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Abstract: The nonlinear coupled vibration of an electrically actuated arch microbeam has attracted
wide attention. In this paper, we studied the nonlinear dynamics of an electrically actuated
arch microbeam with flexible supports. The two-to-one internal resonance between the first and
second modes is considered. The multiple scales method is used to solve the governing equation.
Four first-order ordinary differential equation describing the modulation of the amplitudes and phase
angles were obtained. The equilibrium solution and its stability are determined. In the case of the
primary resonance of the first mode, stable periodic motions and modulated motions are determined.
The double-jumping phenomenon may occur. In the case of the primary resonance of the second
mode, single-mode and two-mode solutions are possible. Moreover, double-jumping, hysteresis,
and saturation phenomena were found. In addition, the approximate analytical results are supported
by the numerical results.

Keywords: electrically actuated arch microbeam; flexible support; two-to-one internal resonance;
nonlinear vibration

1. Introduction

Electrically actuated microbeams are widely used in many micro-electro-mechanical systems
(MEMS) devices, such as actuators, mechanical memory sensors, energy harvesters, and filters [1–6].
There is a lot of published literature on the modeling, static, and dynamic behaviors for electrically
actuated microbeams [7–9]. To develop devices with more potential, electrically actuated arch
microbeams have attracted the interest of many scientists due to their bi-stable and rich dynamic
behaviors [10–12].

Internal resonance in structures is a promising and interesting nonlinear phenomenon [13–27].
It is capable of coupled nonlinearly vibrational modes in structures and can then exchange energy
between involving modes. Much literature on internal resonance has been published. For example,
Younis et al. [28] first investigated the three-to-one internal resonance of an electrically actuated
microbeam. Dario et al. [29,30] explored the possibility to stabilize the oscillation frequency of
nonlinear micromechanical resonators by coupling two different vibrational modes through internal
resonance. Chen et al. [31] demonstrate a novel strategy to support stable oscillations in nonlinear
micromechanical oscillators. Prashant et al. [32] propose a method to increase the frequency bandwidth
of a microbeam array by coupling different modes. Moreover, there is a lot of literature on the internal
resonance of electrically actuated arch microbeams. For example, Wang et al. [33] studied three-to-one
internal resonance between the first and third modes of a MEMS arch resonator. Alfosail et al. [34,35]
studied the two-to-one internal resonance between the first and third modes of a micromachined arch
resonator. Hajjaj et al. [36] investigated its one-to-one internal resonance. All of this literature found
that the first and third modes are coupled. Recently, Ouakad et al. [37] determined the one-to-one

Micromachines 2019, 10, 729; doi:10.3390/mi10110729 www.mdpi.com/journal/micromachines

http://www.mdpi.com/journal/micromachines
http://www.mdpi.com
http://www.mdpi.com/2072-666X/10/11/729?type=check_update&version=1
http://dx.doi.org/10.3390/mi10110729
http://www.mdpi.com/journal/micromachines


Micromachines 2019, 10, 729 2 of 19

and three-to-one internal resonance between the first and second modes in a MEMS arch resonator,
and found that although the frequency ratio of involving modes is an integer, these modes cannot be
coupled and, therefore, energy exchange cannot occur.

Furthermore, in the above literature, the boundary condition of micro-structures is modeled as
perfectly rigid, e.g., clamped. In fact, the clamped boundary condition is hard to achieve practically.
The clamped ends are an idealization of the actual instance, which in fact has some elasticity due
to fabrication imperfections [28,38]. Recent investigations have shown that flexible supports have
a significant effect on the static and dynamic behavior of the structure. Ekici et al. [39] found that
the frequencies with flexible boundary conditions may shift to the right or leftwith respect to the
clamped boundary. Alkharabsheh et al. [40,41] found that flexible supports significantly affect the
quantitative dynamics of the structures, such as changing their natural frequencies, amplitude of
vibrations, snap-through, and pull-in behavior. Therefore, it is more reasonable to model the real
complex boundaries as elastic supports.

Although the above research has found many complex and interesting dynamic behaviors of
electrically actuated arch microbeams with elastic supports, the literature only considers single-mode
dynamics. There is no investigation on the modal interaction.

Therefore, the aim of this study is to investigate the dynamics of an electrically actuated arch
microbeam with elastic supports. The two-to-one internal resonance between the first and second
mode is considered. The method of multiple scales is used to analyze the dynamics of the electrically
actuated arch microbeam. The effect of different system parameters on the frequency response curves
is also investigated. In addition, the analytical results are compared to those of the numerical method.

