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Abstract: Electroosmotic flow (EOF) of viscoelastic fluid with Linear Phan-Thien–Tanner (LPTT) 
constitutive model in a nanochannel connecting two reservoirs is numerically studied. For the first 
time, the influence of viscoelasticity on the EOF and the ionic conductance in the micro-nanofluidic 
interconnect system, with consideration of the electrical double layers (EDLs), is investigated. 
Regardless of the bulk salt concentration, significant enhancement of the flow rate is observed for 
viscoelastic fluid compared to the Newtonian fluid, due to the shear thinning effect. An increase in 
the ionic conductance of the nanochannel occurs for the viscoelastic fluid. The enhancement of the 
ionic conductance is significant under the overlapping EDLs condition.  

Keywords: electroosmotic flow; viscoelastic fluid; nanofluidics; ionic conductance; electrical double 
layer 

 

1. Introduction 

In recent decades, micro/nanofluidics has received significant interest due to its promising 
applications in bioengineering and chemical engineering [1–5]. Electroosmosis, first reported by 
Reuss [6], has been widely studied both experimentally and theoretically due to its unique feature of 
easily manipulating flow at micro/nanoscale [7–11]. At nanoscale, the electric double layer (EDL) may 
become overlapped under the condition of low bulk salt concentration [12,13], resulting in the ionic 
selective property of the nanochannel [14]. 

As is common in chemical and biomedical applications, solutions are often made from large 
molecules, such as polymer or DNA. These solutions exhibit non-linear rheological behavior that is 
distinctively different from the Newtonian fluid [15,16], such as the variable viscosity and normal 
stress difference [17]. Understanding the EOF of these non-Newtonian fluids is of practical 
importance for the experimental design as well as the operation of various micro/nanofluidic devices. 
Bello et al. [18] firstly experimentally showed that  the electroosmotic flow velocity of a polymer 
solution in a capillary is much higher than the predicted Helmholtz–Smoluchowski velocity. Chang 
et al. [19] experimentally investigated the EOF of polymer solutions and observed the drag reduction 
and reduced effective viscosity. Huang et al. [20] conducted the experimental and theoretical study 
on the non-Newtonian EOF, and showed the enhancement of the EOF velocity due to the shear 
thinning effect. Recently, more researches on the EOF of non-Newtonian fluids have been conducted 
from the theoretical aspect. For example, Zhao et al. [21,22] derived closed-form solutions for the 
electroosmotic flow of power-law fluids over a planar surface and a parallel-plate microchannel. Tang 
et al. [23] numerically studied the EOF of power-law non-Newtonian fluid in microchannel, and 
showed the influence of fluid rheology on the EOF pattern. Choi et al. [24] analytically studied the 
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EOF of viscoelastic fluid with Phan-Thien–Tanner (PTT) model in a two-dimensional microchannel, 
and analyzed the effects of relaxation time, extensibility parameter, and slip parameter of the PTT 
model on the velocity and flow rate. Mukherjee et al. [25] developed the closed-form EOF velocity 
distribution for viscoelastic fluid of the simplified PTT (sPTT) model in microchannel confined 
between two parallel plates. Martínez et al. [26] asymptotically analyzed the EOF of a viscoelastic 
fluid with sPTT model in a wavy-wall microchannel, and examined the effects of the wave number 
and viscoelastic character of the fluid. Park et al. [27] derived the Helmholtz–Smoluchowski velocity 
and analytically calculated the volumetric flow rate in a microchannel for the EOF of PTT fluid. 
Afonso et al. [28] developed the analytical solution for the EOF of viscoelastic fluid in a microchannel 
by using both PTT model and Finitely Extensible Nonlinear Elastic with Peterlin closure (FENE–P) 
model. Dhinakaran et al. [29] analytically investigated the steady EOF of viscoelastic fluid between 
parallel plates using the PTT model.  

