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Abstract: Measuring temperature and moisture are important in many scenarios. It has been verified
that temperature greatly affects the accuracy of moisture sensing. Moisture sensing performance
would suffer without temperature calibrations. This paper introduces a nonlinearity compensation
technique for temperature-dependent nonlinearity calibration of moisture sensors, which is based on
an adaptive nonlinear order regulating model. An adaptive algorithm is designed to automatically
find the optimal order number, which was subsequently applied in a nonlinear mathematical
model to compensate for the temperature effects and improve the moisture measurement accuracy.
The integrated temperature and moisture sensor with the proposed adaptive nonlinear order
regulating nonlinearity compensation technique is found to be more effective and yield better
sensing performance.

Keywords: temperature and moisture sensor; adaptive order regulating; temperature-dependent
nonlinearity; nonlinearity compensation

1. Introduction

Temperature and moisture sensors have extensive applications in many industries, including
agriculture, food, pharmaceuticals, mining, construction, and so on. For instance, integrated
temperature and moisture sensors have been widely deployed in the wheatland in Zhejiang academy
of agricultural sciences, as shown in Figure 1.
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Figure 1. Temperature and moisture sensor deployed in the wheatland.
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Many kinds of moisture sensors have been researched and developed. However,
previous researchers have proven that temperature variation has a significant and nonlinear influence
on moisture measurement results [1,2]. On the one hand, the materials which make up the moisture
sensing elements behave in a nonlinear way with the temperature. On the other hand, all moisture
sensors must contain active electronics, which are characterized by a nonlinear relationship with
temperature [3,4]. To obtain a correct moisture reading, primitive moisture measurement data need to
be adjusted according to temperature, often in a nonlinear manner [3–6].

In general, a commercial sensor would be made of a temperature sensing unit and a moisture
sensing unit integrated together. Conventionally, moisture adjustment by temperature was achieved
with look-up tables (LUTs), which are large datasets consisting of measured temperatures, measured
moistures, and corresponding adjusted moisture values [6]. Manufacturers perform huge numbers of
tests under various temperatures and moisture levels in order to construct LUTs. However, the accuracy
of this nonlinear mapping relationship depends on the precision of the measurements and the size of
the LUT [7,8]. LUT-based adjustment can be highly accurate; however, a sensor unit can potentially be
used in a huge range of temperatures, thus requiring a huge LUT to accurately provide moisture level
readings. Despite this, the LUT method is effective and straightforward, although its huge size means
it cannot be implemented in a microcontroller with limited memory.

A mathematical model of nonlinear adjustment can overcome the shortcomings of conventional
sensors, and to a large extent, reflect and compensate the complex effect of temperature on moisture
readings [9–11]. However, the existing compensation methods often use nonlinear mathematical
models with fixed orders, which may not reach optimal error under different usage environments,
thus making it difficult to attain the best compensation effects. In addition, these models are hard to
migrate from one type of sensor to another.

In order to achieve a better sensing performance and lower measurement error, we propose a
nonlinear compensation method for adaptive order adjustment. A high-order mathematical formula is
used to reflect the nonlinear relationship between the actual moisture and the sensor’s measured probe
voltage [12,13]. A high-order mathematical compensation model with the smallest error is selected by
an adaptive order selection module. The experimental results verify that the measurement accuracy
of this adaptive order nonlinearity compensated temperature and moisture sensor is significantly
improved.

2. System Construction

The structure of a conventional temperature and moisture sensor is shown in Figure 2.
A temperature sensor and a moisture sensor are integrated in the system. The analog measurement
results are digitized by an analog-to-digital converter (ADC) and then calibrated by a LUT-based
linearization module [14]. The calibration memory should be large enough to store a large LUT
for high-accuracy temperature and moisture sensing, thus this traditional method requires a large
storage capacity.
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Figure 2. System diagram of the conventional moisture and temperature sensor.
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As shown in Figure 3, the temperature-moisture sensor uses a fixed-order temperature-dependent
nonlinear compensation model rather than a look-up table. Temperature-dependent nonlinear
modeling requires three sets of data, including internally detected moisture, internally detected
temperature, and true moisture transmitted from the outside via the RS485 interface [15].
When determining the fixed-order nonlinear model, the least square (LS) algorithm is used to estimate
the model coefficients.