2. Problem Formulation

We model the imperfect microbeam as a shallow arch with an small initial rise, b0. The schematic
of the electrically actuated shallow arch is shown in Figure 1. The length, width, and thickness of the
arch are L, b, and h, respectively. The initial gap between the electrode is d. The arch is actuated by the
electric load composed of DC voltage, VDC, and AC voltage, VAC. Assuming the deflection of the arch
is denoted by ŵ(x̂, t̂) and the initial shape is denoted by ŵ0(x̂, t̂) = 0.5b0(1− cos 2πx̂).
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Figure 1. Schematic of an electrically actuated shallow arch with flexible boundary.

In the present study, the equation of motion is obtained by assuming that:

1. The arch is shallow, i.e., dŵ0/dx� 1; hence, the parallel-plate assumption is valid;
2. As the microbeam is slender, the Euler-Bernoulli beam theory is used, neglecting the effect of

shear and rotary inertia;
3. The simplest viscous damping model is adopted to model the dissipative mechanisms of

the resonator;
4. As the size of the structure is small, the size effects are considered.
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Based on the modified couples stress theory and Hamilton’s principle, the governing equation of
the electrically actuated arch can be written as [36,42]

ρA∂2ŵ
∂t̂2 + cd

∂ŵ
∂t̂ +

(
EI + µAl2

)
∂4ŵ
∂x̂4 + P0

(
∂2ŵ
∂x̂2 + d2ŵ0

dx̂2

)
−

EA
2L

(
∂2ŵ
∂x̂2 + d2ŵ0

dx̂2

)∫ L
0

[(
∂ŵ
∂x̂

)2
+ 2∂ŵ

∂x̂
dŵ0
dx̂

]
dx̂ = −

εrb(VDC+VAC cos Ω̂t)
2

2(d+ŵ0+ŵ)2

(1)

The fixed boundary condition at the right end demands that

ŵ = 0,
∂ŵ
∂x̂

= 0 at x̂ = L (2)

Because the left end is restrained by a linear torsional spring, one yields

ŵ = 0, K̂L
∂ŵ
∂x̂
− EI

∂2ŵ
∂x̂2 = 0 at x̂ = 0 (3)

where ρ, E, µ, A, and I are the materials density, the Young’s modules, the Lame’s constants,
the cross-sectional area, and the moment of inertia, respectively. l is the material length scale parameter
to characterize the size effect [18,19,43–61]. ĉ is the viscous damping coefficient. P0 is the axial load. εr

is the dielectric constant of the air. K̂L is the spring stiffness.
For convenience, the equation of motion governing the transverse deflection and the boundary

condition can be cast into dimensionless forms by the following parameters:

w = ŵ/d, x = x̂/L, T =
√
ρAL4/EI, t = t̂/T, Ω = Ω̂T (4)

Bt substituting Equation (4) into Equations (1)–(3), we obtain:

..
w + 2c

.
w + k1wiv +

(
∂2w
∂x2 + d2w0

dx2

)(
P− α1

∫ L
0

[(
∂w
∂x

)2
+ 2∂w

∂x
dw0
dx

]
dx̂

)
= −

α2(VDC+VAC cos(Ωt))2

(1+w0+w)2

(5)

w(0, t) = w′(0, t) = 0 w(1, t) = 0 w′(0, t) −KLw′′ (0, t) = 0 (6)

where the overdot indicates the derivative with respect to t, the prime indicates the derivative to x, and

k1 =
EI+µAl2

EI , α1 = 6
(

d
h

)2
, α2 = εrbL4

2EId3 , 2c = cdL4

EIT , P = P̂L2

EI

w0 = − b0
2d [1− cos(2πx)], KL = EI

K̂LL

(7)

The arch deflection under an electric load consists of a static component due to the DC voltage and
a dynamic component due to the AC voltage. The static component can be obtained from Equations (5)
and (6) by dropping time-dependent terms and denoting static deformation by ψ(x). The result is

k1ψ
iv +

(
∂2ψ

∂x2 +
d2w0

dx2

)P− α1

∫ L

0

(∂ψ∂x

)2

+ 2
∂ψ

∂x
dw0

dx

dx̂

 = − α2V2
DC

(1 + w0 +ψ)2 (8)

ψ(0, t) = ψ′(0, t) = 0ψ′(1, t) = 0ψ′(0, t) −KLψ
′′ (0, t) = 0 (9)

