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Abstract: The phenomenon of electro-osmosis was studied by performing numerical simulations
on the flow between parallel walls and at the nozzle microchannels. In this work, we propose a
numerical approximation to perform simulations of vortex formation which occur after the passage of
the fluid through an abrupt contraction at the microchannel. The motion of the charges in the solution
is described by the Poisson–Nernst–Planck equations and used the generalized finite differences
to solve the numerical problem. First, solutions for electro-osmotic flow were obtained for the
Phan–Thien/Thanner model in a parallel walls channel. Later simulations for electro-osmotic flow
were performed in a nozzle. The formation of vortices near the contraction within the nozzle was
verified by taking into account a flow perturbation model.

Keywords: HiG-Flow; HiG-Tree; finite differences; viscoelastic; electro-osmotic

1. Introduction

For more than 200 years, it has been known that certain liquid solutions can flow through a small
channel by applying an electrical potential difference at both ends of the microchannel. This area of
study, or technique of manipulation of the fluid, i.e., the transport of particles through application of an
external electric field, is called electrokinetics. In this scope, there are several applications in research
such as chemistry, engineering and biomedical [1,2]. Electrohydrodynamics is the connection between
theories of electromagnetism and hydrodynamics. Thus, the dynamics of fluids, electrokinetics and
electrochemistry form the basis for the study of electrohydrodynamics. A general review and further
details on the physical principles of electrokinetic effects can be found in [3].

One of the first studies of electro-osmosis is the work of Reuss [4], in which it is studied
the flow of a polar fluid by application of an external electric field which acts on ionic solution,
driving the movement of charged particles near the walls. At 1879, Helmholtz [5] reported the
electrical flow parameters for the electrokinetic transport and he named of the Electrical Double layer
(EDL). Subsequently, Goy [6] and Chapman [7] contributed in the studies of the flow distribution of
charges near the walls in a capillary tube. In 1918 von Smoluchowski [8] performed capillary studies,
generalizing the theory proposed by Helmholtz. Another great contribution was given by Debye
and Hückel in 1923 [9]. They determined the ionic concentration in the solution by linearizing the
Boltzmann distribution to the energy. Subsequently several studies related to electrokinetic effects in
Newtonian fluids were performed. Later [10] carried out studies in ultra-fine capillaries, observing the
effect of the surface potential on the flow. One year later Rice and Whitehead published the work on the
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surface potential effects for cylindrical capillaries [11]. Theoretical studies and numerical simulations
of electro-osmotic flows began to be published by Yang and Li [12] and Patankar and Hu [13]. In 2000,
Bianchi et. al. [14] solved the problem of electro-osmotic flow in a T-junction using the finite element
method. Analytical solutions for Newtonian flow in channels were demonstrated by Dutta and
Beskok [15]. In 2002 Lin et al. [16] solved numerically the Nernst-Planck equation for the ionic transport
together the Navier–Stokes equations for Newtonian fluids. The study of electro-osmotic flow for
non-Newtonian fluids is more recent, due to the difficulty imposed depending on the constitutive
model to be used. In 2008 Park and Lee [17] determined the electro-osmotic velocity for viscoelastic
flows while Zhao et al. [18] carried out studies of electro-osmotic flows of fluids modeled by the power
law. Tang et al. [19] also performed a numerical study of non-Newtonian fluids in electro-osmotic flows.
Afonso et al. [20] demonstrated the analytical solution for viscoelastic flows in a parallel plates and
circular section channel, taking into account a non-zero pressure gradient and the electrokinetic effect,
where one of the constitutive models used was the simplified Phan–Thien/Thanner (sPTT). In 2015,
Peng et al. [21] studied the effects of a concentration gradient within a channel, taking into account a
mixture of different electrolytic properties. Recently, Song et al. [22] carried out studies of numerical
instabilities in mixing a ferrous solution with water in a parallel walls channel. Niu et al. [23] studied
a microfluidic pumping by physical and numerical experiments in which it was found that the 2D
flow obeys power law decay. In other study Niu et al. [24] demonstrate that self-generated solvent
flow can be used to generate long-range attractions on the colloidal scale. The dynamics of this system
is governed by an effective conservative energy that for large separations depends on the inverse of
the distance. In this way, associated investigation of pumping including electrokinetic phenomenon
were performed by [25,26]. Recently Arcos et al. [27], studied the behavior of a sPTT fluid subject
to time dependent zeta potentials. Pimenta and Alves [28], study the implementation of electrically
driven flow models of viscoelastic fluids in the finite-volume framework of OpenFOAM, applied
the induced-charge electro-osmosis around a conducting cylinder and charge transport across an
ion-selective membrane. Pimenta and Alves [28] code is freely available as open-source code.

Microfluidics have found widespread application in science and technology, as in medicine.
The flow in microfluidic devices is usually created either by applying a pressure gradient (e.g., using
a syringe pump), or using electrokinetic effects. Although effective for laboratory experiments,
using a syringe pump is not practical for development of portable equipment for lab-on-a-chip
applications, such as biological sample analysis. In contrast, electrokinetic effects are particularly
useful at micro- and nanoscales. As an example, electro-osmosis can be efficiently employed to
induce fluid pumping using electric fields, therefore avoiding the need to integrate micro-pumps
and mechanical valves for flow control, which increase the complexity and the cost of disposable
microfluidic devices. Small scales typical of microfluidics, increase the relevance of surface forces
and electrokinetics effects and, for non-Newtonian fluids, there is an enhancement of the role of fluid
elasticity, beyond anything that can be attained at macroscale. Thus, given the importance of the
topic, in this work computational experiments were performed for electro-osmotic flows between
parallel plates and in a nozzle. The vortices are introduced into the flow by supposing the existence
of a perturbation near the corners in the channel contraction. The effect of viscoelasticity was also
verified on the nozzle with the imposed electrical perturbation.

