higher than the first-order frequency, and the first-order mode was
thus the most prominent mode, which strongly determined the available working bandwidth of the
PDCM system.

Eventually, the resulting decoupling investigations, static analyses, and dynamic analyses
distinctly indicated that the developed 2-DOF PDCM possessed a high effectiveness and a strong
feasibility. However, it was still difficult to directly construct a usable EVC2 apparatus because no
consideration had been given to the advantages of installing it on a machine tool, the installations and
preloads of two PZT actuators, as well as the structure interference between the EVC2 system and the
lathe spindle. Therefore, the 2-DOF PDCM was further modified by performing a 90◦ rotation and
adding preload structures with wedge blocks, as shown in Figure 9. No more explanations are given
here due to the limited time and space.
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4. Experimental Verification

In order to verify the effectiveness and feasibility of the modeling compliance and optimizing
structure that were conducted on the proposed 2-DOF pseudo-decoupled compliant mechanisms
(PDCMs), their actual trajectory precision and working bandwidths had to be also experimentally
investigated, respectively. A photographic representation of the experimental system’s setup is shown
in Figure 10. First, two piezoelectric stack (PZT) actuators (P-887.51, PI, Karlsruhe, Germany) were
employed in driving the 2-DOF PDCM in the two different directions, and two low-frequency harmonic
signals with same voltage amplitudes and a phase difference were generated through a programmable
signal generator (AFG-2225, Gwinstek, Taiwan, China) to respectively excite these two adopted PZT
actuators. Subsequently, both the real-time displacements of the PDCM in two different directions
were measured practically through two capacitive probes (2805, MicroSense, Lowell, MA, USA)
and a multi-channel position measuring module (Model 5300 II, MicroSense, Lowell, MA, USA),
which were employed for the experimental investigations about the tracking accuracy of the 2-DOF
PDCM’s elliptical trajectory. It is very important to note that the amplitudes of the two adopted driving
voltages had to be slightly adjusted for exactly controlling the same motion amplitudes in the Y and Z
directions. This was mainly due to the differences in the two PZT preloads in the Y and Z directions,
which resulted in the different motion amplitudes under the same driving voltages. Moreover,
the manufacturing defects of the PDCM had adverse influences. In addition, all the experimental
tests were conducted on an air-bearing vibration-isolated platform (RS4000, Newport Corporation,
Irvine, CA, USA) for minimizing the adverse effects of external environmental disturbances.
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4.1. Kinematic Performance

In view of the actual performance characteristics of the adopted PZT actuators, the vibration amplitudes
and center offsets of the PDCM’s elliptical trajectory both in the Y and Z directions were theoretically chosen
as 2.5 µm and 3 µm, respectively. The output displacements in these two different directions and the
elliptical trajectory could then be generated practically through the use of two harmonic voltage signals that
possessed suitable amplitudes, center offsets and phase differences, as shown in Figure 11. Subsequently,
both the output displacements and the elliptical trajectories were mathematically fitted with the least square
method (LSM), their corresponding fitting parameters are listed in Table 2.
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Table 2. The experimental results and fitting elliptical parameters of the PDCM.

Motion parameters Value Elliptical
parameters Value

Amplitude in Y-axis /Ay 2.5151 µm Semi-major axis /a 2.5841 µm
Amplitude in Z-axis /Az 2.5132 µm Semi-minor axis /b 2.4449 µm

Offset in Y-axis /By 3.0000 µm Center in Y-axis /yo 3.0012 µm
Offset in Z-axis /Bz 2.9990 µm Center in Z-axis /zo 2.9986 µm

——- —— Inclined angle /θ -44.9850◦
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As shown in Figure 11a,b, the motion amplitudes of the output displacements in the Y and
Z directions are 2.5151 µm and 2.5132 µm, respectively, and the center offsets in the Y and Z directions
are 3.0000 µm and 2.9990 µm, which are very close to the preset amplitude (2.5 µm) and offset (3.0 µm).
Then, the elliptical trajectories were generated practically and mathematically fitted, and the FEA-based
elliptical trajectory was simulated to further conduct comparative investigations on the experimental
and fitting trajectories, as shown in Figure 11c. From the fitted experimental results listed in Table 2,
the motion amplitudes and center offsets of the experimental trajectory in the Y and Z directions are
2.5841 µm, 2.4449 µm and 3.0012 µm, 2.9986 µm, respectively. It is very clear that the experimental
trajectory is very close to the FEA-based ellipse trajectory. However, the relative aspect ratio λ of
the generated and simulated elliptical trajectories are 1.057 and 1.004, which is due to the PDCM’s
manufacturing defects as well as the fact that the assembly errors and preload differences of the
PZT actuators may have distorted the experimental ellipse trajectory of the 2-DOF PDCM system.
Notwithstanding the above, the aspect ratio λ of the experimental ellipse trajectory is very close to its
perfect value (λ = 1), which clearly indicates the effectiveness and feasibility of the established 2-DOF
PDCM system in precisely tracking the strict ellipse trajectories.