We assume that ws(x) denotes a static equilibrium position in coordinates. Then

ws(x) = ψ(x) + w0(x) (10)



Micromachines 2019, 10, 729 4 of 19

Substituting Equation (10) into Equations (8) and (9) and then multiplying the result by
(1+ws)2 yields

k1(1 + ws)
2wiv

s + (1 + ws)
2
[
P− α1

∫ 1

0

(
w′2s −w′20

)
dx

]
w′′ s + α2V2

DC= 0 (11)

The boundary conditions are:

ws(0, t) = w′s(0, t) = 0 ws(1, t) = 0 w′s(0, t) −KLw′′ s(0, t) = 0 (12)

To obtain the governing equation of the arch vibration, we assume that a dynamical disturbance
υ(x, t) takes place around the static equilibrium position. Then,

w(x, t) = ws(x) + υ(x, t) (13)

Substituting Equation (13) into Equations (5) and (6), and using Equations (11) and (12) to eliminate
the terms representing the equilibrium position. To third-order in υ, the result is:

..
υ+ 2c

.
υ+ k1υiv + λ2υ′′ − 2α1w′′ s

∫ 1
0 w′sυ′dx− α1w′′ s

∫ 1
0 υ
′2dx

−2α1υ′′
∫ 1

0 w′sυ′dx− α1υ′′
∫ 1

0 υ
′2dx−

2α2V2
DC

(1+ws)
3 υ

−
3α2V2

DC

(1+ws)
4 υ

2
−

4α2V2
DC

(1+ws)
5 υ

3 = −2α2VDCVAC cos(Ωt)

(14)

υ(0, t) = υ′(0, t) = 0 υ(1, t) = 0 υ′(0, t) −KLυ
′′ (0, t) = 0 (15)

where λ2 = P− α1
∫ 1

0

(
w′2s −w′20

)
dx.

3. The Method of Multiple Scales

In this section, we use the multiple scales method to solve Equations (14) and (15). In the presence
of two-to-one internal resonance, the primary resonance of the first and second mode is considered.
To this end, we introduced the two independent time scales:

T0 = t, T1 = εt (16)

where ε is a small dimensionless parameter. It follows that the derivatives with respect to t can be
expressed as expansion in terms of the partial derivatives with respect to the Tn

∂
∂t =

∂
∂T0

+ ε ∂
∂T1

+ ε2 ∂
∂T2

= D0 + εD1 + ε2D2
∂2

∂t2 = D2
0 + 2εD0D1 + ε2

(
D2

1 + 2D0D2
)
+ . . .

(17)

The solution of Equation (14) can be represented by an expansion having the form:

υ(x, t; ε) = ευ1(x, T0, T1, T2) + ε2υ2(x, T0, T1, T2) (18)

In order that the damping coefficients and the external excitation term appear in the
same perturbation equation as the quadratic nonlinear terms, we let c = εc, VAC = ε2VAC.
Substituting Equations (16)–(18) into the governing equation, equating coefficients of like power
of ε, we obtain:

D2
0υ1 + k1υ

iv
1 + λ2υ′′ 1 − 2α1w′′ s

∫ 1

0
w′sυ′1dx−

2α2V2
DC

(1 + ws)
3 υ1= 0 (19)
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D2
0υ2+ k1υiv

2 + λ2υ′′ 2 − 2α1w′′ s
∫ 1

0 w′sυ′2dx−
2α2V2

DC

(1+ws)
3 υ2

=α1w′′ s
∫ 1

0 υ
′2
1dx + 2α1υ′′ 1

∫ 1
0 w′sυ′1dx−

3α2V2
DC

(1+ws)
4 υ

2
1 − 2α2VDCVAC cos(Ωt)

(20)

where
υ(0, t) = υ(1, t) = 0 υ′(0, t) −KLυ

′′ (0, t) = 0 υ′(1, t) = 0 (21)

Equations (19) is the linear eigenvalue problem of the arch. The solution of Equation (19) can be
expressed as:

υ1(x, T0, T2) =
∞∑

m=1

Am(T2)φm(x)eiωmT0 + cc (22)

where Am(T2) denotes the complex function to be determined, ωm is the mth natural frequency of the
system, φm(x) is the mode function, and cc indicates the complex conjugate of the preceding terms.