In Section 2, we describe the governing equations of the problem to the channels. Section 3 we
present the computational method used to perform the simulations. Section 4 reports the verification
for the parallel plates channel. Moreover, we present the proposed formulation for the nozzle flow
problem and computational results obtained. Conclusions are drawn in Section 5.
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2. Governing Equations

We are assuming the fluid incompressible laminar and isothermal flow. Moreover, here the
treatment of the governing equations will be given in dimensionless form:

∇ · u = 0, (1)

∂u
∂t

+ u · ∇u = −∇p +
1

Re
∇2u +∇ · S + F, (2)

T =
2(1− β)

Re
D + S, (3)

where u is the velocity field, t is time, p is the pressure, Re = ρUH/η0 is the Reynolds number, U
is the average velocity, H is the channel height, ρ the mass density and η0 denotes the total shear
viscosity η0 = ηs + ηp. The rate of deformation tensor D = 1

2

(
∇u + (∇u)T

)
and T is the elastic

stress. The dimensionless solvent viscosity coefficient is given by β = ηs
η0

. The evolution in time of the
polymeric stress tensor is related by

∂T
∂t

+ (u · ∇)T−
[
(∇u)T · T + T · ∇u

]
=

1
De

M (T) , (4)

where De = λU/H is the Deborah number and λ is the relaxation time of the fluid. Here we will be
use a kernel-conformation tensor [29–31] and then determine the stress tensor. An alternative form to
describe viscoelastic models is by using the conformation tensor, A. In general the equation for A can
be written as

∂A
∂t

+ (u · ∇)A−
[
A∇u +∇uTA

]
=

1
De
M(A), (5)

whereM(A) is define according to the viscoelastic model. By taking into account the decomposition
of the velocity gradient

∇uT = Ω + B + NA−1, (6)

it was possible reformulate the tensor conformation, where in Equation (6) both Ω and N are
anti-symmetric tensors, B is symmetric and commutes with A. This decomposition enables the
rewriting of the constitutive equation for tensor A

∂A
∂t

+ (u · ∇)A = ΩA−AΩ + 2BA +
1

De
M. (7)

One of interest subject is to solve Equation (4) or Equation (5) for high values of Deborah number
De. Numerical methods are unstable for certain critical values of De. In order to overcome such failure,
Fattal and Kupferman [29] proposed a reformulation of the differential constitutive equations into
an equation for the matrix-logarithm of the conformation tensor. Extending the ideas proposed by
Fattal and Kupferman [29,30], Afonso et al. [31] presented a generic kernel-conformation tensor
transformation that allows apply different kernel functions to the matrix transformation, in which the
evolution equation for k(A), can be expressed in its tensorial formulations as

∂k(A)

∂t
+ (u · ∇) k(A) = Ωk(A)− k(A)Ω + 2B+

1
De

M, (8)

where B and M are symmetric tensors constructed by the orthogonalization of the diagonal tensors.
Thus, the HiG-Flow system solves Equation (8) instead of Equation (4), for more details please see [32].
Tensor A is only used in the HiG-Flow system to perform kernel-conformation, which is intrinsic to the
system when viscoelastic flow simulations are taking out. In fact, numerical simulations in HiG-Flow
can be performed using numeric stabilizers, where the kernel conformation is on, allowing the user to
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establish a stabilizer in a friendly manner without having to make modifications to the code kernel,
but only in the input file of simulation. Considering a Newtonian fluid flow, the tensor S is null and
the velocity and pressure are only updated at each step of time.

2.1. Phan–Thien/Tanner Model

Here we are interested in use the PTT model to solve the constitutive equation and then determine
the velocity field. For this model, the right-hand side of Equation (4) can be written as:

M (T) =
2(1− β)

Re
D−

(
1 +

ε Re De
1− β

tr (T)
)

T− ξ De (T ·D + D · T) . (9)

The dimensionless parameter ε is related to the steady-state elongational viscosity in extensional
flows and ξ is a parameter related with the molecular slip. If ξ is null, the model reduces to the
simplified PTT (sPTT). On the other hand if ξ is not null, there will be a non-zero second normal-stress
difference in shear, leading to secondary flows in ducts with non-circular cross-sections, which is
superimposed on the streamwise flow [33]. In fact the right-hand side for the conformation tensor
Equation (5) is given by

M(A) =

(
1 +

ε Re De
1− β

tr (S)
)
(I−A)−2ξ De (B− BA). (10)

In this way the equations of motion can be solved for the PTT model fluid flow. Therefore, the electrical
contribution must be taken into account for fully description of flow. In the next section we will show
how the electrical source term was obtained.

2.2. Electro-Osmotic Force

Electro-osmotic fluid flows were first studied in the flow between a parallel wall microchannel
and secondly in a contraction microchannel.

The schematic representation of electro-osmotic flow is show in Figure 1. The applied potential
along the axis of the channel provides the driving force necessary to occur the electro-osmotic flow.

Figure 1. Scheme of electro-osmotic fluid flow in parallel plates. Velocity profile showed is fully
developed for pure electro-osmotic fluid flow.