The established 2-DOF PDCM system can effectively and strictly generate the elliptical trajectories,
but certain tracking errors were still found between the experimental and FEA results shown in
Figure 11c. Therefore, this study further conducted error analyses on three local ellipse trajectories
for the 2-DOF PDCM, namely, the regions marked by A, B, and C and shown in Figure 11c. Then,
the resulting tracking errors in the different regions were mathematically calculated, as shown in
Figure 12. It is clear that the maximum and minimum tracking errors of the elliptical trajectories are
found in regions A and C. The tracking deviations for the regions A, B, and C are δA = 0.1331 µm,
δB = 0.0873 µm, and δC = 0.0256 µm, respectively, whose corresponding ratios (i.e., relative errors) to
their semi-major axis length of the elliptical trajectory are 5.3%, 3.5%, and 1.0%, respectively. This clearly
indicates that the established 2-DOF PDCM system can greatly satisfy the tracking precision of elliptical
trajectories. However, in examining all the experimental and FEA-based elliptical trajectories shown
in Figure 11c, it is of particular note that the resulting FEA-based ellipse is slightly larger than the
experimental ellipse at different levels. This is mainly due to the fact that the 2-DOF PDCMs slightly
amplified the input displacements both in the Y and Z directions, as illustrated in Figures 4 and 6.
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Figure 12. Comparative analysis of the tracking precisions of local elliptical trajectories generated by the
2-DOF PDCM. (a) Region A, δA = 0.1331 µm; (b) Region B, δB = 0.0873 µm; (c) Region C, δC = 0.0256 µm.

4.2. Dynamic Performance

Similarly, in order to investigate the dynamic performances of the established 2-DOF PDCM
system, the working bandwidth was experimentally measured based on the hammering method.
Firstly, an acceleration transducer (ULT2001, Lancetec, Akron, OH, USA) was installed on the output
platform of the 2-DOF PDCM to measure the real-time acceleration values as response signals when the
PDCM was directionally stroked with an impact hammer (9724A2000, Kistler, Winterthur, Switzerland).
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Secondly, both the acceleration signals of the transducer and the force spectrums of the impact
hammer were collected in real time with a high-speed collecting and analyzing module (SIRIUS i-HS
8×ACC, DEWEsoft, Kumberg, Austria). Finally, the vibration amplitude, phase, and coherence of the
hammering experiments on the PDCM system were effectively obtained using an established dynamic
testing system and a commercial modal analysis software (DEWEsoft X2, Kumberg, Austria), as shown
in Figure 13.Micromachines 2019, 10, x 2 of 2 
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From the experimental results shown in Figure 13, many wave peaks/valleys were observably
found both in the amplitude-frequency and phase-frequency charts, which may indicate different
order resonant frequencies of the built 2-DOF PDCM system. However, two wave peaks/valleys were
the most evident when the corresponding frequencies were 863 Hz and 1893 Hz., In addition, only two
sharp changes can be clearly observed in the coherence-frequency charts at the above two critical
frequencies. The actual first-order and second-order resonant frequencies of this established 2-DOF
PDCM system can therefore be synthetically determined as 863 Hz and 1893 Hz. Moreover, we can
confidently conclude that the coherence-frequency curve is perfectly close to 1 except for the two points
near the first-order and second-order resonant frequencies, which demonstrates well the effectiveness
of the dynamic experiments conducted on the PDCM system. However, the actual first-order and
second-order resonant frequencies of the PDCM system are 863 Hz and 1893 Hz, respectively, which are
much lower than the FEA-based simulated results (4038.2 Hz and 4939.6 Hz). This is mainly because
of two reasons: (a) the imperfect contacts between the PDCM and PZT actuators; (b) the increases
in moving inertia induced by the adopted acceleration transducer with 8gm mass that is close to
the output platform mass of the PDCM. These are therefore the main factors of the deteriorating
working bandwidth.

5. Conclusions

In order to simply but strictly track the ellipse trajectories that have been widely applied in
elliptical vibration cutting/coining (EVC2) processes for the manufacturing of various functional
microstructure surfaces, a new type of two-degree-of-freedom (2-DOF) piezoelectrically actuated
pseudo-decoupled compliant mechanism (PDCM) with non-orthogonal decoupling configurations was
innovatively developed. First, the compliance model of the developed 2-DOF PDCM was theoretically
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built based on the finite beam-based matrix modeling (FBMM) and the matrix-based compliance
modeling (MCM) method, then the effectiveness of the built compliance model was verified using the
finite element analysis (FEA) method. Second, the dependencies of the trajectory tracking precision
on the decoupling angle of the 2-DOF PDCM were investigated based on the popular FEA method,
and the static and dynamic performances of the PDCM were also analyzed, such as the maximum
stress and vibration modals. Third, a series of experiments was conducted on an established 2-DOF
PDCM system to verify its main decoupling characteristics and dynamic performances. Finally, several
critical conclusions on this study are briefly summarized as follows.

(a) In comparison to the FEA investigations, the built compliance model of the 2-DOF PDCM has
acceptable modeling deviations in the primary motion and parasitic motion, namely, 8.7% and 5.2%,
respectively, which mainly derive from the complex shear effects and stress concentration effects in
the connections of different flexure modules. However, the built compliance model can effectively
characterize the elastic deformation behaviors of developed 2-DOF PDCMs.

(b) A special elliptical (circular) trajectory is adopted to investigate the dependency of decoupling
performances on the decoupling angle of the PDCM based on the FEA method, and the decoupling
angle is optimally chosen to be 102.5◦ through the introduction of a dimensionless aspect ratio. From
the FEA-based static and dynamic analyses, the maximum stress and the first modal frequency of the
2-DOF PDCM are 82.84 MPa and 4038.2 Hz, which can both satisfy the design requirements of the
desired PDCM.

(c) The maximum and minimum errors between the experimental and FEA-based elliptical
trajectories are 0.1331 µm and 0.0256 µm, respectively, which are only 5.3% and 1.0% with respect to
the major semi-axis length of elliptical trajectory. Meanwhile, the experimental ellipse is larger than the
FEA-based ellipse in different degrees due to the motion magnification of the 2-DOF PDCM. Moreover,
the practical first-order and second-order resonant frequencies are 863 Hz and 1893 Hz, respectively,
which are both significantly less than the FEA-simulated resonant frequencies because of the imperfect
contacts and increasing motion inertia.
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