Moisture 

Sensor Core
ADCs

Temperature 

Sensor Core

I2C/RS485 

Interfaces

Current Moisture and Temperature Sensor

(Model-based Linearization)

Model-based

Linearization

(Fixed Order)

Temperature-dependent 

Nonlinearity Modeling

(Fixed Order)

Coefficients Estimation

(Fixed Order)

Figure 3. Architecture of the current sensor with model-based temperature-dependent nonlinearity
compensation system.

The adaptive order-adjusted temperature and moisture sensor proposed in this paper, as shown
in Figure 4, adds an adaptive order adjustment and feedback module based on the Figure 3
fixed-order nonlinear compensation model. The same as the architecture shown in Figure 3,
temperature-dependent nonlinear modeling requires the same three sets of data, including internally
detected temperature, internally detected moisture, and true moisture. The adaptive nonlinear order
regulation algorithm module is added to search for the model with the optimal nonlinear order and
the best nonlinearity compensation performance. During the searching process, the LS algorithm is
used to estimate coefficients of the variable order models.
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Figure 4. System architecture of the proposed temperature and moisture sensor with adaptive nonlinear
order regulating model-based linearization.

The advantages and disadvantages and degree of difficulty of the three temperature and moisture
sensors are shown in Table 1. All of the three integrated sensors can be implemented by a common
sensor with temperature and moisture sensor cores and an STM32L4R5 microcontroller with 2048 KB
flash, 640 KB ram, 12-bit DACs (digital-analog convertor), and 16-bit ADCs (analog-digital convertor)
from STMicroelectronics in Geneva, Switzerland.
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Table 1. Comparison of three temperature and moisture sensors’ architectures.

Sensors’
Architectures Linearization Technology Advantages Disadvantages

Conventional sensor
(Figure 2) LUT-based linearization Simple and

easy-to-achieve

Too many experiments, too
much memory consumption,

poor performance

Current sensor
(Figure 3) Model-based linearization Practical and efficient Inflexible, performance can

be improved

Proposed sensor
(Figure 4)

Adaptive nonlinear order regulating
model-based linearization Perfect performance More computational

resources

3. Adaptive Nonlinear Order Regulating Model-Based Nonlinearity Compensation Algorithm

We performed a total of 12 sets of tests among an adaptively-ordered nonlinearly-corrected sensor,
a noncalibrated sensor, and a fixed third-order nonlinearly-corrected sensor just as in [15]. The true
moisture levels of each test were fixed, and moisture was measured in a changing environment from
5 ◦C to 40 ◦C, and subsequently compared with the true moisture values. The nonlinear effects
of temperature on moisture measurements are clearly observed. The nonlinear modeling and the
coefficients estimation are brought out by the experimental data of moisture sensing, as listed in Table 2.
To be clear, the true moisture values in the Table 2 were measured using the weighting method after
drying, which is a well-known standard method of moisture measurement [16,17].

Table 2. Experimental data of temperature and moisture sensing (in %).

Temp. Idx. m 1 2 3 4 5 6 7 8 Real

Temp. Tm 5 ◦C 10 ◦C 15 ◦C 20 ◦C 25 ◦C 30 ◦C 35 ◦C 40 ◦C Moisture

Moisture Idx. i Measured Moisture θmeas(i, Tm) θreal(i)

1 33.1 33.8 34.5 35.4 35.9 36.2 38.7 40.2 40.3
2 31.4 31.9 32.4 33.1 33.5 34.9 36.3 37.3 37.2
3 27.9 29.8 30.3 30.6 31.1 31.4 31.9 32.3 32.0
4 22.6 23.1 23.5 24.3 25.1 25.7 26.5 27.3 26.8
5 19.6 19.9 20.9 22.2 22.8 23.6 24.5 25.8 24.6
6 19.1 20.4 20.8 21.4 22.6 23.2 25.0 25.1 23.3
7 17.2 18.3 18.9 19.5 19.9 21.1 22.3 23.7 20.9
8 16.7 17.5 18.1 18.8 19.6 20.6 21.5 22.8 18.6
9 15.1 15.7 16.7 17.4 18.3 19.7 20.7 21.6 16.8
10 14.3 14.8 15.5 16.1 17.1 18.5 19.6 20.3 15.1
11 13.6 14.1 14.8 15.0 15.8 16.7 18.1 19.4 13.9
12 12.5 13.2 13.9 14.1 14.5 15.3 17.2 18.1 12.6

