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Abstract: Microstructures on metal surfaces with diameters of tens to hundreds of micrometers and
depths of several micrometers to tens of micrometers can improve the performance of engineering
parts. Air-shielding electrochemical micromachining (AS-EMM) is a promising method for fabricating
these microstructures, owing to its advantage of high efficient and better localization. However,
the machining performance is often influenced by the machining or nonmachining parameters
in AS-EMM. In order to get a better machining result in AS-EMM, the optimization of AS-EMM,
including nozzle inclination and process parameters, was studied in this paper. Firstly, nozzle
inclination was optimized by the different selected air incidence angles (θ) in simulation, and θ = π/4
was advised. Then, the grey relational analysis based on the orthogonal test method was used to
analyze the grey relational grade for parameters and obtain the optimal parameter combination, i.e.,
at electrolyte velocity 5.5 m/s, gas velocity 160 m/s, and voltage 8 V. Finally, the optimization result
was verified experimentally.

Keywords: air-shielding electrochemical micro-machining; nozzle design; flow field; grey relational
analysis; optimization

1. Introduction

Modern tribology [1,2], aerodynamics [3], and bionics [4] all confirm that metal surfaces with
morphologies comprising microstructures of tens to hundreds of microns across can significantly
improve equipment performance; for example, reducing friction, wear, and frictional resistance,
improving stiffness, and via the removal of undesirable surface adhesion properties and seizures.
Devaiah et al. [5] investigated the effect of a micropit on cutting performance of tools and found that it
reduced the cutting force of tools and changed chip shape. Li et al. [6] filled the micropits with MnS2

powder with different incidence rates, and found that the fraction coefficient decreased from 0.18 to
0.1, and the wear decreased. Xiao et al. [7] mentioned that dimples in mechanical seals could enhance
heat transfer by increasing the solid–fluid contact area and mixing, thus reducing the seal’s interface
temperature by about 10%. Djamaï [8] found that thermo-hydrodynamic mechanical-face seals, which
were equipped with a notched rotating face, were efficient to reduce friction. Zhuang et al. [9] studied
microstructure heat exchangers with different forms of microstructures and different aspect ratios and
found that the heat transfer performance improved with the increase of aspect ratio of microstructures.

Much attention has been paid to the manufacturing of textures on metals, and Electrochemical
machining (ECM) is one of the nontraditional methods to machine materials into complex shapes with
high precision. In ECM, the material was removed by electrolysis. Compared with other microstructure
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machining methods, ECM has advantages of no mechanical or thermal stress, no burrs or distortion
of features [10], high surface quality, and high material removal rate (MRR), regardless of material
hardness. It has many applications, one of which is electrochemical jet machining (EJM). EJM can
control an electrolyte jet with a high velocity, concentrating on the local range for ejecting the electrolyte
through a nozzle. Therefore, only the workpiece material exposed to the jet is removed by anodic
dissolution. It is widely used in the machining of microstructures due to its high localization, large
aspect ratio of machining morphology, and having no special requirements on tool shape. Liu et al. [11]
investigated abrasive composite EJM by adding a solid micro-abrasive into the electrolyte. The anode
dissolution and micro-abrasive erosion worked together to remove materials and improve the surface
texture processing efficiency. Kunieda et al. [12] proposed an EJM application using a flat electrolyte
jet, which offered a new idea for micromilling and electrochemical turning. Schubert et al. [13] applied
superimposing multidimensional motions to a fabricated 3D complex structure with spiral geometry
by EJM. Clare et al. [14] studied the influence of different parameters (jet angle, electrolyte, and current
density) on the machining morphology by using a nozzle that could change the jet angle and produced
complex structures with better precision. Hackert et al. [15] established a fluid dynamic model with
COMSOL Multiphysics to simulate the formation and change of the liquid beam, and demonstrated
the material removal process in EJM. Zhao et al. [16] established a multiphysics model to simulate
EJM on inclined planes and studied the distribution of current density under different jet angles
and workpiece configurations, and experimental verification was conducted to confirm the analysis.
To reduce the undercutting, Chen et al. [17] proposed a method of conductive mask EJM for generating
a micro-dimple. Speidel et al. [18] investigated different electrolytes for the purpose of enhancing
the effect of processing. However, in EJM, severe stray corrosion around the machining area with
opposite electrodes, which is caused by the hydraulic jump, would seriously affect the accuracy of
microstructures. To solve this problem, Wang et al. [19,20] proposed a new processing method of
air-shielding electrochemical micromachining (AS-EMM), which made a layer of compressed gas film
coat the liquid beam coaxially and control the electrolyte to focus precisely on the workpiece area
where the tool electrode was directly opposite.