Most of the theoretical studies on EOF of viscoelastic fluid are in microscale, where the 
assumptions of small charge density and relatively thin EDL are reasonable. When the characteristic 
length of the channel is on nanoscale, the EDL thickness becomes comparable to the nanochannel 
height [30,31], the nonlinear Poisson–Nernst–Planck equations have to be used to solve for the electric 
potential and ionic concentration. Mei et al. [32] numerically studied the EOF of viscoelastic fluid in 
a nanoslit and reported the effect of the rheological property of Linear Phan-Thien–Tanner (LPTT) 
fluid on the fully developed EOF. In this study, the work of Mei et al. [32] is extended to investigate 
the EOF of the LPTT viscoelastic fluid in a nanochannel connecting two large reservoirs, which is 
closer to the actual experimental devices. The influence of the rheological property of the viscoelastic 
fluid on the ionic conductance across the nanochannel is examined with consideration of the EDLs 
overlapping condition.  

2. Mathematical Model 

Consider a nanochannel of height Hc, length Lc, and width W connecting two reservoirs of height 
Hr and length Lr. A binary KCl electrolyte solution of bulk concentration 𝑪𝟎  is filled in the 
nanochannel and is electrically driven by an external potential bias V0 applied between the inlet 
(Anode) and outlet (Cathode). Assume that the nanochannel height is much smaller than its width 
and length (i.e., 𝑯𝒄 ≪ 𝑳𝒄,𝑯𝒄 ≪ 𝑾), so the problem can be simplified to a 2D problem schematically 
shown in Figure 1. Cartesian coordinate system O–xy is adopted with x-axis in the height direction, 
y-axis in the length direction, and origin fixed on the center of the upper channel surface. As the 
problem is symmetric about the central axis GI, only half of the geometry is considered, with 
symmetric boundary conditions applied for all fields on the symmetry axis.  

 
Figure 1. Schematic diagram of a nanochannel connecting two reservoirs at both ends. Uniform 
negative surface charges are distributed on the nanochannel wall and the adjacent walls of reservoirs. 
An external electric field is applied by a potential bias between the inlet (Anode) and outlet (Cathode). 

A B

C D

E F

G IO

LL

HH

C
at
ho
de

K+ Cl-

x
yEOF

A
no
de

r c

r c



Micromachines 2019, 10, 747 3 of 10 

The mass and momentum conservation equations governing the incompressible viscoelastic 
fluid are ∇ ∙ 𝒖 = 0 (1) 𝜌 𝜕𝒖𝜕𝑡 + 𝒖 ∙ ∇𝒖 = −∇𝑝 + 2𝜂 ∇ ∙ ∇𝒖 + ∇𝒖 + ∇ ∙ 𝝉 − 𝜌 ∇𝜙 (2) 

where 𝒖  and p denote the velocity field and pressure, respectively; 𝜙 is the electric potential and 𝜌  
is the volume charge density within the electrolyte solution; ρ and 𝜂  represent the fluid density and 
the solvent dynamic viscosity, respectively; and the polymeric stress tensor 𝝉  accounts for the 
memory of the viscoelastic fluid. Depending on the type of viscoelastic fluid, different constitutive 
models have been developed to describe the relation of 𝝉 and the deformation rate of the fluid, such 
as Oldryod–B model, Giesekus model, LPTT model, and so forth. For the LPPT model adopted in this 
study, 𝝉 is given by  𝝉 = 𝜂𝜆 (𝒄 − 𝑰) (3) 

where 𝒄  is the symmetric conformation tensor representing the configuration of the polymer 
molecules,  𝜂  is the polymeric viscosity, and 𝜆 is the relaxation time of the polymer.  