The PTT constitutive model [34] was used for studies involving electro-osmotic flow of
non-Newtonian fluids. Numerical simulations are performed in two dimensions, taking into
account L, w >> H, where H is the channel height, L is channel length and w the channel width.
Moreover, due to the symmetry of the problem, we analyzed only half of the channel, i.e., 0 ≤ y ≤ H.
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For the problems subjected to the electro-osmotic forces, there exists a source term in Equation (2),
F = ρeE, where E is the electric field. The electric field appears due to two contributions; one is the
applied potential φ and the other due to the induced potential ψ which changes in the transversal
direction to the channel walls. Thus, E = ∇φ+∇ψ. The formation of the Debye layer occurs due to the
spontaneous movement of the charged species near the channel wall, causing a charge redistribution
in the fluid that originates the electrical double layer [35]. Therefore, the equations to be solved for
these potentials are given by

∇2φ = 0, (11)

∇2ψ = −ρe, (12)

where ρe = δ(n+ − n−) is the charge density, δ = n0ezH2/εζ0 with n0 the reference concentration, e
is the elementary charge, z the charge valence, ε the dielectric constant and ζ0 the potential on the
wall. Moreover, the density charge is related by n+ and n− which are the positive and negative ionic
concentration, respectively. In this work we solve numerically the Nersnt–Planck equation for the
ionic concentration:

∂n±

∂t
= −u · ∇n± +

1
Pe
∇2n± ± 1

Pe
α∇ ·

[
n±∇(φ + ψ)

]
, (13)

where Pe = UH/D is the Peclet number that depends on ionic diffusion D. The potential to thermal
energy ratio is given by α = ezζ0/kBT with kB the Boltzmann’s constant and T is the absolute
temperature. The set of Equations (11)–(13) are solved to obtain the electrical force.

3. Computational Procedures

The HiG-Flow system [32,36] was used to obtain numerical solutions reported in this work.
Computational domain to the simulation is obtained through HiG-Tree, which generates a hierarchical
mesh (for further information, refer to references [32,36]). For bi-dimensional case, this mesh is a
generalized quad-tree [37]. Hierarchical meshes impose difficulties in the numerical scheme based
on Cartesian approximations, and requires the use of spatial interpolations at unknown points of the
stencil. The interpolations of the properties in the center of the faces and in the center of the cells are
made by the technique of moving least squares, which uses a given set of points where the property
is known to estimate a unknown value in a neighbor point. Differential equations are discretized
by the method of finite differences. Solvers using the PETSc library (Portable, Extensible Toolkit for
Scientific Computation) [38] are used to solve linear systems [32,36]. The machine used to perform
numerical simulations has a Core i7 2.0 GHz CPU, 16 Gb memory. The mesh with refinements along
the channel were obtained using HiG-Tree. The total length of the mesh is 20H. Better results were
obtained with a maximum ∆x/∆y = 4. Near the walls the minimum size is ∆ymin/H = 7.8125× 10−4

and ∆xmin/H = 3.1250× 10−3. Figures 2 and 3 shows the mesh used to simulate the electro-osmotic
flow in parallel plates and in a nozzle, respectively.

y/
H 0.0

1.0

-1.0
x/H

Figure 2. Computational grid used to perform the electro-osmotic fluid flow. The mesh is in scale.
At the center of the grid ∆x/H = 0.2. This mesh has 8 levels of refinement.
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Figure 3. Illustration of the mesh used to the electro-osmotic simulations in a nozzle. This mesh has
4 levels of refinement.

Figure 4 shows the velocity profile for different values of the Debye parameter defined as
κ =
√

2αδ. As the Debye layer decreases, i.e., increasing the Debye parameter, variations in the velocity
profile occurs near the channel wall. The curves are normalized by the Helmholtz-Smoluchowski
velocity, ush = −εζ0Ex/η. The dimensionless numbers Re = 1.0× 10−3, Pe = 1.0 were used. In order
to illustrate the velocity profile convergence we were used three different grids. The main difference
is the grid refinement, increasing the refinement near the walls to improve convergence. Effect of
mesh refinement is show in Figure 5. Please note that for the mesh with ∆ymin/H = 2.5000× 10−2

represented by circles, the nearest point the wall is clearly outside the expected curve. Increasing
refinement, ∆ymin/H = 6.2500× 10−3 represented by squares, all points remain within the analytical
curve, but there are spaces with no points due the sharp effect near the wall and for ∆ymin/H =

7.8125× 10−4 represented by triangles, these spaces were filled and then the simulated curve agrees
with analytical curve. In the next section we report the results.

Figure 4. Velocity profile for Newtonian fluid flow. Results for κ = 10, 20, 50, 300.

Figure 5. Effect of mesh refinement. Velocity profile of a Newtonian fluid subjected to electro-osmotic
forces in a channel. We fixed κ = 100 and vary the refinement near the wall. Image is zoomed near the
wall to improved visualization of the refinement.



Micromachines 2019, 10, 796 7 of 19

3.1. Boundary Conditions on the Walls

On the channel walls, Neumann conditions apply for p and φ. The potential ψ assumes the
potential reference value ζ0. The concentrations at the walls are given by the Boltzmann distribution
Equation (17) and the non-slip condition is imposed for velocity.

n̂ · ∇p = 0, (14)

n̂ · ∇φ = 0, (15)

ψ = ζ0, (16)

n± = n0 exp(∓αζ0), (17)

u = 0, (18)

3.2. Inflow and Outflow

Dirichlet conditions are applied for pressure, so the channel inlet and outlet have exactly the
same pressure, resulting in a pure electro-osmotic flow, i.e., pin equal to pout. Similar conditions were
applied for the electrostatic potential φ, i.e., φin 6= φout agreeing with ∇φ 6= 0. Concentration assumes
the n0 reference value at inlet, and the outlet Neumann condition n̂ · ∇n± = 0 is imposed to obtain a
fully developed flow. It was taking Neumann condition for the velocity at the inlet and outlet; thus,
the flow is developed under the action of the electric body force.