The linear eigenvalue problem has been studied by many researchers [62]. As a case study,
we choose dimensionless parameters as k1 = 1.03, KL = 0.10, P = 5, α1 = 75.62, and α2 = 0.11.
Here, Figure 2a shows the variation of the first and second natural frequencies with the DC voltage;
Figure 2b shows variations of the frequency ratio with the DC voltage. It is found that when the DC
voltage is fixed at VDC = 18.82, the frequency ratio between the second and first natural frequencies
is 2. Hence, a two-to-one internal resonance between the first and second modes may be activated
when VDC is near 18.82. Here, we assumed that neither of these two modes is involved in an internal
resonance with the other modes. Due to the presence of damping and internal resonance, only the
first and second modes will contribute to the long-time dynamic response. As a result, the solution of
Equation (19) can be written in the form:

υ1(x, T0, T2) = A1(T2)φ1(x)eiω1T0 + A2(T2)φ2(x)eiω2T0 + cc (23)

where A1 and A2 are unknown complex functions. φ1 and φ2 are the first and second modal shapes,
respectively. cc is the conjugate of the previous terms.

Micromachines 2019, 10, x FOR PEER REVIEW 5 of 19 

 

( )

( )
( )

212 2 2
0 2 1 2 2 1 2 230

21 12 22
1 1 1 1 1 1 240 0

22 d
1

3              = d 2 d 2 cos
1

iv DC
s s

s

DC
s s DC AC

s

VD k w w x
w

Vw x w x V V t
w

αυ υ λ υ α υ υ

αα υ α υ υ υ α

′′ ′′ ′ ′+ + − −
+

′′ ′ ′′ ′ ′+ − − Ω
+



 
 (20) 

where  

( ) ( ) ( ) ( ) ( )0, 1, 0            0, 0, 0        1, 0Lt t t K t tυ υ υ υ υ′ ′′ ′= = − = =  (21) 

Equations (19) is the linear eigenvalue problem of the arch. The solution of Equation (19) can be 
expressed as:   

( ) ( ) ( ) 0
1 0 2 2

1
, , mi T

m m
m

x T T A T x e ccωυ φ
∞

=

= +  (22) 

where Am(T2) denotes the complex function to be determined, ωm is the mth natural frequency of the 
system, ϕm(x) is the mode function, and cc indicates the complex conjugate of the preceding terms. 

The linear eigenvalue problem has been studied by many researchers [62]. As a case study, we 
choose dimensionless parameters as k1 = 1.03, KL = 0.10, P = 5, α1 = 75.62, and α2 = 0.11. Here, Figure 2a 
shows the variation of the first and second natural frequencies with the DC voltage; Figure 2b shows 
variations of the frequency ratio with the DC voltage. It is found that when the DC voltage is fixed at 
VDC = 18.82, the frequency ratio between the second and first natural frequencies is 2. Hence, a two-
to-one internal resonance between the first and second modes may be activated when VDC is near 
18.82. Here, we assumed that neither of these two modes is involved in an internal resonance with 
the other modes. Due to the presence of damping and internal resonance, only the first and second 
modes will contribute to the long-time dynamic response. As a result, the solution of Equation (19) 
can be written in the form: 

( ) ( ) ( ) ( ) ( )1 0 2 0
1 0 2 1 2 1 2 2 2, , i T i Tx T T A T x e A T x e ccω ωυ φ φ= + +  (23) 

where A1 and A2 are unknown complex functions. ϕ1 and ϕ2 are the first and second modal shapes, 
respectively. cc is the conjugate of the previous terms. 

 
(a) 

 
(b) 

Figure 2. (a) Natural frequency variation against VDC; (b) variation of the frequency ratio between the 
second and first natural frequencies with VDC. 

Substituting Equation (23) into Equation (20) yields 
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Substituting Equation (23) into Equation (20) yields

L(υ2) = (−2iω1D1A1φ1 − 2icω1A1φ1)eiω1T0 + (−2iω2D1A2φ2 − 2icω2A2φ2)eiω2T0

+h11A2
1eiωnT0 e−iσ1T0 + H12A2A1eiω1T0eiσ1T0 + h22A2

2ei2ω2T0

+2h11A1A1 + 2h22A2A2 + H12A1A2ei(ω1+ω2)T0 −
α2VDCVAC

(1+ws)
2 eiΩT0 + cc

(24)



Micromachines 2019, 10, 729 6 of 19

where cc is the complex conjugate of the preceding terms and h1i =

α1

(
w′′ s

∫ 1
0 φ

′2
i dx + 2φ′′ i

∫ 1
0 w′sφ′idx

)
−

3α2V2
DC

(1+ws)
4φ

2
i i = 1, 2

H12 = 2α1

(
w′′ s

∫ 1

0
φ′1φ

′

2dx + φ′′ 1

∫ 1

0
w′sφ′2dx + φ′′ 2

∫ 1

0
w′sφ′1dx

)
−

6α2V2
DC

(1 + ws)
4
φ1φ2

3.1. Primary Resonance of the First Mode

To describe the nearness of the ω2 to 2ω1 and the excitation frequency Ω to ω1, we let

