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Abstract: With the last decades of development, earthquake early warning (EEW) has proven to
be one of the potential means for disaster mitigation. Usually, the density of the EEW network
determines the performance of the EEW system. For reducing the cost of sensors and building a dense
EEW network, an upgraded low-cost Micro Electro Mechanical System (MEMS)-based sensor named
GL-P2B was developed in this research. This device uses a new high-performance CPU board and is
built on a custom-tailored Linux 3.6.9 operating system integrating with seismological processing.
Approximately 170 GL-P2Bs were installed and tested in the Sichuan-Yunnan border region from
January 2017 to December 2018. We evaluated its performance on noise-level, dynamic range (DR),
useful resolution (NU), collocated recording comparison, and shake map generation. The results
proved that GL-P2B can be classified as a type of Class-B sensor. The records obtained are consistent
with the data obtained by the collocated traditional force-balanced accelerometers even for stations
with an epicenter distance of more than 150 km, and most of the relative percentage difference of peak
ground acceleration (PGA) values is smaller than 10%. In addition, with the current density of the
GL-P2B seismic network, near-real-time refined shake maps without using values derived for virtual
stations could be directly generated, which will significantly improve the capability for earthquake
emergency response. Overall, this MEMS-based sensor can meet the requirements of dense EEW
purpose and lower the total investment of the National System for Fast Seismic Intensity Report and
Earthquake Early Warning project.
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1. Introduction

As one of the effective means for mitigating earthquake disaster, earthquake early warning (EEW)
has been studied in many countries and regions all around the world [1–9]. Presently, few countries
and regions already have operational EEW systems, such as Mexico, Japan, and Taiwan [10–16].
These systems have shown their great potentials in earthquake disaster reduction. In addition,
in other parts of the world, some countries are developing and validating EEW systems, like southern
Italy [17,18], California [19,20], China [21,22], Korea [23], and the Ibero-Maghrebian region [24].

Usually, because of the high cost of the installed broad-band seismometers or force-balanced
accelerometers, the number of the sensors generally deployed in these EEW systems is relatively low.
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This would lead to poor azimuthal coverage and considerable location estimate errors. Without accurate
epicenter location estimation, EEW systems cannot generate ground-motion shake with sufficient
accuracy. They are then unable to issue timely alerts to the target areas. Although in a few of regions
around the world like Taiwan and Japan, it has been proven that the station density of their seismic
networks is rather enough for EEW and rapid reporting targets [25], we always demand a much higher
density of seismic stations for EEW systems. However, for augmenting the number of stations deployed
with conventional broad-band or force-balanced seismometers, this will cause to significantly increase
the expense invested on EEW systems. For example, China is now building the National System for
Fast Seismic Intensity Report and Earthquake Early Warning (NSFSIREEW) project. To cover the key
seismic zones with an average interstation distance of about 10–12 km, more than 15,000 sensors are
needed. If all the stations are deployed with high-cost traditional seismometers, the total investment of
the project will be very high, approximately $1 billion. Therefore, a more acceptable way to carry out
this project is to deploy a cost-effective seismic network.

A new type of sensors using low-cost Micro Electro Mechanical System (MEMS) has been used
in seismic applications since the 1990s [26]. This sensor with a very small footprint can measure
relative gravitational changes and provide an ideal, cost-saving solution to record high-frequency,
near-field, and unsaturated strong ground shaking. Therefore, it offers a suitable application to creating
an economical EEW system with high-density and large-scale seismic networks. Recently, several
types of such sensors have been developed for seismological investigations, like the Quake-Catcher
network [27], the SOSEWIN [28], the Palert network [29], the EDAS-MAS [30], and the MNSMS [31].
The gained results have presented their potentials for EEW.

However, according to the classification proposed by the Advanced National Seismic System
(ANSS) [32], most of them with low dynamic range (DR) belong to the Class-C type. If we use these
sensors in the EEW systems, they will introduce high biases in EEW parameters estimation, especially
in estimating those frequency parameters, such as τc and τlog, which need data with high signal-to-noise
ratio (SNR). The detailed test results about some conventional and MEMS-based sensors can be found
in Evans’ and Ringler’s study [33,34].

