

Supplementary Materials Microneedle Patterning of 3D Nonplanar Surfaces on Implantable Medical Devices Using Soft Lithography

Sun-Joo Jang ^{1,2}, Tejas Doshi ^{1,2}, Jerusalem Nerayo ², Alexandre Caprio ^{1,2}, Seyedhamidreza Alaie ^{1,2}, Jordyn Auge ^{1,2}, James K. Min ^{1,2}, Bobak Mosadegh ^{1,2,*} and Simon Dunham ^{1,2,*}

- ¹ Dalio Institute of Cardiovascular Imaging, NewYork-Presbyterian Hospital and Weill Cornell Medicine, New York, NY 10021, USA; drjalive@gmail.com (S.-J.J.); tnd2001@med.cornell.edu (T.D.); aac2009@med.cornell.edu (A.C.); sea2012@med.cornell.edu (S.A.); jordynauge@gmail.com (J.A.) jkm2001@med.cornell.edu (J.K.M.)
- ² Department of Radiology, Weill Cornell Medicine, New York, NY 10021, USA; jdna2017@mymail.pomona.edu (J.N.)
- * Correspondence: bom2008@med.cornell.edu (B.M.); sid2012@med.cornell.edu (S.D.); Tel.: +1-212-327-7170 (S.D.)

List:

Video S1: Lateral pull-out test for microneedle array under compression between slide glasses and porcine aorta.

Figure S1: Alternative microneedle templates from laser-cutting method.

Figure S2: Confocal microscopy of microneedles before and after pressurization.

Figure S3: Magnified view of microneedle array after pressurized stent implantation.

Figure S4: Lateral pull-out test for microneedle array.

Table S1: Comparison of different polymeric microneedle fabrication methods.

Figure S1. Alternative microneedle templates fabricated by a laser-cutting method. (**a**) Acrylic inverse template for various sizes of microneedles; (**b**) Sample of silicon microneedles generated using an inverse mold; (**c**) Thin microneedle film fabricated using the laser-cut method (four different groups for measurements are marked with dashed yellow boxes); (**d**) Volumetric image of four representative microneedles by confocal microscopy; (**e**) Distribution of height among the four microneedle groups (P < 0.001); (**f**) Distribution of radius of curvature among the four microneedle groups (p < 0.001).

Figure S2. Confocal microscopy of microneedles before and after pressurization. (**a**) 3D maximumintensity projection image of the microneedle before and after pressurization; (**b**) XZ-plane sectional view of the microneedle before and after pressurization; (**c**) Comparison of the horizontal base width of the microneedle before and after pressurization; (**d**) Comparison of the vertical base width of the microneedle before and after pressurization; (**e**) Comparison of the height of the microneedle before and after pressurization; (**e**) Comparison of the height of the microneedle before and after pressurization. Scale bar, 50 μ m.

Figure S3. Magnified view of the microneedle array after pressurized stent implantation

Figure S4. Lateral pull-out test on the microneedle array. (**a**) Porcine aorta and the microneedle array film were compressed together between slide glasses; (**b**) A lateral force was applied to the microneedle film and increased gradually. There was no mechanical failure of the microneedle; (**c**) Magnified view of the microneedles sliding over the porcine aorta; (**d**) Microneedle shape and sharpness were intact after the lateral pull-out experiment; (**e**) The porcine aorta was free from any damage or indent. Scale bar, 1 mm.

Groups	Fabrication Techniques	Characteristics of MN	Substrate Material	Height of MN	Thickness of Film Layer	Potential Application
Pérennès et al.[1]	Deep X-ray lithography, electroplating, sactificial mold in PVA, PDMS micromold	Hollow MN	PMMA	500~700 μm	N/A	Transdermal drug delivery
Yung et al.[2]	Stainless steel microinjection molds, picosecond laser	Hollow MN	POM	500 µm	~200 µm	Transdermal drug delivery
Park et al[3]	Photolithography, micro- electromechanical masking and etching, PDMS mold, sacrificial polymer,	Biodegradable MN	PLA, PGA, PLGA	700~1500 μm	N/A	Transdermal drug delivery
Yang et al.[4]	Photolithography, PDMS mold	Swellable MN	PS, PS-b- PAA	700 µm	500~1000 μm	Adhesive on skin and intestine, drug delivery
Johnson et al.[5]	Stereolithography with CLIP technique	Sharp, tunable and biocompatible MN	TMPTA, PEG, PCL, PAA	400~1000 μm	1000 µm	Transdermal drug delivery

Table S1. Comparison of different polymeric microneedle fabrication methods.

Nejad et al.[6]	CO2 laser cutter, PDMS mold, casting	Low-cost scalable PDMS solid microneedles	PVA	1000~3000 μm	~500 µm	Transdermal drug delivery
Current technique	Soft lithography (PDMS mold, spin coating, casting)	Rigid microneedles on flexible film	TPU	300 µm	~50 µm	Enhanced anchorage for implantable medical devices

Abbreviations. MN, microneedle; PVA, polyvinyl acid; PDMS, polydimethylsiloxane; PMMA, polymethylmethacrylate; POM, polyoxymethylene; PLA, polylactic acid; PGA, polyglycolic acid; PLGA, poly(lactic-co-glycolic acid); PS, polystyrene; PS-b-PAA, polystyrene-*block*-poly(acrylic acid); CLIP, continuous liquid interface production; TMPTA, trimethylolpropane triacrylate; PEG, polyethylene glycol; PCL, polycaprolactone; PAA, polyacrylic acid; TPU, thermoplastic polyurethane; N/A, not available.

References

- 1. Perennes, F.; Marmiroli, B.; Matteucci, M.; Tormen, M.; Vaccari, L.; Di Fabrizio, E. Sharp beveled tip hollow microneedle arrays fabricated by LIGA and 3D soft lithography with polyvinyl alcohol. *J. Micromech. Microeng.* **2006**, *16*, 473.
- 2. Yung, K.L.; Xu, Y.; Kang, C.; Liu, H.; Tam, K.F.; Ko, S.M.; Kwan, F.Y.; Lee, T.M.H. Sharp tipped plastic hollow microneedle array by microinjection moulding. *J. Micromech. Microeng.* **2012**, *22*, 015016.
- 3. Park, J.H.; Allen, M.G.; Prausnitz, M.R. Biodegradable polymer microneedles: fabrication, mechanics and transdermal drug delivery. *J. Controlled Release* **2005**, *104*, 51–66.
- Yang, S.Y.; O'Cearbhaill, E.D.; Sisk, G.C.; Park, K.M.; Cho, W.K.; Villiger, M.; Bouma, B.E.; Pomahac, B.; Karp, J.M. A bio-inspired swellable microneedle adhesive for mechanical interlocking with tissue. *Nat. Commun.* 2013, *4*, 1702.
- Johnson, A.R.; Caudill, C.L.; Tumbleston, J.R.; Bloomquist, C.J.; Moga, K.A.; Ermoshkin, A.; Shirvanyants, D.; Mecham, S.J.; Luft, J.C.; DeSimone, J.M. Single-Step Fabrication of Computationally Designed Microneedles by Continuous Liquid Interface Production. *PLoS One.* 2016, *11*, e0162518.
- Nejad, H.R.; Sadeqi, A.; Kiaee, G.; Sonkusale, S. Low-cost and cleanroom-free fabrication of microneedles. Microsys. Nanoeng. 2018, 4, 17073.

© 2019 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).