For the LPTT model, the equation governing the conformation tensor c is  𝜕𝒄𝜕𝑡 + 𝒖∇ ∙ 𝒄 − (𝒄 ∙ ∇𝒖 + ∇𝒖 ∙ 𝒄) = − 1𝜆 1 + 𝜀(tr(𝒄) − 3) (𝒄 − 𝑰) (4) 

where the non-linear parameter ε is the extensibility parameter.  
The channel surface in contact with the electrolyte solution of permittivity 𝜺𝒇  will become 

charged and an electric double layer enriched with counterions will develop in the vicinity of the 
charged surface. The electric potential and ionic concentration within the electrolyte solution are 
governed by the Poisson equation and the Nernst–Planck equation as −𝜺𝒇𝛁𝟐∅＝𝑭(𝒛𝟏𝒄𝟏 + 𝒛𝟐𝒄𝟐) (5) 𝝏𝒄𝒊𝝏𝒕 + 𝛁 ∙ 𝒖𝒄𝒊 − 𝑫𝒊𝛁𝒄𝒊 − 𝒛𝒊 𝑫𝒊𝑹𝑻𝑭𝒄𝒊𝛁∅ = 𝟎,    𝒊 = 𝟏,𝟐 (6) 

In the above, 𝑧 , 𝐷  and 𝑐  are the valence, diffusivity, and ionic concentration of ith ionic species ( i=1 
for K+, 2 for Cl−), respectively; 𝐹, R, and T  are the Faraday constant, gas constant, and the absolute 
temperature, respectively.  

Select the channel height Hc as length scale, 𝑈 = 𝜀 𝑅 𝑇 /(𝜂 𝐻 𝐹 ) as velocity scale with 𝜂 =𝜂 + 𝜂  being the total viscosity, 𝜌𝑈  as the pressure scale, RT/F as electric potential scale, the bulk 
concentration 𝐶  as the ionic concentration scale, and the set of governing Equations (1)–(2) and (4)–
(6) can be normalized as   ∇ ∙ 𝒖 = 0 (7) 𝜕𝒖′𝜕𝑡′ + 𝒖′ ∙ ∇′𝒖′ = −∇′𝑝′ + 𝛽𝑅𝑒 ∇′2𝒖′ + (1 − 𝛽)𝑅𝑒 ∙  𝑊𝑖∇′ ∙ 𝒄 − (𝐻𝑐/𝜆 )22𝑅𝑒 𝑧1𝑐1′ + 𝑧2𝑐2′ ∇′∅′ (8) 𝜕𝒄𝜕𝑡′ + 𝒖′ ∙ ∇′𝒄 − (𝒄 ∙ ∇′𝒖 + ∇′𝒖′ ∙ 𝒄) = − 1𝑊𝑖 1 + 𝜀(tr(𝒄) − 3) (𝒄 − 𝑰) (9) 

∇ ∅ ＝
12 𝐻𝑐𝜆 (𝑧 𝑐 + 𝑧 𝑐 ) (10) 𝜕𝑐𝜕𝑡 + ∇ ∙ 𝒖 𝑐 − 𝐷𝐻𝑐𝑈 ∇ 𝑐 − 𝑧 𝐷𝐻𝑐𝑈 𝑐 ∇ ∅ = 0,    𝑖 = 1,2 (11) 

In the above, all the variables with prime indicate their dimensionless form; the Debye length is 𝜆 =𝜀 𝑅𝑇/∑ 𝐹 𝑧 𝐶 ; 𝛽  is the ratio of the solvent viscosity to the total viscosity, i.e., 𝛽 =  ; the 
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dimensionless Reynolds number is  𝑅𝑒 = 𝜌𝑈 𝐻 /𝜂 , and Weissenberg number is 𝑊𝑖 = 𝜆𝑈 /𝐻 . The 
boundary conditions are given as follows.  