ω2 = 2ω1 + εσ1 Ω = ω1 + εσ2 (25)

where σ1 and σ2 are the detuning parameters. Due to the homogeneous part of Equation (20) which
has a nontrivial solution, Equation (20) has a nontrivial solution only if the solvability conditions are
satisfied. Because this problem is self-adjoint, it can be demanded that the right hand of Equation (20)
is orthogonal to φ1(x)exp(-iω1T0) and φ2(x)exp(-iω2T0). Performing these manipulations, we were able
to obtain complex-valued modulation equations

2iD1A1 = −2icA1 + 4R1A2A1eiσ1T0 − F1eiσ2T1 (26)

2iD1A2 = −2icA2 + 4R2A2
1e−iσ1T0 (27)

where

R1 =
1

4ω1

∫ 1

0
H12φ1dx, R2 =

1
4ω2

∫ 1

0
h11φ2dx, F1 =

α2VDCVAC
4ω1

∫ 1

0

φ1

(1 + ws)
2 dx

Next, introducing the polar transformation

A1 =
1
2

a1eiβ1(T1)A2 =
1
2

a2eiβ2(T1) (28)

and substituting them into Equations (26) and (27), and separating real and imaginary parts, we obtain
the following modulation equation:

.
a1 = −ca1 + R1a1a2 sinγ1 − F1 sinγ2 (29)

.
a2 = −ca2 −R2a2

1 sinγ1 (30)
.
β1a1 = −R1a1a2 cosγ1 + F1 cosγ2 (31)

.
β2a2 = −R2a2

1 cosγ1 (32)

where
γ1 = β2 − 2β1 + σ1T1 γ2 = σ2T1 − β1 (33)

Periodic solutions of the system correspond to the equilibrium points of Equations (29)–(32),
which in turn correspond to a′1 = a′2 = γ′1 = γ′2 = 0. Therefore, one can get the frequency-amplitude
relationship in the first mode

a6
1 + ∆1a4

1 + ∆2a2
1 + ∆3F2

1 = 0 (34)

a2 =
|R2|a2

1

(2σ2 − σ1)
2 + c2

(35)
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where

∆1 =
2c2
− 2σ2(2σ2 − σ1)

R1R2
, ∆2 =

(
σ2

2 + c2
)[
(2σ2 − σ1)

2 + c2
]

R2
1R2

2

, ∆3 = −
(2σ2 − σ1)

2 + c2

R2
1R2

2

To examine the stability of the response, we express the modulation equations as the Cartesian
form. To this end, we introduce:

A1 =
1
2
(p1 − iq1) A2 =

1
2
(p2 − iq2) (36)

Substituting Equations (36) into Equations (26) and (27) yields:

.
p1 = −cp1 − v1q1 + R1(p2q1 − p1q2) (37)

.
q1 = −cq1 + v1p1 + R1(p1p2 + q1q2) + F1 (38)

.
p2 = −cp2 − v2q2 − 2R2p1q1 (39)

.
q2 = −cq2 + v2p2 + R2

(
p2

1 − q2
1

)
(40)

where v1 = 2σ1 - σ2, v2 = σ2. The eigenvalues ηm of the Jacobian matrix are determined from:∣∣∣∣∣∣∣∣∣∣∣
η+ c + R1q2 v1 −R1p2 −R1q1 R1p1

−v1 −R1p2 η+ c−R1q2 −R1p1 −R1q1

2R2q1 2R2p1 η+ c v2

−2R2p1 2R2q1 −v2 η+ c

∣∣∣∣∣∣∣∣∣∣∣ = 0 (41)

Equation (41) can be written as the closed-form:

η4+2c2η3 +
[
6c2 + v2

1 + v2
2 −R2

1a2
2 + 4R1R2a2

1

]
η2

+
[
4c3 + 2c

(
v2

1 + v2
2 −R2

1a2
2

)
+ 8cR1R2a2

1

]
η+

c4 + c2
(
v2

1 + v2
2

)
+ v2

1v2
2 −

(
c2 + v2

2

)
R2

1a2
2 + 4

(
c2
− v1v2

)
R1R2a2

1 + 4R2
1R2

2a4
1 = 0

(42)

Solving Equation (38), and by then examining the sign of the eigenvalues, the stability of the
equilibrium solution can be found.