For improving the SNR of the recorded waveforms, we developed a new type of sensor called
GL-P2B [35] with MEMS-integrated data logger and built-in seismological processing. It used a high DR
MEMS which can reach 98 dB. The total price of mass production was lower than $600, approximately
one tenth of a traditional strong-motion accelerometer [34]. After the system development completion,
we deployed more than 10 stations for real field test. The obtained results demonstrated its feasibility in
recording high-quality earthquake waveforms with ML < 1.5 and a high SNR at distances beyond 50 km
for earthquakes of ML 3.0 or more. However, during the test period, we found that the CPU load was
very high and it is impossible for us to add more functions into the system for meeting requirements of
the NSFSIREEW project. Therefore, we upgraded the sensor with a new high-performance CPU board
whose processing capacity was equivalent to twice that of the original one. In addition, some errors
found during the test period were corrected. After the sensor upgrade was complete, a demonstration
EEW project proposed by the China Earthquake Administration (CEA) was launched in 2015 for
exploring the scientific EEW feasibility and providing experiences for the NSFSIREEW project. In this
project, approximately 170 GL-P2B stations with an average interstation distance of 10 km were
deployed in the Sichuan-Yunnan border region for more than two years.

In this research, with the collected noise data and recorded numerous earthquakes waveforms,
we presented the concept and the results of this MEMS-based sensor network during the test period
from January 2017 to December 2018. The performances were evaluated according to noise-level,
dynamic range (DR), useful resolution (NU), collocated recording comparison, and shake map
generation. The obtained results have proved that this MEMS-based sensor is sufficient for EEW
purpose and can significantly lower the total investment of the NSFSIREEW project.
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2. System Design and Implementation

Here, we only presented a brief description of the hardware structure of the GL-P2B.
Detailed information of the hardware and software functions description can be found in Peng’s
research [35]. A GL-P2B is composed of four hardware parts: The MEMS acceleration sensor,
an analog-to-digital converter (ADC) board, an ARM CPU board, and a power supply module.
The composition of the device is shown in Figure 1.
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Figure 1. Hardware components of GL-P2B.

To record seismic events in a three-dimensional space, the MEMS acceleration sensor is designed
with three MSV6000-02 [36] capacitive (MT Microsystems Co., Ltd., Shijiazhuang, Hebei, China)
MEMS accelerometers mounted orthogonally to each other (Figure 2). The main characteristics of the
MSV6000-02 are: (1) Full scale acceleration range of ±2 g; (2) large and flat frequency response (± 5%)
between 0–250 Hz; (3) noise density of 10 µV/Hz; (4) non-linearity <0.5% of full scale; (5) bias and
sensitivity temperature coefficient of 0.2 mg/◦C and 100 ppm/◦C; (6) resolution/threshold (@1 Hz) of
0.002 mg.
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MSV6000-02 accelerometers are mounted orthogonally to each other.

Generally, low-cost MEMS sensors with a maximum resolution of 16 bits can be used to detect
moderate to large seismic events within a distance of several tens of kilometers [33]. However, these
types of sensors are not suitable for accurately picking P-wave of small earthquakes and estimating
EEW parameters. Therefore, we selected a 24-bit ADC ADS1281 (Texas Instruments Incorporated,
Dallas, Texas, USA) [37] for data acquisition and conversion.

For improving the CPU processing capacity, we upgraded the ARM CPU board and selected
Atmel SAMA5D36 (Atmel Corporation, San Jose, CA, USA) as the core processor [38]. This CPU is a
high-performance, power-efficient embedded MPU based on the ARM Cortex-A5 processor which
can achieve 536 MHz with power consumption levels below 0.5 mW in low-power mode. The Linux
3.6.9 operating system is run on the CPU board. A 256 MB NAND Flash (Spansio, San Jose, CA, USA)
is used for storing the YAFFS file system compiled within BusyBox 1.13.0, and a 8 GB+ embedded
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multimedia card (Emmc, Toshiba, Tokyo, Japan) is selected to act as a hard disk for waveform storage.
The SAM-BA tools is adopted to erase the NAND flash and write the uboot, Linux kernel image,
and UBI rootfs to the specified address of the NAND flash memory.