The empirical Topp’s equation describes the nonlinear relationship between the volumetric water
content θ and the dielectric constant of water εb [18]:

θ = −5.3× 10−2 + 2.92× 10−2εb − 5.5× 10−4εb
2 + 4.3× 10−6εb

3. (1)

Thus, during the measurement, we expected the measured moisture θmeas to vary with
temperature according to the following relationship:

θmeas(i, Tm) =− 5.3× 10−2 + 2.92× 10−2εb,meas(i, Tm)− 5.5× 10−4εb,meas
2(i, Tm)

+ 4.3× 10−6εb,meas
3(i, Tm), (2)

where i = 1, 2, . . . , 12, and Tm = 5, 10, . . . , 40 ◦C, and where m = 1, 2, . . . , 8.
During the test, the dielectric constant of water decreases with increasing temperature [19–21],

and so a temperature-dependent nonlinear model needs to be constructed to compensate for the effects
of temperature [15,22,23]. The relationship between the fixed actual moisture value θreal and the actual
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water dielectric constant can be seen in Equation (3). The nonlinear relationship we constructed can be
seen in Equations (4) and (5).

θreal(i) =− 5.3× 10−2 + 2.92× 10−2εb,real(i)− 5.5× 10−4εb,real(i)
2 + 4.3× 10−6εb,real(i)

3 (3)

εb,real(i) =εb,meas(i, Tm) · Cn (i, Tm) (4)

Cn(i, Tm) =1− a1(i)× (Tm − 25)− a2(i)× (Tm − 25)2 − . . .− an(i)× (Tm − 25)n, (5)

where θreal(i) is the real moisture of the ith test; εb,real(i) is the real dielectric permittivity of water in
general; Cn (i, Tm) is temperature-related nonlinear factor; and ak(i), k = 1, 2, . . . , n are the n nonlinear
coefficients to be estimated.

Estimated nonlinear coefficients are applied to validate the performance of the temperature-related
nonlinearity compensation. By plugging âk(i), k = 1, 2, . . . , n and εb,meas(i, Tm) into Equations (3)–(5),
one gets the estimation of the real moisture values θ̂real(i). For each test i, the moisture error ratios
with and without nonlinearity compensation [15], expressed by Re,w(i) and Re,wo(i), are respectively
defined as

Re,w(i) =
M

∑
m=1

∣∣∣∣∣1− θ̂i,nl

θi,nl

∣∣∣∣∣× 1
M
× 100% (6)

Re,wo(i) =
M

∑
m=1

∣∣∣∣1− θi,meas

θi,nl

∣∣∣∣× 1
M
× 100%, (7)

where m is the temperature index, and M is the total number of the temperatures.
The specific calculation process can be seen in Algorithm 1:

Algorithm 1 Calculation process.

Require: θreal(i): real moisture of the ith test;

εb,real(i): real dielectric permittivity of water;

Cn (i, Tm): temperature-related nonlinear factor;

ak(i), k = 1, 2, . . . , n:the nonlinear coefficients to be estimated;

n: Nonlinear correction equation order;
Ensure: P:the optimal corrected nonlinear order;

1: initial n = 0; Re,w,tmp = 0
2: repeat
3: n = n + 1;
4: compute εb,meas(i, Tm) by solving Equation (2) with the measured moisture θmeas(i, Tm) in each

row of Table 2;
5: acquire εb,real(i) by solving Equation (3) with the real moisture θreal(i) in each row of Table 2;
6: obtain Cn(i, Tm) by plugging εb,meas(i, Tm) and εb,real(i) into Equation (4);
7: compute ak(i), k = 1, 2, . . . , n by solving Equation (5) by LS algorithm;
8: acquire Re,wo(i);
9: obtain Re,w(i);

10: determine S(i) = boolean(mean(Re,w(i)) > Re,w,tmp);
11: if (S(i) == 0) then
12: set Re,w,tmp = mean(Re,w(i))
13: set P = n
14: else
15: set P = n− 1
16: end if
17: until (S(i) == 1)
18: min Re,w (i) is found, P is the optimal corrected nonlinear order.