3.2. Primary Resonance of the Second Mode

To describe the nearness of the ω2 to 2ω1 and the excitation frequency Ω to ω1, we let

ω2 = 2ω1 + εσ1 Ω = ω2 + εσ2 (43)

Performing the similar processes in Section 3.1, we were able to obtain complex-valued
modulation equations

2iD1A1 = −2icA1 + 4R1A2A1eiσ1T0 (44)

2iD1A2 = −2icA2 + 4R2A2
1e−iσ1T0 − F2eiσ2T1 (45)

where F2 =
α2VDCVAC

4ω2

∫ 1
0

φ2

(1+ws)
2 dx, Substituting Equation (28) into Equations (44) and (45) yields:

.
a1 = −ca1 + R1a1a2 sinγ1 (46)

.
a2 = −ca2 −R2a2

1 sinγ1 − F2 sinγ2 (47)
.
β1a1 = −R1a1a2 cosγ1 (48)
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.
β2a2 = −R2a2

1 cosγ1 + F2 cosγ2 (49)

where
γ1 = β2 − 2β1 + σ1T1 γ2 = σ2T1 − β2 (50)

The equilibrium points of Equations (46)–(49) correspond to the steady-state response. There are
two possible types of solutions. The first is the single-mode solution (a1 = 0, a2 , 0) that can be
expressed as:

a1 = 0, a2 =
F2√

c2 + σ2
2

(51)

which is essentially the linear solution in the second mode.
The second is the coupled two-mode solution (a1 , 0, a2 , 0) that can be expressed as:

a4
1 +

2c2
− (σ1 + σ2)σ2

R1R2
a2

1 +

(
c2 + σ2

2

)[
4c2 + (σ1 + σ2)

2
]
− 4R2

1F2
2

4R2
1R2

2

= 0 (52)

a2
2 =

1
R2

1

[
c2 +

1
4
(σ1 + σ2)

2
]

(53)

To determine the stability of the single-mode solution, substituting a1 = 0 into Equation (42) obtains:(
η2+2cη+ c2 + v2

1 −R2
1a2

2

)(
η2+2cη+ c2 + v2

2

)
= 0 (54)

According to the Routh-Hurwitz stability criterion, all eigenvalues are with negative real parts
and then the single-mode is stable if:

R2
1a2

2 < c2 + v2
2 (55)

The stability of the coupled two-mode solution can be determined by substituting the equilibrium
solution (a1, a2) into Equation (42) and then examining the sign of the eigenvalues.

4. Numerical Results

In this section, the numerical example of the electrically actuated shallow arch will be presented.
The present study shows the results of the primary resonance of the first mode (i.e., Ω = ω1) and the
second mode (i.e., Ω = ω2) in the presence of 2:1 internal resonance. In all figures, solid lines denote
stable equilibrium solutions, the blue dashed lines denote unstable solutions (saddle-node), and the
red solid lines denote modulated solutions (focus).

4.1. Primary Resonance of the First Mode

In the case of the primary resonance of the first mode, dimensionless parameters of the system are
chosen as k1 = 1.03, P = 5, c = 0.01, KL = 0.10, VDC = 18.82, VAC = 0.05, α1 = 75.62, and α2 = 0.11 unless
other values are set. The internal resonance condition ω2: ω1 = 2 is satisfied.

Figure 3 shows the frequency-response curves of the primary resonance of the first mode for
different AC voltage (VAC = 0.02, 0.05, 0.10). It is seen from the figure that there are two peaks bending
to the opposite directions. The double-jumping phenomena can occur via increasing or decreasing the
excitation frequency. Hopf bifurcation occurs near σ1 = 0 and the amplitude- and phase-modulated
motion may take place. Moreover, increasing the excitation, both the steady-state response amplitude
and the range of resonance frequency increases.
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increasing VDC, the modulated motion occurs (Figure 5c). When σ1 is almost zero, double-jumping is 
near-symmetrical (Figure 5d). Increasing VDC so that σ1 becomes positive and much larger, the 
jumping with hardening-spring type becomes much smaller (Figure 5e,f) and the modulated motion 
disappears (Figure 5f). Increasing VDC, σ1 becomes larger enough so that the internal resonance 
condition cannot be meet again, and jumping with the hardening-spring type disappears, and hence 
double-jumping reduces single-jumping with the softening-spring type (Figure 5g). 