3. Performance Evaluation

3.1. Station Deployment

With the support of the Department for Earthquake Monitoring and Prediction, CEA,
a demonstration project with approximately 170 GL-P2B stations have been built and configured in
the Sichuan-Yunnan border region since 2015. The station distribution of this project is shown in
Figure 3. About 110 GL-P2B sensors were deployed with a conventional station installation mode
and powered by 120 W solar panels and a 100 Ah backup battery. The other 60 GL-P2B stations were
co-located with the traditional force-balanced strong-motion stations and used the same pier and
power supply provided for those stations. Therefore, the traditional strong-motion accelerometers
could be selected as references for performance comparison with the co-located GL-P2B sensors.
Here, the traditional strong-motion stations generally deployed with BBAS-2 (also named RefTek
RT-147-01/3) [34]. The low-latency data packetizing function of the GL-P2B [35] was used for data
transferring at an interval of 0.5 s, and 100 samples per second (sps) was set as the real-time data
outputting sampling rate. For each station, a 3G/4G router was used to transmit the ground-motion
data recorded by the network to a processing server at the Sichuan Earthquake Administration.
Additionally, in each 3G/4G router, the Virtual Private Network (VPN) was configured to provide each
sensor a virtual fixed Internet Protocol (IP) address for ease management and maintenance.
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3.2. Noise-Level Analysis

In the seismology field, noise-level analysis is always considered as a power tool for evaluating
the performance of a seismic device, from which the self-noise level, DR, and NU can be obtained.
Here, we used the Matlab script “ANSS_noise_rms_rev4.m” recommended by ANSS to calculate
root mean square (RMS) of the sensor self-noise and power spectral density (PSD). Two time periods
(January 2018 and December 2018) were selected, and on these time periods we computed self-noise
level for each GL-P2B sensor respectively. Following the suggestion of ANSS, we selected 30 min and
180,000 points for each channel at 100 sps in self-noise level computation. An example of results on
1 January 2018, and 30 December 2018, for the same GL-P2B sensor SC/T2402 is presented in Figure 4.Micromachines 2019, 10, x 6 of 16 
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Figure 4. An example of noise data of the sensor SC/T2402 processed by a Butterworth bandpass
filter between 0.1–20 Hz and the computed root mean square (RMS), power spectral density (PSD)
values: (a) Results of the noise data obtained on 1 January 2018; (b) results of the noise data obtained
on 30 December 2018.

The recorded data shown in Figure 4 are the raw data obtained by the GL-P2B sensor SC/T2402 on
1 January 2018, and 30 December 2018, at 1 am and filtered by a Butterworth bandpass filter in the
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focused frequency band of 0.1–20 Hz. From Figure 4, we could find that there is no transient signals
(such as earthquakes, instrumental glitches, or system artefacts) included. The offset of recorded data
was removed, and most of the values are less than 0.5 cm/s2. From this result, we could confirm that
the ambient noise is much less than the sensor noise-level, and the collected data are equal to the
self-noise level of the GL-P2B sensor. In addition, RMS at time and frequency domains and PSD are
computed. There is almost no difference between the values obtained in time and frequency domains.
For each GL-P2B sensor, the RMS values were computed through three components: Up–down (UD),
east–west (EW), and north–south (NS). Here, for comparison, we classified the RMS values of each
sensor into three grades shown in Table 1. Table 2 shows RMS values of some GL-P2B stations as an
example, including two stations with the grade-1 RMS values, two stations with the grade-2 RMS
values, and two stations with the grade-3 RMS values.

Table 1. Definition of RMS value classification for each GL-P2B station.

Grade UD RMS Values (cm/s2) EW RMS Values (cm/s2) NS RMS Values (cm/s2)

grade-1 <0.023 <0.019 <0.019
grade-2 0.023–0.030 0.019–0.026 0.019–0.026
grade-3 >0.030 >0.026 >0.026

Table 2. RMS values for some GL-P2B stations.