At the symmetric axis, zero normal gradient is applied for all variables.  
At the Anode (or Cathode),  𝐧 ∙ ∇ 𝒖 = 0, 𝑝′ = 0,∅ = 𝑉 ∙ 𝐹𝑅𝑇  (or 0), 𝑐 = 1,𝐧 ∙ ∇ 𝒄 = 0  (12) 

where 𝐧 represents the normal unit vector on the surface.  
On the nanochannel wall with a uniform surface charge density 𝜎 ,  𝒖 = 0, 𝐧 ∙ ∇ ∅ = 𝜎 ∙ 𝐻 𝐹𝑅𝑇 ,−𝐧 ∙ ∇ 𝑐 − 𝑧 𝑐 𝐧 ∙ ∇ ∅ = 0,𝐧 ∙ ∇ 𝒄 = 0  (13) 

On the surfaces of reservoir (i.e., AB and EF), a symmetric boundary condition is imposed to account 
for the large size reservoirs.  
The initial conditions are set as 𝒖 = 0, 𝒄 = 𝑰, 𝑐 = 1, 𝑐 = 1, ∅ = 0, at 𝑡 = 0 (14) 

3. Numerical Method and Code Validation 

One of the most challenging problems for the numerical simulation of viscoelastic fluid flow is 
the high Weissenberg Number Problem (HWNP), i.e., the loss of numerical accuracy and stability at 
a relatively high Wi [33–35]. Log conformation reformulation (LCR) method [34] has been shown as 
one of the most effective strategy to overcome this issue, and is adopted in this study. The procedure 
is presented as follows.  

Due to the symmetric positive definite (SPD) property of conformation tensor c, its matrix 
logarithm exists as  𝜳 = log(𝒄) = 𝐑 log(𝚲)𝐑 (15) 

where  𝚲  is a diagonal matrix whose diagonal elements are the eigenvalues of c; and R is an 
orthogonal matrix composed of the eigenvectors of c. 

The equation for the conformation tensor can be rewritten in terms of 𝜳 as  𝒖 ∙ ∇ 𝜳 − (𝜴 ∙ 𝜳 −𝜳 ∙ 𝜴) − 2𝑩 = − 1𝑊𝑖 𝑒 𝜳 1 + 𝜀(tr(𝑒  𝜳) − 3) (𝑒  𝜳 − 𝑰) (16) 

where 𝜴  and 𝑩  are the anti-symmetric matrix and the symmetric traceless matrix of the 
decomposition of the velocity gradient tensor ∇′𝐮 , as derived by Fattal and Kupferman [35].  

Then, the conformation tensor c can be obtained from 𝜳 as  𝒄 = exp(𝜳) (17) 

To numerically solve the coupled set of Equations (7)–(8), (10)–(11), and (16) along with the 
boundary and initial conditions, a new solver is implemented in an open source software for CFD–
OpenFOAM. QUICK, Gauss Linear, and MINMOD schemes are used to discretize the convection 
terms in Equations (8), (11), and (16), respectively. Pressure Implicit with Splitting of Operators 
(PISO) algorithm is used to solve Equation (8). Finer mesh is distributed near the charged wall and a 
mesh convergence study is conducted to ensure the accuracy of the following simulations.  

The developed solver has been shown to accurately simulate the viscoelastic fluid of EOF in a 
nanoslit [32]. To further check the accuracy and the validity of the developed solver, we simulate a 
Newtonian EOF in a nanochannel with reservoirs, the geometry of which is used for the following 
study, and compare the results with that obtained from finite element software Comsol (version 5.1, 
Comsol, Stockholm, Sweden). The geometric parameters are given as 𝐻 = 20 nm, 𝐿 = 100 nm,𝐻 =200 nm, 𝐿 = 200 nm, W = 1 μm.  Other parameters are set as 𝑉 = 0.05 V,𝜎 = −0.005 𝑐/m ,𝐷 (𝐷 ) = 1.96 (2.03) × 10 m s , 𝜀 = 7.08 × 10 CV m  . For the simulations in this study, the 
time is set long enough that all flows reach steady state, and the steady results are shown below. 
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Figure 2 shows the comparison of the simulated dimensionless velocity in the channel length 
direction at the middle cross section of the nanochannel with the results obtained in commercial 
software Comsol (www.comsol.com) for different bulk salt concentrations, C0 = 0.5, 5, and 50 mM, 
corresponding to 𝟐𝝀𝑫 = 0.74, 2.33, and 7.35. Under low salt concentration C0 = 0.5 mM, as the thickness 