Previous studies [19,20] have proved that AS-EMM can significantly reduce stray corrosion and
improve the surface processing quality. However, the optimization of the nozzle inclination and
machining parameters affecting the machining performance is essential. In this study, the nozzle was
firstly optimized in simulation, based on the different incidence angles. Then, Grey relational analysis
based on the orthogonal test method was used to develop a mathematical model for experimental
results, and the built model was used as the objective functions for the multi-objective optimization.
The process parameters were optimized to get the better performance of surface roughness and the
micro pit’s aspect ratio. Finally, the optimization result was verified experimentally.

2. Schematic of the Air-Shielding Electrochemical Micromachining (AS-EMM)

The schematic of AS-EMM is shown in Figure 1. The experimental configuration includes the
machining tool, the control system (computer), the electrolyte recycle system, an air pump, power
supply, and a nozzle. The air pump and electrolyte recycle system provide gas and electrolyte in the
interelectrode gap (IEG) with a certain amount of pressure, respectively. The machine tool is controlled
by the control system. The cathode is fixed in the spindle of the machine tool through the nozzle.
Material on the workpiece surface is eroded via the power supply when connected.
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was created, and Fluent was employed to analyze the flow field characters. Due to the axis 

symmetry, the model was built as in Figure 2. There were 30,854 triangle units in total in this model. 

Considering the electrolyte and air in the machining gap, the mixture model was selected. The inlets’ 

boundary condition for air and the electrolyte were 0.15 MPa and 0.1 MPa, respectively. The initial 

outlet pressure was 0 MPa. The distance from the outlet of electrolyte to the workpiece surface is  

5 mm. The effect of the compressed air incidence angle on air void fraction and velocity in the flow 
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conductivity of flow, so that the MRR is improved. Higher velocity of the electrolyte is helpful for 

removing the products in machining and updating the electrolyte, which can improve machining 

localization and MRR. As a result, the specific air incidence angle leads to lower air void fraction, 
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Figure 1. Schematic of (a) air-shielding electrochemical micromachining (AS-EMM) experimental
set-up; (b) nozzle structure; (c) the flow field in interelectrode gap; (d) research zone.

3. Optimization of Air Incidence Angle

3.1. Model Description

In AS-EMM, nozzle inclination influences the flow field in the machining gap and then the
machined micro pits. The optimization of the nozzle was done in simulation. The numerical model
was created, and Fluent was employed to analyze the flow field characters. Due to the axis symmetry,
the model was built as in Figure 2. There were 30,854 triangle units in total in this model. Considering
the electrolyte and air in the machining gap, the mixture model was selected. The inlets’ boundary
condition for air and the electrolyte were 0.15 MPa and 0.1 MPa, respectively. The initial outlet pressure
was 0 MPa. The distance from the outlet of electrolyte to the workpiece surface is 5 mm. The effect of
the compressed air incidence angle on air void fraction and velocity in the flow field was investigated.
In AS-EMM, lower air fraction in the machining area can improve conductivity of flow, so that the MRR
is improved. Higher velocity of the electrolyte is helpful for removing the products in machining and
updating the electrolyte, which can improve machining localization and MRR. As a result, the specific
air incidence angle leads to lower air void fraction, and a higher flow velocity is required in simulation.
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3.2. Effects of Compressed Air Incidence Angle on Void Fraction (Air) in the Flow Field

Figure 3 shows the contours of void fraction (air) in the flow field by simulation at different
incidence angles (θ) of compressed air. Blue and red colors represent the electrolyte and air, respectively.
The cloud charts indicate that the electrolyte beam flowing into the machining gap was confined and
becomes thinner with the decrease of the incidence angle (θ). Even, under the condition of θ = π/6, the
electrolyte beam disappears and becomes a mixture of electrolyte and air. That means that more air
flows into the electrolyte beam and forms a mixed flow field to spray to the workpiece surface. In the
machining process, more energy was expected to focus on the region where the material was removed.
If there is more air mixing into the electrolyte, the void fraction of air would increase, which would
lower the conductivity of the electrolyte, and so MRR decreases.
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Figure 3. Contours of void fraction (air) in flow field by simulation at different incidence angles (θ):
(a) No compressed air; (b) θ = π/2; (c) θ = π/3; (d) θ = π/4; (e) θ = π/6.