In particular, the LS algorithm in Step 4 can be represented in matrix form as follows:
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For the ith moisture index, Equation (4) can be rewritten in the matrix form as

Ci = ones(M, 1)− T · ai, (8)

where the matrixes with nth nonlinear order are

Ci = [ C(i, T1), C(i, T2), . . . , C(i, TM) ]T

ones(M, 1) = [ 1, 1, 1, . . . , 1 ]T

T = [ (T1 − 25), (T1 − 25)2, (T1 − 25)3, . . . , (T1 − 25)n;

(T2 − 25), (T2 − 25)2, (T2 − 25)3, . . . , (T2 − 25)n

. . .

(TM − 25), (TM − 25)2, (TM − 25)3, . . . , (TM − 25)n]

ai = [ a1(i), a2(i), a3(i), . . . , an(i) ]T

and (T) denotes matrix transpose.
With the knowledge of Ci and T, the nonlinear coefficients ai can be estimated by the LS method.

The objective function is
arg min

ai
‖ones(M, 1)−Ci − T · ai‖2. (9)

The least squares solution to Equation (9) is

âi = (THT)−1TH(ones(M, 1)−Ci), (10)

where âi is the estimated nonlinear coefficients matrix.

4. Experimental Results and Discussion

Moisture error ratios under various nonlinear model-based compensation methods and the
traditional methods are displayed in Figure 5. Measurement environments were kept the same
throughout. It is obvious that the measurement error is very large without correction, which shows
that temperature has a significant and nonlinear influence on the measurement results. In addition,
measurement errors were greatly reduced when using third-order nonlinear correction. To further
enhance sensor performance, we proposed and studied the adaptive order adjustable model. For the
sensors studied in this article, the moisture error ratio reached a minimum under the eighth-order
nonlinear compensation model, which indicated the best correction effect. Furthermore, corrections at
even higher orders (ninth and above) would not yield better results as they would be overcorrected.

For instance, in the condition of moisture index i = 1, the real moisture is θreal(1) = 40.3%,
the sensing error ratio without nonlinearity compensation is as high as Re,wo(1) = 10.73%; however,
the error ratios with 3rd-order and 8th-order nonlinearity compensations are reduced to Re,w(1)|n=3 =

4.822% and Re,w(1)|n=8 = 1.365%, respectively.
In the condition of moisture index i = 12, the real moisture is θreal(12) = 12.6%, the measurement

error ratio without nonlinearity compensation is Re,wo(12) = 17.86%, but the error ratio with 3rd-order
nonlinearity compensation is reduced to Re,w(12)|n=3 = 7.852%, while the error ratio with 8th-order
nonlinearity compensation is Re,w(12)|n=8 = 1.885%. It is verified that the proposed adaptive nonlinear
order regulating model-based nonlinearity compensation algorithm can obtain the optimal nonlinear
order and achieve the best compensation performance.
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Figure 5. Performance validation of the temperature-related nonlinearity compensation(n = 3∼8).

To be clear, the 3∼8th-order nonlinear coefficients are estimated and listed in Tables 3–8, respectively.

Table 3. Estimated nonlinear coefficients for the 3rd nonlinear order model.