of EDL is larger than half of the channel height, i.e., the EDLs are overlapping, the velocity gradually 
increases from the wall and reaches maximum velocity at the center of the nanochannel. For high 
bulk salt concentration C0 = 50 mM with thin EDL, the velocity increases to its maximum value within 
a distance from the charged surface and remains at its maximum value. It is obvious that good 
agreement between our numerical results and the Comsol simulation is achieved for both cases of 
thin EDL and overlapping EDLs.  

 
Figure 2. Distribution of the dimensionless axial velocity at the center of the nanochannel for bulk salt 
concentrations C0 = 0.5 mM, 5 mM, and 50 mM: symbols (OpenFOAM) and lines (Comsol). 

The EOF of viscoelastic fluid in the same geometry is then solved by the validated solver to 
investigate the effects of Weissenberg number Wi on the flow rate and ionic conductance. The 
viscosity ratio and the extensibility parameter for the LPTT viscoelastic fluid are set to 𝛽 = 0.1 and 𝜀 = 
0.25.  

4. Results and Discussion 

First of all, the volume flow rate across the channel is calculated at the middle of the channel 
(𝑦 = 0) as 𝑄 = 2𝑊𝐻 𝑈 𝑣′𝑑𝑥′/  for bulk salt concentration C0 = 0.5 mM, 5 mM, and 50 mM under 
different Weissenberg Wi, as shown in Figure 3. With the same Weissenberg number, the volume 
flow rate is lowest at C0 = 0.5 mM, while it is the highest at C0 = 5 mM.  The former is because for low 
bulk salt concentration C0 = 0.5 mM, the overall net charge density and thus the electric body force 
within the nanochannel is low. The highest flow rate at moderate bulk salt concentration C0 = 5 mM 
is due to the fact that the EDLs are slightly overlapped, so the net ionic concentration within the 
nanochannel is higher compared to those for both C0 = 0.5 mM and C0 = 50 mM. Under the same bulk 
salt concentrations, 𝑄 monotonously increases with Wi within the investigated range, which is due 
to the shear thinning effect of viscoelastic fluid of the LPTT model. Besides this, the increase of flow 
rate is more obvious for 𝑊𝑖 50 and becomes less apparent as 𝑊𝑖 further increases. This indicates 
that the effect of Wi on the shear viscosity becomes less apparent with increasing Wi. At Wi =200, the 
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flow rates are 4.95, 7.89, and 9.74 times of that for Newtonian fluid at C0 = 0.5 mM, 5 mM, and 50 mM, 
respectively. This indicates that the shear thinning effect is more obvious for the case with smaller 
EDL thickness.  

 
Figure 3. Variation of volume flow rate with the Weissenberg number for bulk concentration C0 = 0.5 
mM, 5 mM, and 50 mM. 

The ionic conductance within the nanochannel is calculated as  

𝐺 = 𝐼𝑉 = 2𝑊𝑉 𝐹𝑧i2
𝑖=1 𝑣𝑐𝑖 − 𝐷 𝜕𝑐𝜕𝑦 − 𝑧 𝐷𝑅𝑇 𝐹𝑐 ∂∅𝜕𝑦/ 𝑑𝑥 (18) 

In terms of dimensionless variables, the ionic conductance can be written as  

𝐺 = 2𝐶 𝜀𝑓𝑅2𝑇2𝑊𝑉 𝜂0F 𝑧i2
𝑖=1 𝑣𝑐 − 𝐷𝐻𝑐𝑈 𝜕𝑐𝜕𝑦 − 𝑧 𝐷𝐻𝑐𝑈 𝑐 ∂∅𝜕𝑦 𝑑𝑥

= 2𝐶 𝜀𝑓𝑅2𝑇2𝑊𝑉 𝜂0F 𝑣′𝑐 − 𝐷𝐻𝑐𝑈 𝜕𝑐𝜕𝑦 − 𝐷𝐻𝑐𝑈 𝑐 ∂∅𝜕𝑦− 𝑣′𝑐 − 𝐷𝐻𝑐𝑈 𝜕𝑐𝜕𝑦 + 𝐷𝐻𝑐𝑈 𝑐 ∂∅𝜕𝑦 𝑑𝑥  