4. Results

4.1. PTT Model

The PTT model was used to solve the pure electro-osmotic fluid flow through parallel plates. We
will first show the results potential and ionic concentration which are coupled properties of the flow,
according to set of Poisson–Nernst–Planck equations given by Equations (11)–(13).

Figures 6 and 7 show the behavior of ψ and n+, n− respectively. The distribution of charged
particles causes the potential variation near the wall, and the ionic concentration near the wall is
related by changes on potential ψ in that neighborhood. For κ = 10 potential changes are seen at
greater distances to the wall if compared to the curve show for κ = 20. As the Debye layer becomes
thinner, κ = 50, the potential changes quickly near the channel walls so the charges are approaching to
the walls as shown for κ = 300. Therefor the velocity depends on y and κ it will also vary according
to the relaxation time of the fluid. In this way, the velocity profile is affected by the Deborah number
Deκ = λκush [20,39], as shown in Figure 8. For this problem we set Deκ = 0.5 and Deκ = 2.0.
In addition, the parameters ξ = ε = 0.01 were fixed. The Debye parameter assumed two different
values, κ = 10 and κ = 100. For low Deborah number Deκ = 0.5, the velocity profile indicates behavior
similar to that of a Newtonian fluid. Increasing the number of Deborah is apparent the changes on
velocity profile respecting to the Newtonian profile due to the low viscosities near the wall, in fact
influenced by the appearance of the shear stress of the PTT model. The normal and shear stress are
shown in Figures 9 and 10, in which we can observe that the numerical results are similar to the
analytical solution.
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Figure 6. Potential ψ for different values of the Debye parameter. Results for κ = 10, 20, 50, 300.

Figure 7. Ionic concentration n± for different values of the Debye parameter. Results for
κ = 10, 20, 50, 300.

Figure 8. Velocity profiles to the full PTT model for κ = 10 and 100. Results for ε = ξ = 0.01, varying
the Deborah number Deκ = 0, 0.5 e 2.0.
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Figure 9. Normal stress for full PTT model. Results for κ = 10 e 100 and fixed parameters ε = ξ = 0.01.

Figure 10. Shear stress for full PTT model. Results for κ = 10 e 100 and fixed parameters ε = ξ = 0.01.

4.2. sPTT Model

In this model the parameter ξ = 0 at the expression Equation (10). Moreover, instead of
considering the pure electro-osmotic flow, we will impose a non-zero pressure gradient on the channel.
In this sense, by taking into account the steady-state flow, the solutions for the velocity and the
viscoelastic tensor for the sPTT model depend on the parameter Γ defined as:

Γ =
H2

εζ0 Ex

dp
dx

. (19)

If the pressure gradient is greater than zero, dp/dx > 0, the fluid is pushed in the opposite direction of
flow as shown in Figure 11 for Γ = 1.0, Γ = 2.0 and Γ = 2.778, represented by downward triangles,
diamonds and left-pointer triangles respectively. On the other hand, if dp/dx < 0, the fluid is pushed
in the same direction of flow, resulting in the profiles shown in Figure 11 for Γ = −0.5 e Γ = −1.778
represented by circles and squares respectively.
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Figure 11. Velocity profiles for a Newtonian flow subject to an external pressure gradient. Results for
κ = 20.

The Figure 12 shows the velocity profile of the electro-osmotic flow for sPTT fluid. For Γ = −1.0
represented by right-pointer triangles and Γ = 2.77 by left-pointer triangles. As with the full PTT fluid,
the velocity profile in the sPTT model is influenced by the Deborah number, which in these simulations
is Deκ = 2.5. In fact there exists a dependence on εDe2

κ . More details, please see [20].

Figure 12. Velocity profiles for a sPTT fluid flow subject to an external pressure gradient. Results for
ε = 0.1, κ = 20.

This effect is understand for the curves when Γ = 0 showed in the Figure 12 represented by solid
lines for Deκ = 0 and Deκ = 2.5, where it seen changes relative to the Newtonian profile. Normal and
shear stress are shifted relative to the corresponding curves for pure electro-osmotic fluid flow which
Γ = 0 represented by solid lines as shown in Figure 13. For the normal component Txx, the curves
indicate the decrease of the stress near the channel wall when the pressure gradient is positive, Γ = 2.77,
represented by upwards triangles. On the other hand, if the pressure gradient is negative, Γ = −1.0,
so Txx increases near the wall, as can be seen the curve represented by downwards triangles. Similar
behavior is observed for shear stress Txy.
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Figure 13. Effect of application of the pressure gradient on stress tensor. Normal and shear stress for
Deκ = 2.5, ε = 0.1 e κ = 20.