Test No. Estimated Nonlinear Coefficients

i â1(i) â2(i) â3(i)

1 2.3059 × 10−3 −0.1388 × 10−3 −0.0048 × 10−3

2 2.3831 × 10−3 −0.1185 × 10−3 −0.0052 × 10−3

3 0.6369 × 10−3 −0.0511 × 10−3 0.0007 × 10−3

4 2.3190 × 10−3 −0.1013 × 10−3 −0.0043 × 10−3

5 3.0301 × 10−3 −0.1183 × 10−3 −0.0045 × 10−3

6 2.5375 × 10−3 −0.0515 × 10−3 −0.0019 × 10−3

7 2.2943 × 10−3 −0.0170 × 10−3 0.0004 × 10−3

8 1.8741 × 10−3 0.0943 × 10−3 0.0035 × 10−3

9 2.3390 × 10−3 0.1327 × 10−3 0.0040 × 10−3

10 2.2872 × 10−3 0.1928 × 10−3 0.0050 × 10−3

11 1.5311 × 10−3 0.2383 × 10−3 0.0081 × 10−3

12 1.0382 × 10−3 0.2828 × 10−3 0.0109 × 10−3
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Table 4. Estimated nonlinear coefficients for the 4th nonlinear order model.

Test No. Estimated Nonlinear Coefficients

i â1(i) â2(i) â3(i) â4(i)

1 4.0052 × 10−4 −3.8107 × 10−4 7.5852 × 10−6 1.0460 × 10−6

2 9.9438 × 10−4 −2.9512 × 10−4 3.7633 × 10−6 7.6233 × 10−7

3 4.0457 × 10−4 −8.0658 × 10−5 2.2654 × 10−6 1.2754 × 10−7

4 1.1753 × 10−3 −2.4673 × 10−4 3.0875 × 10−6 6.2788 × 10−7

5 1.4789 × 10−3 −3.1559 × 10−4 5.5129 × 10−6 8.5151 × 10−7

6 2.4366 × 10−3 −6.4367 × 10−5 −1.2525 × 10−6 5.5407 × 10−8

7 1.9509 × 10−3 −6.0701 × 10−5 2.6894 × 10−6 1.8852 × 10−7

8 2.7507 × 10−3 2.0581 × 10−4 −2.1841 × 10−6 −4.8120 × 10−7

9 3.9083 × 10−3 3.3228 × 10−4 −6.1429 × 10−6 −8.6141 × 10−7

10 4.5520 × 10−3 4.8080 × 10−4 −9.7061 × 10−6 −1.2432 × 10−6

11 3.7140 × 10−3 5.1586 × 10−4 −6.0784 × 10−6 −1.1983 × 10−6

12 3.8067 × 10−3 6.3482 × 10−4 −7.1164 × 10−6 −1.5197 × 10−6

Table 5. Estimated nonlinear coefficients for the 5th nonlinear order model.

Test No. Estimated Nonlinear Coefficients

i â1(i) â2(i) â3(i) â4(i) â5(i)

1 2.258 × 10−3 −5.365 × 10−4 −1.939 × 10−5 1.864 × 10−6 7.825 × 10−8

2 2.698 × 10−3 −4.376 × 10−4 −2.097 × 10−5 1.512 × 10−6 7.174 × 10−8

3 1.214 × 10−3 −1.483 × 10−4 −9.480 × 10−6 4.836 × 10−7 3.407 × 10−8

4 2.580 × 10−3 −3.642 × 10−4 −1.730 × 10−5 1.246 × 10−6 5.915 × 10−8

5 2.562 × 10−3 −4.062 × 10−4 −1.021 × 10−5 1.328 × 10−6 4.562 × 10−8

6 3.223 × 10−3 −1.302 × 10−4 −1.267 × 10−5 4.016 × 10−7 3.313 × 10−8

7 2.672 × 10−3 −1.211 × 10−4 −7.783 × 10−6 5.060 × 10−7 3.038 × 10−8

8 1.928 × 10−3 2.746 × 10−4 9.760 × 10−6 −8.433 × 10−7 −3.465 × 10−8

9 2.044 × 10−3 4.883 × 10−4 2.093 × 10−5 −1.682 × 10−6 −7.853 × 10−8

10 2.173 × 10−3 6.799 × 10−4 2.484 × 10−5 −2.290 × 10−6 −1.002 × 10−7

11 1.189 × 10−3 7.272 × 10−4 3.059 × 10−5 −2.310 × 10−6 −1.064 × 10−7

12 4.343 × 10−4 9.170 × 10−4 4.185 × 10−5 −3.004 × 10−6 −1.420 × 10−7

Table 6. Estimated nonlinear coefficients for the 6th nonlinear order model.