(19) 

It is obvious that the ionic conductance consists of convective, diffusive, and migrative components, 
which can be written as  

𝐺 = 2𝐶 𝜀𝑓𝑅2𝑇2𝑊𝑉 𝜂0F 𝑣′(𝑐 − 𝑐 )𝑑𝑥  (20a) 

𝐺 = 2𝐶 𝜀𝑓𝑅2𝑇2𝑊𝑉 𝜂0F 1𝐻𝑐𝑈 −𝐷 𝜕𝑐𝜕𝑦 + 𝐷 𝜕𝑐𝜕𝑦 𝑑𝑥  (20b) 

𝐺 = 2𝐶 𝜀𝑓𝑅2𝑇2𝑊𝑉 𝜂0F 1𝐻𝑐𝑈 ∂∅𝜕𝑦 (−𝐷 𝑐 − 𝐷 𝑐 )𝑑𝑥  (20c) 

Figure 4 shows the variation of the ionic conductance with the Weissenberg number for bulk salt 
concentrations of C0 = 0.5 mM, 5 mM, and 50 mM, respectively. For C0 = 0.5 mM and 5 mM, apparent 
increase of ionic conductance is seen for viscoelastic fluid compared to that of the Newtonian fluid, 
and the ionic conductance monotonously increase with Wi. Similar to the trend of the flow rate, the 
increase becomes less obvious for higher Wi. For 50 mM, ionic conductance slightly increases for 
viscoelastic fluid at Wi = 50 compared to the Newtonian fluid, and remains almost constant as Wi 
further increases. At Wi = 200, the ionic conductance is 1.27, 1.20, and 1.03 times that for Newtonian 
fluid under bulk salt concentrations of C0 = 0.5 mM, 5 mM, and 50 mM, respectively. Thus, the 
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enhancement of ionic conductance is more obvious for low salt concentration, under which the EDLs 
are highly overlapped, and becomes less apparent as C0 increases. When the bulk salt concentration 
is relatively high, the effect of viscoelasticity on the ionic conductance is negligible.  

 
Figure 4. Variation of ionic conductance with Weissenberg number for C0 = 0.5 mM, 5 mM, and 50 
mM. 

The variation of ionic conductance with Wi for different bulk concentrations can be analyzed by 
the contributions of the convective, diffusive, and migrative components in Equation (20). Figure 5 
presents the percentage of the convective and migrative components for Newtonian fluid and 
viscoelastic fluid of Wi = 200 at C0 = 0.5 mM, 5 mM and 50 mM, respectively. The diffusive component 
is not shown due to the fact that for all cases, the percentage of diffusive conductance is less than 
0.5%, and thus its contribution is negligible. Besides this, to better compare the results of the 
Newtonian fluid and the viscoelastic fluid, the percentage of viscoelastic is shown with respect to the 
Newtonian fluid under the same C0. For viscoelastic of Wi = 200, an apparent increase in the convective 
ionic conductance is observed compared to that of the Newtonian fluid, while an obvious decrease 
of migrative component is seen for viscoelastic fluid. The increase of the convective ionic conductance 
is due to shear thinning effect, as it is proportional to the mainstream velocity. The decrease of 
migrative ionic conductance stems from the change in the distributions of the electric potential and 
the ionic concentration under the presence of viscoelasticity. The increase of the convective 
component exceeds the decrease of the migrative component, resulting in an overall increase of the 
ionic conductance. Besides this, at low bulk salt concentration, the ratio of the convective component 
to the migrative component is relatively large, thus the increase of convective component for 
viscoelastic fluid contributes significantly to the increase of the total ionic conductance. As the bulk 
salt concentration increases, the contribution of the convective component becomes smaller, thus the 
increase of the total ionic conductance for viscoelastic fluid becomes less significant. In Newtonian 
fluid, the migrative component dominates for all three salt concentrations, while in viscoelastic fluid 
the convective component dominates when the EDLs are overlapped.  
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Figure 5. Percentage of the convective and migrative ionic conductance components for Newtonian 
and viscoelastic fluids of Wi = 200 for C0 = 0.5 mM, 5 mM, and 50 mM, respectively. For clarity, the 
percentage of the components for viscoelastic fluid is shown with respect to the Newtonian fluid 
under the same bulk salt concentration. Thus, the total height for viscoelastic fluid becomes 127%, 
120%, and 103% for C0 = 0.5 mM, 5 mM, and 50 mM, respectively. 