4.3. Fluid Flow in a Nozzle

Channels with contractions and expansions are generally used when one is interested in mixing
different fluids in a microchannel. Here the idea is trying to mimic the behavior of the fluid flow for this
type of geometry, specifically regarding to the electrical effects near the corners. Physical description
of these effects related to the movement of the charges near the corners is very complex, but we
can try in some way to find a coherent approach linking the phenomenon to numerical simulation.
As experimentally found by [40], near the corners there are fluctuations in zeta potential on the walls,
causing a change on the velocity in that neighborhood. Here, initially the proposal is to put on an
external perturbation on the potential, which we will consider to be due to punctual charges located in
the nozzle near the corners, as show in Figure 14. Let us consider that the charges are very distant from
each other, so we will be not taken into account the isolated interaction between them. In addition, we
consider that the interaction of the perturbation charges with the part before the contraction of the
channel is negligible, assuming that the concentration of ions in this place remains stable, i.e., the ionic
depletion starts when the fluid arrives inside the contraction of the channel, in the region with intense
gradient in Figure 14. It is known from the electromagnetism theory that the potential ϕ(x, y) due to
an elementary point charge is given by

ϕ(x, y) =
Ke√

(x− x0)2 + (y− y0)2
, (20)

where P(x0, y0) is the place of the point charge is located, K is the dielectric constant and e the
elementary charge. In this way, the potential ψp on the walls near the corners is the sum of reference
zeta potential with perturbation potential, ψp = ζ0 + ϕ, and one can be write:

ψp = ζ0

[
1 +

ω√
(x− x0)2 + (y− y0)2

]
, (21)

where we defined ω = KeH∇φ/ζ2
0 as a constant which depends on external applied field ∇φ, i.e.,

increasing ∇φ, increases the electro-osmotic velocity and the perturbation effect on the standard
potential ψ is consequently accentuated. On the other hand, increasing the distance from the wall,
decreases the potential due the perturbation resulting ψp → ζ0 from Equation (21). Additionally,
the distance between parallel plates must be greater than the distance of action of the imposed
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perturbation, i.e.,
√
(x− x0)2 + (y− y0)2 � H. By making ψp = ψ∗pζ0, x = x∗H e ω = ω∗H, one can

write the expression for dimensionless potential:

ψ∗p = 1 +
ω∗√

(x∗ − x∗0)
2 + (y∗ − y∗0)

2
. (22)

Figure 14. Illustration of imposed perturbation near the corners.

According to [41], the potential on the corners have an inverse square root of ionic concentration
dependence, ψp ∼ n−1/2. In this way, the ionic concentration depends on inverse square of potential,
lead to write the following relation:

np = nbc
ζ2

0
ψ2

p
, (23)

where nbc is the value of ionic concentration on the channel wall without perturbation effect. When ψp

approaches the zeta potential, perturbation effects are negligible then the ionic concentration is given
by np = nbc. On the other hand, if ψp increases due the perturbation effect, the ionic concentration
decreases representing depletion of charges near the corners. Using the expression for ψp one can
writing Equation (23) in dimensionless form:

n∗p =
n∗bc1 +

ω∗√
(x∗ − x∗0)

2 + (y∗ − y∗0)
2

2 . (24)

For this proposal, the Equations (22) and (24) were implemented on the boundaries near the
corners. Results are obtained for different values of the perturbation. First the images of flow properties
in the nozzle are showed.

Results provided by imposed perturbation are show in Figures 15–20. Figures 15 and 16 show
the ionic concentrations n+ and n− respectively, in (a) for zero perturbation ω∗ = 0 and (b) for strong
corner effect imposed by ω∗ = 6.0× 10−3, where accentuated charge changes was observed after
contraction in the channel. These changes are directly linked to the ψ changes and in fact occurs
due to the coupling of Poisson–Nernst–Planck equations. The perturbation effect increases as ω∗ is
increased, as show in Figure 17. Therefore, the perturbation make changes on the pressure and velocity
near the corners as show in Figures 18 and 19 . Increasing the perturbation parameter ω∗, the flow is
concentrate in the center of the channel as show in Figure 20, reducing the cross-section area of the
fluid flow, contributing in the case of fluid mixing to be more efficiently process.
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(a) (b)

Figure 15. Ionic concentration n+. (a) ω∗ = 0 and (b) ω∗ = 6.0× 10−3.

(a) (b)

Figure 16. Ionic concentration n−. (a) ω∗ = 0 and (b) ω∗ = 6.0× 10−3.

(a) (b)

Figure 17. Potential ψ. (a) ω∗ = 0 and (b) ω∗ = 6.0× 10−3.

(a) (b)

Figure 18. Pressure p. (a) ω∗ = 0 and (b) ω∗ = 6.0× 10−3.
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(a) (b)

Figure 19. Downstream velocity, in (a) without perturbation, i.e., ω∗ = 0 and (b) ω∗ = 1.0× 10−3.

(a) (b)

Figure 20. Downstream velocity, in (a) ω∗ = 3.0× 10−3 and (b) ω∗ = 6.0× 10−3.

Figure 21 shows the curves of potential ψ as a function of the applied perturbation. For ω∗ = 0,
there is no perturbation and the potential curves represented by squares are similar to that curve
obtained for the parallel plate channel. By imposing ω∗ = 1.0× 10−3, curves represented by circles,
noticed an increase in the absolute value of ψ in the center of the contraction and after the expansion, ψ

approaches zero again indicating the decrease of perturbation effect out of the contraction. Increasing
the perturbation parameter, ω∗ = 3.0× 10−3, curves represented by upwards triangles, can be seen
an more accentuated increment in the potential within the contraction and after the expansion of the
channel. For ω∗ = 6.0× 10−3, curves represented by downward triangles, perturbation effect changes
the potential to have approximately the same value in the plateau within and after the contraction.