No. Grade Station Code

Time: 1 January 2018,
at 1 am

RMS Values (cm/s2)

Time: 30 December 2018,
at 1 am

RMS Values (cm/s2)

UD EW NS UD EW NS

1 grade-1 SC/W0113 0.0193 0.0165 0.0179 0.0192 0.0167 0.0180
2 grade-1 YN/C2515 0.0210 0.0157 0.0176 0.0211 0.0157 0.0177
3 grade-2 YN/C2105 0.0261 0.0194 0.0200 0.0271 0.0219 0.0211
4 grade-2 SC/W3702 0.0261 0.0199 0.0200 0.0255 0.0201 0.0198
5 grade-3 SC/W3701 0.0366 0.0277 0.0259 0.0330 0.0259 0.0258
6 grade-3 SC/W0105 0.0361 0.0296 0.0278 0.0388 0.0307 0.0293

For each sensor, RMS values of EW and NS components were almost the same, and the RMS value
of UD was bigger than the other two components. This is in line with the structural characteristics of
the MEMS accelerometer and can be found in all MEMS-based three axial sensors [33] because the UD
component is influenced by a gravitational acceleration. In addition, the results obtained on 1 January
2018, and 30 December 2018, were similar to each other. It means that after 12 months of continuous
work, the self-noise level of the GL-P2B sensors did not change, indicating that the performance of the
GL-P2B was stable and reliable.

After RMS values of all the GL-P2B stations were acquired, we calculated DR and NU of each
sensor by using Equations (1) and (2):

DR = 20lg
0.707A
RMS

(1)

NU =
DR

20× lg2
(2)

where A is the clip level of the GL-P2B sensor, which is ±2 g. Here, according to the installation location
of GL-P2B stations, we set the gravity acceleration as 9.7913 m/s2, which is the value obtained for the
southwestern part of China [40]. The obtained results for each grade of GL-P2B stations are presented
in Table 3.
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Table 3. Estimated dynamic range (DR) and useful resolution (NU) of each grade of the GL-P2B stations.

Grade Component RMS Values (cm/s2) DR/dB NU/bits

grade-1
UD 0.0193–0.0229 95.63–97.12 15.9–16.1
EW 0.0157–0.0189 97.30–98.91 16.2–16.4
NS 0.0160–0.0188 97.34–98.74 16.2–16.4

grade-2
UD 0.0230–0.0300 93.28–95.59 15.5–15.9
EW 0.0190–0.0260 94.53–97.25 15.7–16.2
NS 0.0191–0.0259 94.56–97.21 15.7–16.1

grade-3
UD 0.0303–0.0388 91.05–93.20 15.1–15.5
EW 0.0262–0.0297 93.37–94.46 15.5–15.7
NS 0.0261–0.0279 93.92–94.49 15.6–15.7

As shown in Table 3, we could find that for the GL-P2B stations with the grade-1 and grade-2 RMS
values, the differences in DR and NU were small. However, for those stations with the grade-3 RMS
values, the maximum difference of RMS values, DR, and NU between the grade-2 and grade-3 was
more than 0.01 cm/s2, 4 dB, and 0.8 bit, respectively. After carefully investigating those stations with
grade-3 RMS values, we found that there were some noise sources near the stations. Some stations
were too close to the highways, less than 100 m while other stations were too close to the processing
factories. Therefore, for these stations, we need to move them to new sites with low ambient noise
level for improving the data quality.

3.3. Collocated Recording Comparison

For those 60 GL-P2B sensors collocated with the traditional strong-motion stations, it provides
an opportunity to check the data quality recorded by this low-cost seismic network. Each traditional
strong-motion station uses a force-balanced accelerometer with a sampling rate of 200 Hz and a ±2 g
full dynamic range. However, those strong-motion accelerometers are not upgraded and can only
use the traditional trigger-mode for data transmission when the recorded ground-motion value of an
earthquake reaches the predefined threshold (4 gal). It means that for the traditional trigger-mode
stations, we cannot obtain the noise signals or waveforms for small earthquakes. We were lucky that
during the test period, several earthquakes with M > 4.0 occurred in the study region. They provided
us enough data for validating the data quality of the low-cost sensor. Here, in this research, we selected
waveforms of the two largest earthquakes for comparison: 16 May 2018, M 4.3 Shimian, and 31 October
2018, M 5.1 Xichang earthquakes. Figure 5 shows the comparison of original waveforms recorded by
three GL-P2B and traditional strong-motion station pairs for the Xichang earthquake: W0107&51XCH,
W3302&51MNJ, and T2405&51SMX. The W0107&51XCH and T2405&51SMX station pairs have the
nearest (16.6 km) and farthest (176.4 km) epicenter distances, respectively.