Figure 3. Frequency-response curves of primary resonance of the first mode for VAC = 0.02, 0.05, 0.10:
(a) the first mode, (b) the second mode.

Figure 4 shows the frequency-response curves of the primary resonance of the first mode for
different damping coefficients (c = 0.01, 0.03, 0.05). It is seen from the figure that the double-jumping
phenomena can occur only for small damping coefficients. With the growth of the damping coefficients,
double-jumping reduces to two peaks without jumping and the steady-state response close to
σ1 = 0 becomes the stable periodic solution. Moreover, as the damping coefficients increase, the response
amplitude decreases.
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Figure 5 depicts the frequency-response curves of the primary resonance of the first mode
for different DC voltages. For sufficiently small DC voltages, VDC, σ1 is small enough and the
internal resonance condition cannot be meet such that only single-jumping with hardening-spring
type occurs (Figure 5a). With increases in VDC, such that σ1 becomes near zero but still remains
negative, an additional jumping with softening-spring type emerges to form double-jumping
(Figure 5b). Further increasing VDC, the modulated motion occurs (Figure 5c). When σ1 is almost zero,
double-jumping is near-symmetrical (Figure 5d). Increasing VDC so that σ1 becomes positive and much
larger, the jumping with hardening-spring type becomes much smaller (Figure 5e,f) and the modulated
motion disappears (Figure 5f). Increasing VDC, σ1 becomes larger enough so that the internal resonance
condition cannot be meet again, and jumping with the hardening-spring type disappears, and hence
double-jumping reduces single-jumping with the softening-spring type (Figure 5g).
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Figure 5. Frequency-response curves of primary resonance of the first mode for different DC voltage
(a) VDC = 18.00 (σ1 = -0.75), (b) VDC = 18.30 (σ1 = -0.49), (c) VDC = 18.71 (σ1 = -0.10), (d) VDC = 18.82
(σ1 ≈ 0), (e) VDC = 18.99 (σ1 = 0.17), (f) VDC = 19.30 (σ1 = 0.48), (g) VDC = 19.70 (σ1 = 0.90).
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Figure 6 shows the variation of the steady-state response amplitude with AC voltage in the
presence of two-to-one internal resonances for different AC voltage frequency. At the exact primary
resonance (σ2 = 0), there is only one steady-state response, which is stable for small AC voltages and
modulated for large AC voltages (Figure 6a). When the AC voltage frequency is near the primary
resonance (Figure 6b), there are two stable responses and one unstable response for small AC voltage
amplitudes and the modulated response for large AC voltage amplitudes. By further increasing the
AC voltage frequency, the modulated response occurs at a larger AC voltage. The multivaluedness
leads to the hysteresis phenomenon (Figure 5b–d), which occurs at a larger AC voltage with increasing
growth of the AC voltage frequency.
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4.2. Primary Resonance of the Second Mode

In the cases of the primary resonance of the second mode, dimensionless parameters of the system
are chosen as k1 = 1.03, c = 0.01, KL = 0.10, VDC = 18.82, VAC = 0.05, α1 = 75.62, and α2 = 0.11 unless
other values are set. The internal resonance condition ω2:ω1 = 2 is satisfied.

Figure 7 shows the frequency-response curves of the primary resonance of the second mode for
different AC voltage amplitudes in the presence of two-to-one internal resonance (VAC = 0.08, 0.10,
0.12). There are two kinds of solutions: the single-mode solution (a1 = 0, a2 , 0 depicted with a1s, a2s)
and coupled nonlinear solution (a1 , 0, a2 , 0 depicted with a1c, a2c) due to the internal resonance.
In Figure 7a, the double-jumping phenomenon can be seen clearly, and the response amplitude
increases with the excitation amplitude. In Figure 7b, the amplitude of the coupled nonlinear solution
remains unchanged for different AC voltages, which can be regarded as the saturation phenomenon.
Moreover, the single-mode solution is unstable near σ2 = 0. When the AC voltage frequency is far
away from σ2 = 0, only the single-mode solution, a2, exists.
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When further increasing the DC voltage so that the system has the exact two-to-one internal 
resonance (σ1 = 0), the response becomes symmetrical, as shown in Figure 9d. With increasing DC 
voltage, so that σ1 becomes positive and much larger, the left jumping branch becomes much smaller, 
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Figure 7. Frequency-response curves of the primary resonance of the second mode for VAC = 0.08, 0.10,
0.12; (a) the first mode, (b) the second mode.