Figure 21. Potential ψ into the contraction and right after the expansion of the channel. Results for
perturbation parameter ω∗ = 0 , 1.0× 10−3, 3.0× 10−3 and 6.0× 10−3.
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The behavior of the ionic concentration curves is shown in Figure 22. For ω∗ = 0, curves
represented by squares, the behavior is similar to that obtained for parallel plates channel. If ω∗ =

1.0× 10−3, curves represented by circles, we observe a decrease in concentration n+ and an increase
of n− within the contraction and this effect is smaller after the channel expansion. When ω∗ =

3.0× 10−3 the concentration n+ decreases while n− increases and the curves are inverted relative
to the reference concentration n0, as shown in Figure 23. This effect is even more pronounced for
ω∗ = 6.0× 10−3. In this way, the coupling between the potential and ionic concentrations is related in
Figures 21–23, indicating that the ionic concentration variation is affected by the potential increment
due to perturbation. It is natural to expect that the perturbation imposed on the nozzle will cause
numerical instabilities in the ionic concentration and potential ψ, since we are forcing a new distribution
of charges for the problem, but if the perturbation is small enough, the numerical method is stable.
The velocity profiles are affected by both the perturbation and the variation of the pressure within the
contraction in the channel. These curves were obtained at the center of the contraction and Figure 24
shows the Newtonian and viscoelastic profiles. The curves represented by squares correspond to
ω∗ = 0, i.e., velocity profile variations occur due to the variation of the pressure in the contraction,
and tends to form a crest before to the velocity curve decay and then decreases until zero on the wall,
where full squares correspond to the velocity for the Newtonian fluid. This effect is most accentuated
for the viscoelastic fluid, as can be seen in the curve represented by empty squares. Increasing the
perturbation effect, ω∗ = 1.0× 10−3, the crests are suppressed as shown the curves represented by
full and empty circles corresponding to the Newtonian and viscoelastic fluid, respectively. If ω∗ =

3.0× 10−3 the profile forms a crest in the center of the channel and increases the distance from the
center, the velocity tends to zero quickly, as shown the curves with upwards triangles. This effect
is similar to that applying a pressure gradient on the channel ends, as seen in Section 4.2. Finally,
if ω∗ = 6.0× 10−3, it is observed the existence of negative velocities near the wall, represented by
the downwards triangles. Behavior of the polymeric tensor, Figures 25 and 26, corroborates with the
results obtained in Section 4.2 in order to show the similar effect to of applying a negative pressure
gradient when the fluid enters in the contraction, represented by the fully points and a positive pressure
gradient after the expansion of the channel represented by the empty points.

Figure 22. Ionic concentration n± into the contraction and right after the expansion of the channel.
Results for perturbation parameter ω∗ = 0 and 1.0× 10−3.
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Figure 23. Ionic concentration n± into the contraction and right after the expansion of the channel.
Results for perturbation parameter ω∗ = 3.0× 10−3 and 6.0× 10−3.

Figure 24. Perturbation effect on the velocity profile for sPTT model. Results for Deκ = 2.5, ε = 0.1 and
perturbation parameter ω∗ = 0, 1.0× 10−3, 3.0× 10−3 and 6.0× 10−3.

Figure 25. Normal stress into the contraction and right after the expansion of the channel. Results for
Deκ = 2.5, ε = 0.1 and perturbation parameter ω∗ = 0, 1.0× 10−3, 3.0× 10−3 and 6.0× 10−3.



Micromachines 2019, 10, 796 17 of 19

Figure 26. Shear stress into the contraction and right after the expansion of the channel. Results for
Deκ = 2.5, ε = 0.1 and perturbation parameter ω∗ = 0, 1.0× 10−3, 3.0× 10−3 and 6.0× 10−3.

5. Conclusions

Computational experiments were performed to obtain the solution of electro-osmotic flows.
In order to validate the HiG-Flow, first the results for the pure electro-osmotic fluid flow of viscoelastic
fluids (using the full PTT) through parallel plates were obtained and compared with satisfactory
accuracy against analytical results. Later, the sPTT model was studied and it was seen the influence of
an applied gradient pressure on the flow for a parallel plates channel. Furthermore, it was observed
the vortex formation in a nozzle by imposed perturbation near the corners. Results were obtained and
the contraction in the channel naturally imposes a pressure gradient on that neighborhood and then it
was found that the imposed perturbation near the corners causes a similar effect. It is notable that the
imposition of the perturbation causes instabilities on the solution, as can be seen in the concentration
and potential curves. It is expected because one is imposing conditions unknown to the flow, but for
weak perturbation the numerical solution keep stable.

Author Contributions: Conceptualization, W.D.S.B., A.C. and A.M.A.; Funding acquisition, W.D.S.B.;
Investigation, W.D.S.B., A.C. and A.M.A.

Funding: This research was funded by Fapesp under project CEPID under process 2013/07375-0, CNPq process
307483/2017-7, project UID/EMS/00532/2019 of CEFT (Centro de Estudos de Fenómenos de Transporte),
Project PTDC/EMS-ENE/3362/2014 funded by FEDER funds through COMPETE2020-Programa Operacional
Competitividade e Internacionalização (POCI) , national funds through FCT-Fundação para a Ciência e a
Tecnologia, Universidade Federal da Grande Dourados under public process PROPP 18/2019.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Doherty, E.A.; Meagher, R.J.; Albarghouthi, M.N.; Barron, A.E. Microchannel wall coatings for protein
separations by capillary and chip electrophoresis. Electrophoresis 2003, 24, 34–54. [CrossRef] [PubMed]

2. Chabinyc, M.L.; Chiu, D.T.; McDonald, J.C.; Stroock, A.D.; Christian, J.F.; Karger, A.M.; Whitesides, G.M. An
integrated fluorescence detection system in poly (dimethylsiloxane) for microfluidic applications. Anal. Chem.
2001, 73, 4491–4498. [CrossRef] [PubMed]

3. Bruus, H. Theoretical Microfluidics. Oxford Master Series in Condensed Matter Physics; Oxford University Press:
Oxford, UK, 2008.