Figure 6 depicts the distribution of the dimensionless 𝛛∅𝝏𝒚  along the centerline of the nanochannel 

for Newtonian fluid and viscoelastic fluid of Wi = 200 for the case of overlapped EDLs (i.e., C0 = 0.5 
mM). Within the confined nanochannel, the value of 𝛛∅𝝏𝒚  remains almost constant, while a sharp 

increase (decrease) occurs near the opening at the Cathode (Anode) side. This variation arises from 
the large change of net charge density within the solution in both reservoirs compared to the region 
near the nanochannel, due to the highly overlapped EDLs. Besides this, it is noticed that within the 
confined nanochannel, a decrease in the magnitude of 𝛛∅𝝏𝒚  occurs for viscoelastic fluid compared to 

the Newtonian fluid. This decrease explains the decrease in the migrative ionic conductance, which 
is proportional to 𝛛∅𝝏𝒚 . However, the effect of viscoelasticity on the electric potential distribution is not 

significant. This can be explained as following.  As the surface charge density is assumed to be 
uniformly distributed at the nanochannel wall, the induced EOF velocity is almost parallel to the 
nanochannel surface. Under this condition, the ionic distribution and thus the electric potential is 
mainly determined by the surface charge density, and the increase of EOF velocity has negligible 
effect on the electric potential [36].  

 

Figure 6. The variation of 𝛛∅𝝏𝒚  along the symmetry axis of the nanochannel for C0 = 0.5 mM. 
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5. Conclusions 

Numerical simulation on the EOF of viscoelastic fluid with an LPTT model in a nanochannel 
connecting two reservoirs is carried out with a new finite volume solver implemented in OpenFOAM. 
The implemented solver is validated by comparing the result of the current simulation with that from 
commercial finite element software Comsol for Newtonian fluid with the same geometry. For the first 
time, the condition of highly overlapped EDLs is taken into consideration for the EOF of viscoelastic 
fluid. Besides this, the surface charge density is much larger than the typical value used for the 
theoretical study in microscale, where the linearization is used to solve for the electric potential. 
Obvious increase in the volume flow rate is obtained for the viscoelastic fluid compared to Newtonian 
fluid due to the shear thinning effect of LPTT fluid. The enhancement is more significant under high 
bulk salt concentration where EDL is not overlapped. An enhancement in ionic conductance also 
occurs for viscoelastic fluid, and the enhancement becomes less significant as the bulk salt 
concentration increases. The increase of the ionic conductance arises from the increase of its 
convective component, which is directly proportional to the enhanced EOF velocity. In contrast to 
Newtonian fluid, where migrative ionic conductance always dominates over the convective and 
diffusive components, the convective current becomes dominant when the EDLs are overlapped for 
viscoelastic fluid. As the bulk salt concentration increases, the contribution of the convective ionic 
conductance decreases and the enhancement in the ionic conductance for the viscoelastic fluid 
becomes less significant.  
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