Test No. Estimated Nonlinear Coefficients

i â1(i) â2(i) â3(i) â4(i) â5(i) â6(i)

1 −1.283 × 10−3 −9.107 × 10−4 5.032 × 10−5 6.986 × 10−6 −1.671 × 10−7 −1.515 × 10−8

2 3.948 × 10−4 −6.810 × 10−4 2.437 × 10−5 4.843 × 10−6 −8.783 × 10−8 −9.853 × 10−9

3 3.672 × 10−4 −2.378 × 10−4 7.181 × 10−6 1.708 × 10−6 −2.457 × 10−8 −3.621 × 10−9

4 7.791 × 10−4 −5.545 × 10−4 1.814 × 10−5 3.851 × 10−6 −6.562 × 10−8 −7.704 × 10−9

5 7.840 × 10−4 −5.941 × 10−4 2.479 × 10−5 3.900 × 10−6 −7.759 × 10−8 −7.608 × 10−9

6 1.487 × 10−3 −3.137 × 10−4 2.151 × 10−5 2.914 × 10−6 −8.720 × 10−8 −7.430 × 10−9

7 1.806 × 10−3 −2.126 × 10−4 9.270 × 10−6 1.759 × 10−6 −2.965 × 10−8 −3.706 × 10−9

8 3.228 × 10−3 4.120 × 10−4 −1.583 × 10−5 −2.723 × 10−6 5.542 × 10−8 5.561 × 10−9

9 4.596 × 10−3 7.580 × 10−4 −2.931 × 10−5 −5.374 × 10−6 9.831 × 10−8 1.092 × 10−8

10 5.370 × 10−3 1.018 × 10−3 −3.810 × 10−5 −6.915 × 10−6 1.213 × 10−7 1.368 × 10−8

11 4.205 × 10−3 1.046 × 10−3 −2.878 × 10−5 −6.672 × 10−6 1.026 × 10−7 1.290 × 10−8

12 3.272 × 10−3 1.217 × 10−3 −1.401 × 10−5 −7.108 × 10−6 5.458 × 10−8 1.214 × 10−8
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Table 7. Estimated nonlinear coefficients for the 7th nonlinear order model.

Test No. Estimated Nonlinear Coefficients

i â1(i) â2(i) â3(i) â4(i) â5(i) â6(i) â7(i)

1 1.921 × 10−3 −1.904 × 10−3 −7.442 × 10−5 2.279 × 10−5 1.036 × 10−6 −6.598 × 10−8 −3.154 × 10−9

2 2.820 × 10−3 −1.433 × 10−3 −7.006 × 10−5 1.681 × 10−5 8.229 × 10−7 −4.833 × 10−8 −2.388 × 10−9

3 1.210 × 10−3 −4.993 × 10−4 −2.564 × 10−5 5.868 × 10−6 2.920 × 10−7 −1.700 × 10−8 −8.300 × 10−10

4 2.482 × 10−3 −1.083 × 10−3 −4.816 × 10−5 1.225 × 10−5 5.739 × 10−7 −3.472 × 10−8 −1.677 × 10−9

5 2.409 × 10−3 −1.098 × 10−3 −3.850 × 10−5 1.192 × 10−5 5.328 × 10−7 −3.339 × 10−8 −1.600 × 10−9

6 2.821 × 10−3 −7.277 × 10−4 −3.045 × 10−5 9.499 × 10−6 4.140 × 10−7 −2.860 × 10−8 −1.314 × 10−9

7 2.661 × 10−3 −4.778 × 10−4 −2.402 × 10−5 5.977 × 10−6 2.914 × 10−7 −1.727 × 10−8 −8.417 × 10−10

8 1.823 × 10−3 8.478 × 10−4 3.888 × 10−5 −9.656 × 10−6 −4.722 × 10−7 2.785 × 10−8 1.383 × 10−9