Figure 8 shows the frequency-response curves of the primary resonance of the second mode for
different damping coefficients (c = 0.010, 0.015, 0.028). In the first mode, as shown in Figure 8a, as the
damping coefficient increases, the two peaks diminish and then reduce to one peak without jumping.
Moreover, the response amplitude decreases when the damping coefficient rises. In the second mode,
as shown in Figure 8b, as the damping coefficient increases, the response amplitude of the single-mode
solution decreases and that of the coupled nonlinear solution decreases.
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Figure 8 depicts the frequency-response curves of the primary resonance of the second mode
for different DC voltages. For sufficiently small DC voltages, VDC, σ1 is so small that the system
is far away from the two-to-one internal resonance. Hence, there is only the linear or single-mode
solution (a1 = 0, a2 , 0), as shown in Figure 9a. With increasing DC voltage, there are two separated
jumping branches with hardening- and softening-spring types in the first mode, as shown in Figure 9b.
When the DC voltage reaches a specific value, the two jumping branches merge, as shown in Figure 9c.
When further increasing the DC voltage so that the system has the exact two-to-one internal resonance
(σ1 = 0), the response becomes symmetrical, as shown in Figure 9d. With increasing DC voltage,
so that σ1 becomes positive and much larger, the left jumping branch becomes much smaller, as shown
in Figure 9e,f. With increasing DC voltage, σ1 becomes large enough so that the internal resonance
condition cannot be met again and the jumping with the softening-spring type disappears, and,
therefore, the response becomes single-mode (a1 = 0, a2 , 0), as shown in Figure 9g.



Micromachines 2019, 10, 729 13 of 19

Micromachines 2019, 10, x FOR PEER REVIEW 13 of 19 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

Figure 9. Frequency-response curves of the primary resonance of the second mode for different DC 
voltages: (a) VDC = 18.00 (σ1 = -0.75), (b) VDC = 18.70 (σ1 = -0.11), (c) VDC = 18.71 (σ1 = -0.10),  
(d) VDC = 18.82 (σ1 ≈ 0), (e) VDC = 18.90 (σ1 = 0.08), (f) VDC = 18.94 (σ1 = 0.11), (g) VDC = 19.80 (σ1 = 1.00). 

Figure 10 shows the variation of the amplitude of the response with the amplitude of the 
excitation in the presence of the two-to-one internal resonance. For the small AC voltage frequency 

Figure 9. Frequency-response curves of the primary resonance of the second mode for different DC
voltages: (a) VDC = 18.00 (σ1 = -0.75), (b) VDC = 18.70 (σ1 = -0.11), (c) VDC = 18.71 (σ1 = -0.10), (d) VDC

= 18.82 (σ1 ≈ 0), (e) VDC = 18.90 (σ1 = 0.08), (f) VDC = 18.94 (σ1 = 0.11), (g) VDC = 19.80 (σ1 = 1.00).
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Figure 10 shows the variation of the amplitude of the response with the amplitude of the excitation
in the presence of the two-to-one internal resonance. For the small AC voltage frequency in Figure 10a,b,
when f < f 1, there is only the single-mode solution. When f > f 1, the amplitude of the second mode
remains constant, while the amplitude of the first mode increases with the growth of excitation. In other
words, there is a saturation phenomenon. For large AC voltage frequencies in Figure 10c,d, for f < f 2,
there is only the single-mode solution. For f 2 < f < f 1, the responses are either the single-mode
solution or coupled two-mode solution. For f > f 1, there exists only the coupled two mode solution.
Moreover, the hysteresis phenomenon exists, as shown in Figure 10c,d.
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4.3. Numerical Verification

To verify the steady-state solutions, we integrate numerically the modulation equations, Equations
(29)–(32) of the primary resonance of the first mode and Equations (46)–(49) of the primary resonance
of the second mode using the Runge-Kutta technique. Figures 11–15 show the comparison of the
results obtained by the multiple scales method and the numerical method. The numerical results verify
the double-jumping, hysteresis, and saturation phenomena. For the amplitude of the steady-state
response, the numerical and analytical results are in agreement. Moreover, to verify the modulated
solution in the case of primary resonance of the first mode, Figure 13 shows the two-dimensional
projections of the phase portraits onto the p1–q1 plane when σ2 is slightly beyond the Hopf bifurcation
point, that is, σ2 = -0.0315 and when σ2 = 0. It is found that the response is modulated. This is in
agreement with the results predicted by the multiple scales method.
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