In order to obtain the value of the void fraction of air in the flow field, the data (Y = 4, 0 < X < 2)
were extracted (see Figure 4) from the simulation model. The curve denotes that the void fraction
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of air increases, surrounding the symmetry Y axis, with the decrease of the incidence angle. When
the incidence angle is larger than π/4, the focused effect is limited. However, under the condition of
θ = π/6, there is no pure electrolyte at the bottom of the cathode electrode. The electrolyte is a mixture
of NaNO3 and air, and this would lead to low MRR, which was not expected in the experiments.
Therefore, based on the discussions above, the air incidence angle of θ = π/4 was advised.
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3.3. Effects of Compressed Air Incidence Angle on Velocity in the Flow Field

In EMM, the products (sludge, gas, and heat) in the machining gap should be removed at a
certain electrolyte velocity. Timely renewal of the electrolyte can improve the machining speed and
stability. It is also very important to remove the machining products and renew the electrolyte in the
machining gap in AS-EMM. Figure 5 shows the contours of velocity in IEG by simulation at different
incidence angles (θ). It can be seen that the NaNO3 solution was shielded more with the decrease of
the incidence angle. The velocity along the Y axis varies when the applied compressed air is different.
Figure 6 depicts the graphs of velocity along the Y axis (X = 0) at different incidence angles. It shows
that the velocity clearly increases with the decrease of incidence angle (θ) and it can be twice the
velocity without compressed air (see Figure 5d,e, θ = π/4 and π/6). The electrolyte would spray to
the workpiece surface (Y = 5) at a higher speed and this would enhance the electrolyte renewal and
discharge of the products. However, considering the void fraction of air, the smaller air incidence
angle is a disadvantage to material removal, and θ = π/4 is more appropriate.
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Figure 5. The electrolyte flow velocity in the interelectrode gap (IEG) in simulation at different incidence
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4. Experimental Design and Machining Results

The optimization of the processing parameters was carried out based on the advised nozzle
inclination with the air incidence angle of π/4.

4.1. Design of Experiment

It was found that electrolyte velocity, gas velocity, and voltage had a great influence on machining
results according to the preliminary experiments. In order to get the optimum processing parameter
combination, an orthogonal test method was employed to design the experiments beforehand.
The orthogonal test method is a kind of experimental design method to study multifactors and
multilevels [21]. According to orthogonality, some representative points are selected from all
experiments. It can greatly reduce the duration of the experiment and help get enough data rapidly.
Therefore, a three-factor and four-level orthogonal experiment was design by Statistical Product and
Service Solution (SPSS). The factors including electrolyte velocity, gas velocity and voltage, and their
levels are shown in Table 1.

Table 1. Parameters and their levels.

Factors Symbol Unit
Levels

1 2 3 4

Electrolyte velocity A m/s 4 4.5 5 5.5
Gas velocity B m/s 0 80 120 160

Voltage C V 6 8 10 12
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4.2. Experimental Details

The experimental condition is shown in Table 2. SS304 stainless steel (Mucheng, Foshan, China)
and tungsten bar (Metalline, Luoyang, China) were selected as the workpiece material and tool material,
respectively. Experiments were done to study the relationship between the machining parameters,
including electrolyte velocity, gas velocity, and voltage, and the objectives, including the aspect ratio
and the roughness (Ra) of the micro pit. Aspect ratio can be defined as λ = H/D (H is the depth, and
D is the diameter of micro pit). The profiles of pit were measured by a 3D profilometer (Olympus
LEXT4500, Olympus, Tokyo, Japan). The roughness was measured by a surface roughness meter
(SJ-411, Mitutoyo, Kawasaki, Japan) and its uncertainty is less than 5%.

Table 2. Parameters of experiment.