4. Reuss, F.F. Sur un nouvel effet de l’électricité galvanique. Mem. Soc. Imp. Nat. Moscou 1809, 2, 327–337.
5. Helmholtz, H.V. Studien über electrische Grenzschichten. Ann. Phys. 1879, 243, 337–382. [CrossRef]

http://dx.doi.org/10.1002/elps.200390029
http://www.ncbi.nlm.nih.gov/pubmed/12652571
http://dx.doi.org/10.1021/ac010423z
http://www.ncbi.nlm.nih.gov/pubmed/11575798
http://dx.doi.org/10.1002/andp.18792430702


Micromachines 2019, 10, 796 18 of 19

6. Gouy, M. Sur la constitution de la charge électrique à la surface d’un électrolyte. J. Phys. Theor. Appl. 1910,
9, 457–468. [CrossRef]

7. Chapman, D.L.; LI. A contribution to the theory of electrocapillarity. Lond. Edinb. Dublin Philos. Mag. J. Sci.
1913, 25, 475–481. [CrossRef]

8. Smoluchowski, M.V. Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen.
Z. Phys. Chem. 1918, 92, 129–168. [CrossRef]

9. Debye, P.; Hückel, E. De la theorie des electrolytes. I. abaissement du point de congelation et phenomenes
associes. Phys. Z. 1923, 24, 185–206.

10. Burgreen, D.; Nakache, F. Electrokinetic flow in ultrafine capillary slits1. J. Phys. Chem. 1964, 68, 1084–1091.
[CrossRef]

11. Rice, C.; Whitehead, R. Electrokinetic flow in a narrow cylindrical capillary. J. Phys. Chem. 1965, 69, 4017–4024.
[CrossRef]

12. Yang, C.; Li, D. Analysis of electrokinetic effects on the liquid flow in rectangular microchannels. Colloids Surf.
Physicochem. Eng. Asp. 1998, 143, 339–353. [CrossRef]

13. Patankar, N.A.; Hu, H.H. Numerical simulation of electroosmotic flow. Anal. Chem. 1998, 70, 1870–1881.
[CrossRef] [PubMed]

14. Bianchi, F.; Ferrigno, R.; Girault, H. Finite element simulation of an electroosmotic-driven flow division at a
T-junction of microscale dimensions. Anal. Chem. 2000, 72, 1987–1993. [CrossRef] [PubMed]

15. Dutta, P.; Beskok, A. Analytical solution of combined electroosmotic/pressure driven flows in
two-dimensional straight channels: finite Debye layer effects. Anal. Chem. 2001, 73, 1979–1986. [CrossRef]

16. Lin, J.; Fu, L.M.; Yang, R.J. Numerical simulation of electrokinetic focusing in microfluidic chips. J. Micromech.
Microeng. 2002, 12, 955. [CrossRef]

17. Park, H.; Lee, W. Helmholtz–Smoluchowski velocity for viscoelastic electroosmotic flows. J. Colloid
Interface Sci. 2008, 317, 631–636. [CrossRef]

18. Zhao, C.; Zholkovskij, E.; Masliyah, J.H.; Yang, C. Analysis of electroosmotic flow of power-law fluids in a
slit microchannel. J. Colloid Interface Sci. 2008, 326, 503–510. [CrossRef]

19. Tang, G.; Li, X.; He, Y.; Tao, W. Electroosmotic flow of non-Newtonian fluid in microchannels. J. Non-Newton.
Fluid Mech. 2009, 157, 133–137. [CrossRef]

20. Afonso, A.; Alves, M.; Pinho, F. Analytical solution of mixed electro-osmotic/pressure driven flows of
viscoelastic fluids in microchannels. J. Non-Newton. Fluid Mech. 2009, 159, 50–63. [CrossRef]

21. Peng, R.; Li, D. Effects of ionic concentration gradient on electroosmotic flow mixing in a microchannel.
J. Colloid Interface Sci. 2015, 440, 126–132. [CrossRef]

22. Song, L.; Yu, L.; Zhou, Y.; Antao, A.R.; Prabhakaran, R.A.; Xuan, X. Electrokinetic instability in microchannel
ferrofluid/water co-flows. Sci. Rep. 2017, 7, 46510. [CrossRef] [PubMed]

23. Niu, R.; Kreissl, P.; Brown, A.T.; Rempfer, G.; Botin, D.; Holm, C.; Palberg, T.; De Graaf, J. Microfluidic
pumping by micromolar salt concentrations. Soft Matter 2017, 13, 1505–1518. [CrossRef] [PubMed]

24. Niu, R.; Palberg, T.; Speck, T. Self-assembly of colloidal molecules due to self-generated flow. Phys. Rev. Lett.
2017, 119, 028001. [CrossRef] [PubMed]

25. Botin, D.; Wenzl, J.; Niu, R.; Palberg, T. Colloidal electro-phoresis in the presence of symmetric and
asymmetric electro-osmotic flow. Soft Matter 2018, 14, 8191–8204. [CrossRef]

26. Niu, R.; Palberg, T. Seedless assembly of colloidal crystals by inverted micro-fluidic pumping. Soft Matter
2018, 14, 3435–3442. [CrossRef]

27. Arcos, J.; Méndez, F.; Bautista, E.; Bautista, O. Dispersion coefficient in an electro-osmotic flow of a
viscoelastic fluid through a microchannel with a slowly varying wall zeta potential. J. Fluid Mech. 2018,
839, 348–386. [CrossRef]

28. Pimenta, F.; Alves, M.A. Electro-elastic instabilities in cross-shaped microchannels. J. Non-Newton. Fluid
Mech. 2018, 259, 61–77. [CrossRef]