From Figure 5, we can find that the signals between these station pairs are almost the same as
each other and all the features of the earthquake waveforms recorded on the three axial channels
of the traditional accelerometers are perfectly duplicated by the proposed GL-P2B sensors, even for
collocated stations with an epicenter distance of more than 150 km. Additionally, except the previous
qualitative analysis, we also carried out quantitative assessments based on peak ground acceleration
(PGA) estimate to further demonstrate the reliability of the proposed system. The capability of the
proposed GL-P2B sensor to produce PGA or other strong-motion parameters is very important for civil
protection and monitoring oriented engineering applications. Appendix A presents the results about
the PGA parameter and its relative percentage difference of each collocated station for the two largest
earthquakes with M 5.1 and M 4.3. The relative percentage difference of the PGA values is computed
as follows:

δPGArel =
PGAtra − PGAGL−P2B

PGAtra
× 100 (3)
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where PGAtra and PGAGL-P2B are the values of the PGA parameter for the traditional strong-motion
accelerometer and the GL-P2B sensor, respectively. The parameters referred to the collocated stations
were computed for each of the three acceleration channels (UD, EW, and NS). The estimates of the
PGA values are similar for M 4.3 and M 5.1 earthquakes, and most of the δPGArel are smaller than 10%.
The PGA values generally decrease as the magnitude of the earthquake and the epicenter distance of
the station decrease, in line with the ground-motion attenuation characteristics. For those components
with relative percentage difference higher than ±20%, we found that there were errors on the sensitivity
calibration coefficients of the GL-P2B stations. After recalibrating the sensitivity coefficients, the relative
percentage difference would be less than 10%.Micromachines 2019, 10, x 9 of 16 
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at the following co-located station pairs: W0107&51XCH, W3302&51MNJ, and T2405&51SMX.
Stations 51XCH, 51MNJ, and 51SMX are traditional strong-motion stations with trigger-mode
data transmission.

3.4. Shake Map Generation

Shake map is considered as one of the powerful tools for earthquake emergency response
purposes. The more detailed the shake map, the better the effect we can obtain. Generally, the
shake map is produced with peak ground-motion parameters (PGA or others) from real and virtual
stations. The latter is derived from ground-motion prediction equations (GMPE). When the seismic
network in the earthquake source region is sparse, the values of the virtual stations will be the
control factor, leading to large system biases compared with the real ones. Traditionally, more than
ten minutes are needed for generating a shake map for an earthquake because we firstly need to
collect the trigger-mode event waveforms and then locate the epicenter and estimate the magnitude.



Micromachines 2019, 10, 735 9 of 15

However, with real-time transmission of strong-motion signals recorded by the GL-P2B sensor
network, we can generate a near-real-time shake map immediately after an earthquake being detected.
This would significantly shorten the time needed when compared with that produced by the traditional
trigger-mode strong-motion network.

Figure 6 compares the PGA shake map using the GL-P2B network with the traditional one for
the 31 October 2018, M 5.1 Xichang earthquake. Because this earthquake was located at the edge of
the GL-P2B sensor network, the values derived for the virtual stations controlled the western part of
the PGA shake map. However, relative to the result based on the traditional strong-motion stations
(Figure 6a), the eastern part of the PGA shake map using the GL-P2B network was more detailed
because of higher density of this network in this region. In the earthquake source region (orange-red
areas in the middle), five GL-P2B stations observed a PGA higher than 100 gal with one showing a
PGA approximately 400 gal, while only one traditional station recorded a PGA higher than 100 gal.
Using the combined sensor network, we could obtain a more detailed shake map for this earthquake
(Figure 6c,d), although the differences among Figure 6a–c are not apparent because the density of the
traditional strong-motion stations in the source area was high.
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The 16 May 2018, M 4.3 Shimian earthquake was selected as an example to check whether we
could directly use the GL-P2B sensor network without virtual stations to generate a PGA shake map for
an earthquake. The source region of this event was well surrounded by the low-cost seismic network.
As shown in Figure 7, one can find that the result without using virtual stations is more reasonable
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because the values derived from the GMPE usually contain system biases. Therefore, a dense array
deployed with low-cost MEMS sensors is very useful for this purpose.