Parameters Value

Machining gap 15 µm
Feed rate 60 µm·min−1

Electrode diameter 50 µm
Electrolyte concentration 10% NaNO3

Machining time 30 s
Duty ratio 50%
Frequency 100 kHz

Air incidence angle π/4

4.3. Experimental Results

Scanning electron microscope (SEM) photos of the micro pits processed in AS-EMM, based on the
conditions of Tables 1 and 2, are shown in Figure 7a–p. The measured data of aspect ratio and roughness
for the micro pits from Figure 7a–p are listed in Table 3 (No. 1–16). It can be seen that the micro pit size
and surface morphology processed by AS-EMM vary greatly under different experimental parameters.
The profile of the pit is not obvious when the voltage and electrolyte velocity are too small due to less
material removal (Figure 7a). However, excessive voltage and electrolyte velocity lead to large pit size,
serious stray corrosion, and reduced roughness, as shown in Figure 7i. The average detected aspect
ratio and the roughness obtained with 5 points at different parameters are listed in Table 3.
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Figure 7. Morphology of machining results.

Table 3. The detected machining results.

Exp. No A B C λ Ra/µm Exp. No A B C λ Ra/µm

1 1 1 1 0.064 0.116 9 3 1 3 0.176 0.113
2 1 2 2 0.099 0.121 10 3 2 4 0.190 0.167
3 1 3 3 0.184 0.128 11 3 3 1 0.132 0.139
4 1 4 4 0.174 0.152 12 3 4 2 0.219 0.081
5 2 1 2 0.140 0.139 13 4 1 4 0.215 0.187
6 2 2 1 0.126 0.097 14 4 2 3 0.196 0.159
7 2 3 4 0.188 0.138 15 4 3 2 0.204 0.072
8 2 4 3 0.201 0.136 16 4 4 1 0.181 0.043

5. Optimization of the Processing Parameters

The grey relational analysis is a method that can be applied to get the relationship between
groups of data [22] and is fundamentally a simple and straightforward multicriteria decision-making
technique [23]. To reduce errors caused by information asymmetry and better show influence of different
parameters on machining results, grey relational analysis is introduced to determine the optimal
parameters combination by analyzing the grey relational grade between parameters and responses.

5.1. Data Preprocessing

The grey relational analysis is based on the calculating the gray relational grade. It can be
calculated according to the original processing results and then its relational coefficient can be
computed. To simplify, it is necessary to make the original data dimensionless in units and orders of
magnitude before calculating the grey relational grade.

The original sequence of 16 experimental results is set as xi(k), i = 1, 2 . . . . . . , 16; k = 1, 2.
Where i is the experimental sequence number, k = 1 represents the aspect ratio, and k = 2 represents

the roughness.
As for the aspect ratio, in ECM, the larger the aspect ratio of pits is, the better localized the removal

of the material is. Therefore, the pretreatment formula of aspect ratio is as follows:

x∗i (k) =
xi(k) −minxi(k)

maxxi(k) −minxi(k)
(1)
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For surface roughness, the lower the machined surface roughness value is, the better the machining
quality is. Therefore, the pretreatment formula of surface roughness is as follows:

x∗i (k) =
maxxi(k) − xi(k)

maxxi(k) −minxi(k)
(2)

In Equations (1) and (2), xi(k),x∗i (k), maxxi(k), and minxi(k) are the original sequence number, the
sequence after data preprocessing, the maximum value, and minimum value in the original sequence,
respectively. The dimensionless experimental results are shown in Table 4.

Table 4. Dimensionless experimental results.

Exp. No Reference Sequence Exp. No Reference Sequence

λ Ra λ Ra

1 0.000 0.493 9 0.724 0.514
2 0.225 0.458 10 0.811 0.139
3 0.772 0.410 11 0.438 0.333
4 0.711 0.243 12 1.000 0.736
5 0.491 0.333 13 0.977 0.000
6 0.397 0.625 14 0.853 0.194
7 0.797 0.340 15 0.901 0.799
8 0.886 0.354 16 0.752 1.000

5.2. Correlation Coefficient

According to Table 4, the grey relational coefficients of aspect ratio and surface roughness are
respectively obtained. The calculation formula can be described as

ζ(x0(k), x∗i (k)) =

min
i

min
k

∣∣∣∣∣x0(k) − x∗i (k)
∣∣∣∣∣+ρmax

i
max

k

∣∣∣∣∣x0(k) − x∗i (k)
∣∣∣∣∣∣∣∣∣∣x0(k) − x∗i (k)