9 2.382 × 10−3 1.445 × 10−3 5.690 × 10−5 −1.630 × 10−5 −7.332 × 10−7 4.605 × 10−8 2.180 × 10−9

10 2.304 × 10−3 1.969 × 10−3 8.126 × 10−5 −2.204 × 10−5 −1.030 × 10−6 6.231 × 10−8 3.018 × 10−9

11 1.513 × 10−3 1.881 × 10−3 7.601 × 10−5 −1.995 × 10−5 −9.081 × 10−7 5.560 × 10−8 2.650 × 10−9

12 1.159 × 10−4 2.196 × 10−3 1.089 × 10−4 −2.268 × 10−5 −1.131 × 10−6 6.221 × 10−8 3.107 × 10−9

Table 8. Estimated nonlinear coefficients for the 8th nonlinear order model.

Test No. Estimated Nonlinear Coefficients

i â1(i) â2(i) â3(i) â4(i) â5(i) â6(i) â7(i) â8(i)

1 −9.155 × 10−4 3.239 × 10−2 −3.458 × 10−2 8.583 × 10−3 −1.815 × 10−3 1.067 × 10−4 −5.813 × 10−6 −6.912 × 10−10

2 7.324 × 10−4 2.979 × 10−2 −2.923 × 10−2 7.514 × 10−3 −1.548 × 10−3 9.244 × 10−5 −4.967 × 10−6 −5.057 × 10−10

3 2.747 × 10−4 1.939 × 10−2 −1.799 × 10−2 5.398 × 10−3 −1.107 × 10−3 7.096 × 10−5 −3.808 × 10−6 −1.637 × 10−10

4 9.766 × 10−4 3.094 × 10−2 −2.723 × 10−2 7.688 × 10−3 −1.496 × 10−3 9.426 × 10−5 −4.884 × 10−6 −3.529 × 10−10

5 7.935 × 10−4 4.380 × 10−2 −3.524 × 10−2 1.083 × 10−2 −1.985 × 10−3 1.311 × 10−4 −6.516 × 10−6 −3.492 × 10−10

6 1.526 × 10−3 3.937 × 10−2 −2.354 × 10−2 9.513 × 10−3 −1.538 × 10−3 1.159 × 10−4 −5.435 × 10−6 −2.947 × 10−10

7 1.526 × 10−3 4.150 × 10−2 −2.016 × 10−2 1.006 × 10−2 −1.410 × 10−3 1.218 × 10−4 −5.181 × 10−6 −1.637 × 10−10

8 2.838 × 10−3 3.561 × 10−2 3.262 × 10−4 7.713 × 10−3 −4.711 × 10−4 8.782 × 10−5 −2.434 × 10−6 2.947 × 10−10

9 3.815 × 10−3 4.165 × 10−2 4.732 × 10−3 8.636 × 10−3 −3.747 × 10−4 9.545 × 10−5 −2.290 × 10−6 4.929 × 10−10

10 4.639 × 10−3 3.822 × 10−2 1.646 × 10−2 7.210 × 10−3 1.778 × 10−4 7.484 × 10−5 −6.800 × 10−7 6.567 × 10−10

11 3.399 × 10−3 3.327 × 10−2 2.385 × 10−2 6.242 × 10−3 5.424 × 10−4 6.297 × 10−5 3.400 × 10−7 5.823 × 10−10

12 2.319 × 10−3 3.188 × 10−2 3.014 × 10−2 5.931 × 10−3 7.631 × 10−4 5.879 × 10−5 8.521 × 10−7 6.412 × 10−10

5. Conclusions

This paper presents an adaptive nonlinear order regulating model-based nonlinear compensation
system for integrated temperature and moisture sensors. On the basis of a temperature-dependent
multiorder nonlinear model for compensation correction, the measurement performance of each
order nonlinear model and traditional method is compared. The experimental results verify that the
nonlinear model compensation method can significantly reduce the sensing error, and the eighth order
nonlinear model achieves the best measurement performance on the the integrated temperature and
moisture sensor deployed in the wheatland in Zhejiang academy of agricultural sciences. Through
this adaptive nonlinear compensation method, the measurement performance of the temperature and
moisture sensor is greatly improved.
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