29. Fattal, R.; Kupferman, R. Constitutive laws for the matrix-logarithm of the conformation tensor.
J. Non-Newton. Fluid Mech. 2004, 123, 281–285. [CrossRef]

30. Fattal, R.; Kupferman, R. Time-dependent simulation of viscoelastic flows at high Weissenberg number
using the log-conformation representation. J. Non-Newton. Fluid Mech. 2005, 126, 23–37. [CrossRef]

31. Afonso, A.; Pinho, F.; Alves, M. The kernel-conformation constitutive laws. J. Non-Newton. Fluid Mech. 2012,
167, 30–37. [CrossRef]

http://dx.doi.org/10.1051/jphystap:019100090045700
http://dx.doi.org/10.1080/14786440408634187
http://dx.doi.org/10.1515/zpch-1918-9209
http://dx.doi.org/10.1021/j100787a019
http://dx.doi.org/10.1021/j100895a062
http://dx.doi.org/10.1016/S0927-7757(98)00259-3
http://dx.doi.org/10.1021/ac970846u
http://www.ncbi.nlm.nih.gov/pubmed/21651279
http://dx.doi.org/10.1021/ac991225z
http://www.ncbi.nlm.nih.gov/pubmed/10815955
http://dx.doi.org/10.1021/ac001182i
http://dx.doi.org/10.1088/0960-1317/12/6/328
http://dx.doi.org/10.1016/j.jcis.2007.09.027
http://dx.doi.org/10.1016/j.jcis.2008.06.028
http://dx.doi.org/10.1016/j.jnnfm.2008.11.002
http://dx.doi.org/10.1016/j.jnnfm.2009.01.006
http://dx.doi.org/10.1016/j.jcis.2014.10.061
http://dx.doi.org/10.1038/srep46510
http://www.ncbi.nlm.nih.gov/pubmed/28406228
http://dx.doi.org/10.1039/C6SM02240E
http://www.ncbi.nlm.nih.gov/pubmed/28127614
http://dx.doi.org/10.1103/PhysRevLett.119.028001
http://www.ncbi.nlm.nih.gov/pubmed/28753375
http://dx.doi.org/10.1039/C8SM00934A
http://dx.doi.org/10.1039/C8SM00256H
http://dx.doi.org/10.1017/jfm.2018.11
http://dx.doi.org/10.1016/j.jnnfm.2018.04.004
http://dx.doi.org/10.1016/j.jnnfm.2004.08.008
http://dx.doi.org/10.1016/j.jnnfm.2004.12.003
http://dx.doi.org/10.1016/j.jnnfm.2011.09.008


Micromachines 2019, 10, 796 19 of 19

32. Sousa, F.S.; Lages, C.F.A.; Ansoni, J.L.; Castelo, A.; Simao, A. A finite difference method with meshless
interpolation for fluid flow simulations in hierarchical grids. J. Comput. Phys. 2019, 396, 848–866. [CrossRef]

33. Phan-Thien, N. A nonlinear network viscoelastic model. J. Rheol. 1978, 22, 259–283. [CrossRef]
34. Thien, N.P.; Tanner, R.I. A new constitutive equation derived from network theory. J. Non-Newton. Fluid Mech.

1977, 2, 353–365. [CrossRef]
35. Grahame, D.C. The electrical double layer and the theory of electrocapillarity. Chem. Rev. 1947, 41, 441–501.

[CrossRef]
36. Castelo, A.; Afonso, A.; Souza, W. A finite difference method in hierarquical grids for viscoelastic fluid flow

simulations. J. Non-Newton. Fluid Mech. 2019, submitted.
37. Finkel, R.A.; Bentley, J.L. Quad trees a data structure for retrieval on composite keys. Acta Inform. 1974,

4, 1–9. [CrossRef]
38. Balay, S.; Abhyankar, S.; Adams, M.F.; Brown, J.; Brune, P.; Buschelman, K.; Dalcin, L.; Eijkhout, V.;

Gropp, W.D.; Kaushik, D.; et al. PETSc Web Page. 2017. Available online: http://www.mcs.anl.gov/petsc
(accessed on 20 November 2019).

39. Afonso, A.; Pinho, F.; Alves, M. Electro-osmosis of viscoelastic fluids and prediction of electro-elastic flow
instabilities in a cross slot using a finite-volume method. J. Non-Newton. Fluid Mech. 2012, 179, 55–68.
[CrossRef]

40. Ae, C.; Yang, R.J. Vortex generation in electroosmotic flow passing through sharp corners. In Microfluidics
and Nanofluidics; Springer: Berlin/Heidelberg, Germany, 2008; Volume 5. [CrossRef]

41. Probstein, R.F. Physicochemical Hydrodynamics: An Introduction; John Wiley & Sons: Hoboken, NJ, USA, 2005.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.jcp.2019.07.011
http://dx.doi.org/10.1122/1.549481
http://dx.doi.org/10.1016/0377-0257(77)80021-9
http://dx.doi.org/10.1021/cr60130a002
http://dx.doi.org/10.1007/BF00288933
http://www.mcs.anl.gov/petsc
http://dx.doi.org/10.1016/j.jnnfm.2012.05.004
http://dx.doi.org/10.1016/0377-0257(77)80021-9
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Governing Equations
	Phan–Thien/Tanner Model
	Electro-Osmotic Force

	Computational Procedures
	Boundary Conditions on the Walls
	Inflow and Outflow

	Results
	PTT Model
	sPTT Model
	Fluid Flow in a Nozzle

	Conclusions
	References