∣∣∣∣∣+ρmax
i

max
k

∣∣∣∣∣x0(k) − x∗i (k)
∣∣∣∣∣ (3)

where ζ is the grey relational coefficient, ρ is distinguishing coefficient, which is usually 0.5, and∣∣∣x0(k) − x∗i (k)
∣∣∣ is the absolute difference between the expected sequence (expected value is 1) and the

sequence after data processing, where x0(k) = 1 (k = 1,2), min
i

min
k

∣∣∣∣∣x0(k) − x∗i (k)
∣∣∣∣∣ is the minimum value

of the absolute difference sequence, and max
i

max
k

∣∣∣∣∣x0(k) − x∗i (k)
∣∣∣∣∣ is the maximum value of the absolute

difference sequence.
The grey relational grade can be obtained by

γi =
1
N

n∑
k = 1

ζ(x0(k), x∗i (k)) (4)

where γi is the grey relational grade, and N is the number of performance characteristics.
The grey relational coefficient, grade of the aspect ratio, and roughness for each experiment were

calculated by Equations (3) and (4) and listed in Table 5. Larger grey relational grade means a closer
machining result to the desired value. From Table 5, the Exp. No. 12 has the highest grade 0.7887,
which means the optimum parameter combination for the best structure morphology is A3B4C2.
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Table 5. Grey relational coefficient and grey relational grade.

Exp. No GRC
GRG Rank Exp. No GRC

GRG Rank
λ Ra λ Ra

1 0.3333 0.4966 0.4149 16 9 0.6443 0.4286 0.5364 11
2 0.3920 0.4800 0.4360 15 10 0.7257 0.4513 0.5885 7
3 0.6864 0.4586 0.5725 8 11 0.4709 0.6145 0.5427 10
4 0.6340 0.3978 0.5159 12 12 1.0000 0.5774 0.7887 1
5 0.4954 0.4286 0.4620 14 13 0.9565 0.4977 0.7271 3
6 0.4534 0.5714 0.5124 13 14 0.7725 0.4777 0.6251 6
7 0.7115 0.4311 0.5713 9 15 0.8345 0.6341 0.7343 2
8 0.8145 0.4364 0.6254 5 16 0.6686 0.7294 0.6990 4

However, there are a total of 64 combinations in the three-factor and four-level experiments,
among which there may be a parameter combination whose grey relational grade is higher than that of
A3B4C2. Therefore, the influence of a single factor on the grey relational grade was calculated, which
is shown in Figure 8. Based on Figure 8, the optimal combination of grey relational grade, which has
the highest grade of each parameter, is A4B4C2, i.e., the electrolyte velocity is 5.5 m/s, the gas velocity
is 160 m/s, and the voltage is 8 V.
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5.3. Experimental Verification

Verification experiments were carried out based on the optimum parameter combination of
electrolyte velocity of 5.5 m/s, gas velocity of 160 m/s, and voltage of 8 V. The machining result is
shown in Figure 9b. Figure 9 shows that the profile border of the machined pit by using the optimum
parameters was sharper than that obtained by using the parameters in group 12. Its aspect ratio and
roughness were 0.226 and 0.072, respectively, which is 3% higher and 11% lower than those of group
12. Verifying experiments denotes that the optimum parameters could be revised using the presented
grey relational analysis method to realize a better machining morphology.
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6. Conclusions

AS-EMM method was verified to be vital for machining microstructures on metal surface with
high quality. In this paper, the nozzle inclination and machining parameters were optimized based on
simulation and experiment analysis. Some conclusions are as follows:

1. Simulation results indicated that the void fraction (air) and velocity in the flow field increased
with the decrease of nozzle inclination. According to the demonstrated model in this paper, the
most appropriate nozzle inclination was θ = π/4;

2. The optimal parameter combination for the multi-objective was A4B4C2; i.e., at 5.5 m/s electrolyte
velocity, 160 m/s gas velocity, and 8 V voltage, the micro pit with better performance in aspect
ratio and roughness could be processed at these conditions;

3. The proposed method makes a contribution to the improvement of quality of the micro pits in
AS-EMM. It is also effective for optimization of the structure design and machining parameters in
other machining methods.
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