The detailed shake map can as be used to identify rupture direction which is one of the key factors
for estimating possible damage after an earthquake occurs. Currently, traditional methodologies
require more analysis time to estimate the rupture direction. Figure 8 presents a series of acceleration
waveforms from GL-P2B stations close to the M 5.1 Xichang earthquake. Relative to the EW direction,
strong motion waveforms in the NS direction show relatively larger amplitudes except three PGA
values in the EW direction. Therefore, ruptures could proceed from the hypocenter along two directions.
One rupture was along the north and the other went south, leading to high seismic intensity distributed
in the north–south direction. This is consistent with the long axis direction of the intensity map
published by the Sichuan Earthquake Administration [42]. Thus, using a detailed shake map, we can
potentially identify the earthquake rupture direction. This represents significant progress in earthquake
observations for the test region.
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4. Conclusions

For increasing the density of the seismic network for EEW purpose, a tri-axial sensor with
high-dynamic MEMS named GL-P2B was developed. This sensor was an upgraded version from the
previous one by improving the CPU processing capability and correcting some errors found during the
initial test period. To fully reveal its performance after upgrading, approximately 170 GL-P2B sensors
were installed and tested in the Sichuan-Yunnan border region from January 2017 to December 2018.
The field test site is located in an area with a high seismic risk, and several earthquakes with M > 4.0
were recorded. In this research, we evaluated the sensor’s performances from noise-level, DR, NU,
collocated recording comparison, and shake map generation.

With the collected data, we obtained the ANSS-recommended self-noise of the GL-P2B sensor.
For the stations with grade-1 and grade-2 RMS values, the differences in DR and NU were small,
less than 2 dB and 0.5 bit, respectively. Some stations with grade-3 RMS values were influenced by
some noise sources near them, suggesting site movement for data quality improvement. After two
years of continuous work, the noise-level changing rates of most GL-P2B sensors are less than 10%,
indicating that this sensor’s performance is stable and reliable. Based on the results of DR and NU,
we confirmed that GL-P2B can be classified as a type of Class-B sensor.

The earthquake signals recorded by GL-P2B and collocated traditional strong-motion
accelerometers are almost the same as each other and all the features of the earthquake waveforms
recorded on the three axial channels of the traditional ones are perfectly duplicated by the proposed
GL-P2B sensors, even for collocated stations with epicenter distance more than 150 km. And most of
the relative percentage difference of the PGA values are smaller than 10%, suggesting that the records
obtained by the GL-P2B sensors are consistent with the data obtained by the traditional strong-motion
accelerometers. Those stations with relative percentage difference higher than 20% were caused by
errors on the sensitivity calibration coefficients, which will be solved by recalibrating them.

Relative to the traditional trigger-mode strong-motion stations, with the current density of the
GL-P2B seismic network, we could directly draw near-real-time refined shake maps for earthquakes
occurred in this network without using values derived for virtual stations. In addition, based on the
refined shake map, the rupture direction for an earthquake can be potentially identified. This will
significantly improve the capability for disaster risk reduction, earthquake emergency preparations
and response.

In conclusion, the real field test results proved that this MEMS-based sensor can meet the
requirements of dense EEW purpose and can significantly lower the total investment of the NSFSIREEW
project from $1 billion to $0.3 billion. Moreover, in terms of its high data quality, it can also be used in
other seismological applications, like structural health monitoring.
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Appendix A

Table A1 presents the results about the PGA parameter and its relative percentage difference of
each collocated station for the two largest earthquakes with M 5.1 and M 4.3.

http://www.scdzj.gov.cn
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Table A1. Relative differences of peak ground acceleration (PGA) recorded by collocated GL-P2B and
traditional strong-motion stations for the two largest earthquakes with M 5.1 and M 4.3.

M Epicenter Distance (km) Strong-motion Station Code Comp. PGA (cm/s2) GL-P2B Station Code PGA (cm/s2) δPGArel (%)

5.1

16.6 51XCH
UD 85.27

W0107
80.95 5.07

EW 199.08 195.66 1.72
NS 81.23 79.16 2.55

24.0 51XCN
UD 31.04

W0105
31.01 0.10

EW 40.68 40.60 0.20
NS 56.80 53.30 6.16

27.6 51XCX
UD 8.02

W0111
8.00 0.27

EW 18.90 20.44 −8.11
NS 18.84 19.44 −3.15

33.2 51PGW
UD 9.53

W2810
9.45 0.83

EW 20.21 20.86 −3.25
NS 25.66 25.94 −1.10

40.3 51XCL
UD 13.39

W0109
12.73 4.96

EW 27.73 26.64 3.94
NS 50.07 51.09 −2.04

46.1 51PGQ
UD 8.70

W2809
7.32 15.85

EW 32.55 31.62 2.86
NS 27.05 27.02 0.09

56.5 51MNZ
UD 8.04

W3310
10.06 −25.04

EW 28.07 29.12 −3.74
NS 18.33 17.85 2.62

57.1 51MNM
UD 16.95

W3307
16.11 4.97

EW 37.25 36.90 0.94
NS 38.76 38.71 0.13

75.6 51XDG
UD 1.20

W3203
1.77 −47.87

EW 5.38 5.33 1.08
NS 3.15 3.24 −2.92

76.5 51XDM
UD 4.75

W3207
5.45 −14.80

EW 11.94 11.38 4.67
NS 9.78 9.79 −0.07

78.7 51MNS
UD 5.09

W3305
4.94 3.05

EW 19.60 19.49 0.53
NS 11.12 11.35 −2.07

81.5 51MNF
UD 7.23

W3303
7.25 −0.26

EW 13.48 14.00 −3.88
NS 12.31 12.09 1.76

84.6 51MNH
UD 10.14

W3306
9.75 3.88

EW 15.80 15.29 3.21
NS 13.00 12.54 3.53

95.4 51MNJ
UD 4.65

W3302
4.48 3.66

EW 7.11 6.94 2.39
NS 6.94 6.65 4.18

105.7 51MNA
UD 5.03

W3311
5.15 −2.39

EW 14.62 14.83 −1.40
NS 12.68 12.96 −2.22

106.3 51MNC
UD 3.09

W3301
3.16 −2.26

EW 7.57 7.52 0.71
NS 7.92 7.76 1.98

106.8 51YXZ
UD 1.85

W3408
1.83 0.95

EW 8.11 8.01 1.26
NS 5.50 6.61 −20.22

107.0 51MND
UD 1.72

W3312
1.81 −5.15

EW 5.04 4.46 11.47
NS 5.63 5.54 1.50

120.1 51YXX
UD 2.17

W3406
2.33 −7.08

EW 3.37 3.43 −1.95
NS 4.58 4.89 −6.70

124.8 51MNW
UD 2.80

W3308
2.10 25.21

EW 3.69 3.73 −1.01
NS 4.88 4.91 −0.61

146.3 51SML
UD 2.39

T2403
2.48 −3.86

EW 7.33 7.21 1.63
NS 7.80 7.48 4.19

161.3 51SMC
UD 1.39

T2401
1.59 −14.39

EW 3.47 3.31 4.61
NS 3.49 3.30 5.44

176.4 51SMX
UD 1.23

T2405
1.44 −16.82

EW 2.15 2.18 −1.40
NS 1.95 1.87 4.26
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Table A1. Cont.

M Epicenter Distance (km) Strong-motion Station Code Comp. PGA (cm/s2) GL-P2B Station Code PGA (cm/s2) δPGArel (%)

4.3

8.7 51SMC
UD 52.49

T2401
62.01 −18.14

EW 165.16 157.71 4.51
NS 197.69 189.23 4.28

10.8 51SMX
UD 45.22

T2405
38.32 15.26

EW 83.60 80.17 4.10
NS 70.06 72.57 −3.57

28.5 51SMK
UD 4.91

T2402
4.51 8.09

EW 8.43 8.09 4.07
NS 4.91 4.80 2.17

41.3 51MNW
UD 6.89

W3308
8.32 −20.86

EW 11.35 11.93 −5.08
NS 16.27 16.03 1.51

49.9 51HYJ
UD 5.84

T2301
5.76 1.39

EW 5.10 4.63 9.32
NS 5.18 4.89 5.48

59.0 51YXX
UD 9.28

W3406
9.96 −7.34

EW 21.07 21.45 −1.83
NS 35.28 33.82 4.13

59.5 51MNC
UD 4.13

W3301
4.80 −16.16

EW 6.45 6.41 0.66
NS 6.39 6.18 3.26

61.2 51MNA
UD 3.42

W3311
3.40 0.60

EW 5.34 5.94 −11.20
NS 6.70 6.98 −4.30

87.1 51MNS
UD 2.12

W3305
2.17 −2.33

EW 3.32 3.37 −1.74
NS 2.75 2.81 −2.12
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