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Abstract: The vertical-cavity surface-emitting laser (VCSEL) has unique advantages over the
conventional edge-emitting laser and has recently attracted a lot of attention. However, the output
power of GaN-based VCSEL is still low due to the large electron leakage caused by the built-in
polarization at the heterointerface within the device. In this paper, in order to improve the output
power, a new structure of p-type composition-graded AlxGa1−xN electron blocking layer (EBL) is
proposed in the VCSEL, by replacing the last quantum barrier (LQB) and EBL in the conventional
structure. The simulation results show that the proposed EBL in the VCSEL suppresses the leaking
electrons remarkably and contributes to a 70.6% increase of the output power, compared with the
conventional GaN-based VCSEL.

Keywords: GaN-based vertical-cavity surface-emitting laser (VCSEL); composition-graded AlxGa1−xN
electron blocking layer (EBL); electron leakage

1. Introduction

Vertical-cavity surface-emitting lasers (VCSELs) exhibit several advantages over edge-emitting lasers
(LDs), including high-speed direct modulation, circular mode profile, low threshold current, etc. [1–3].
Recently, although GaAs-based VCSELs that emit red or infrared light have been commercialized and
applied to various products, it is still hoped that VCSELs will not only cover the red area, but also
the blue and green spectrum region, thus constituting the ternary color of light for illumination,
display and communication of the next generation [4]. As wide-bandgap materials, the bandgap width
of gallium nitride (GaN) and its alloy materials are continuously adjustable from 0.7 eV to 6.2 eV,
covering near-red, green, blue, and ultraviolet. They have become the main material for manufacturing
short-wavelength light-emitting diodes (LEDs) and LDs. Recently, the GaN-based materials have been
applied to VCSELs and achieved important progress [5]. Universities and research institutes such as
National Chiao-Tung University [6], Nichia Corporation [7], University of California, Santa Barbara [8],
Sony Corporation [1], Xiamen University [9] and Meijo University [10] conducted good work on
the designing and manufacturing of blue GaN-based VCSELs. In 2018, Stanley Electric Co., Ltd.
demonstrated a GaN-based VCSEL with an output power of 7.6 mW by reducing both the internal loss
and the reflectivity of the front cavity mirror [11]. This structure achieved the highest output power of
a GaN-based VCSEL ever produced to the best of our knowledge. However, it is still relatively low as
a result of ignoring other mechanisms. For example, for InP and other semiconductor-based lasers,
lower threshold and higher output power can be achieved by designing the micro-cavities, which may
also have good effects in GaN-based VCSELs [12–14].
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Beyond designing the micro-cavities, in order to obtain higher output power, methods which
maximize the radiative recombination rate have been adopted by minimizing the electron leakage out
of the active region. Among those methods, AlxGa1−xN electron blocking layer (EBL) is usually placed
between the active region and p-GaN layer, since it provides a higher energy barrier in the conduction
band between quantum wells (QWs) and the p-layers. The higher energy barrier in the conduction
band contributes to the confinement of the electrons in the active region, so stronger output power can
be achieved [15]. However, the very commonly used AlxGa1−xN EBL sometimes cannot efficiently
reduce electron leakage due to the polarization charge in that layer, which decreases the barrier height
for electron transport [16,17]. As such, the blocking effects of AlxGa1−xN EBL on electron overflow
are limited [18]. In addition, there are big differences in the polarization value and the energy barrier
height in the conduction band between AlxGa1−xN EBL and InxGa1−xN last quantum barrier (LQB),
which results in a large built-in polarization field and significant free electron accumulation at the
heterointerface between the two layers. This free electron accumulation outside of the active region
severely degrades the internal quantum efficiency. To solve this problem, Zhang et al. proposed a design
which replaces the InxGa1−xN LQB with a tapered AlxGa1−xN LQB in GaN-based LD [19], and Lin et al.
proposed another structure which replaces the AlxGa1−xN EBL with a composition-graded AlxGa1−xN
EBL in the VCSEL [20].

In this work, our concept is to improve the output power by optimizing the carrier transport.
We proposed an improved GaN-based VCSEL structure called GVCSEL to reduce the electron leakage.
In GVCSEL, the LQB and EBL in the conventional GaN-based VCSEL are replaced with a new layer
which consists of a composition-graded p-AlxGa1−xN layer and a p-AlxGa1−xN layer. The physical and
optical properties of the GVCSEL are investigated numerically with the Photonic Integrated Circuit
Simulator in 3D (PICS3D) software (Crosslight Corporation, Vancouver, BC, Canada). The results show
that the GVCSEL effectively confines the electrons in the active region and has a more uniform carrier
distribution. This contributes to a better radiative recombination and helps achieve a 70.6% increase of
the output power compared with the conventional GaN-based VCSEL.

2. Device Structure and Simulation Parameters

In this work, the conventional GaN-based VCSEL was used for comparison, as shown in Figure 1a [21],
which consists of 11 pairs of Ta2O5/SiO2 as the bottom and top distributed Bragg reflectors (DBRs),
respectively. Then, there is a 5.3 µm-thick n-type GaN layer (n-doping = 2.5 × 1018 cm−3) and five
periods of In0.1Ga0.9N/In0.035Ga0.965N multi-quantum wells (MWQs). The thicknesses of the well and
the barrier are 4 nm and 8 nm, respectively, the n-doping of the barrier is 1 × 1018 cm−3, whilst the LQB
is undoped. Next there is a 20 nm-thick Al0.21Ga0.79N (p-doping = 5 × 1018 cm−3) EBL, followed by a
0.54 µm-thick p-type GaN layer (p-doping = 1 × 1018 cm−3). On the p-type GaN layer, a 20 nm-thick
SiO2 is employed as the current-confined layer. Following that, a 20 nm-thick indium-tin-oxide (ITO)
layer (p-doping = 1 × 1019 cm−3) is employed as the current spreading layer and the diameter of the
current injection aperture is designed to be 10 µm. The top metal ring contact confining the optical
mode is 12 µm in diameter. Figure 1b shows the schematic diagram of the GVCSEL in this study,
which is formed by replacing the 8 nm-thick In0.035Ga0.965N LQB and 20 nm-thick Al0.21Ga0.79N EBL in
the conventional GaN-based VCSEL with a new layer. The new layer consists of a p-Al0→0.21Ga1→0.79N
(p-doping = 5 × 1018 cm−3) layer and a p-Al0.21Ga0.79N (p-doping = 5 × 1018 cm−3) layer, where the
thickness of the first layer is L nm and the thickness of the second layer is (28-L) nm. The GaN-based
VCSEL samples with L equals 6 nm, 8 nm and 16 nm are named GVCSEL1, GVCSEL2 and GVCSEL3,
respectively, and their parameters are given in Table 1. The conventional GaN-based VCSEL is named
CVCSEL for comparison.

The physical features and optical properties of the GVCSEL and CVCSEL were investigated
numerically with the Simupics3d program of Crosslight software. An important issue in simulation
is the selection of proper parameters in the physical models. In this study, we used a Mg activation
energy of 170 meV for GaN, which was assumed to increase by 3 meV per Al% for AlGaN [12].
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The Shockley-Read-Hall (SRH) lifetime and the Auger recombination coefficient were estimated to
be 100 ns and 1 × 10−34 cm6s−1, respectively [22]. The built-in polarization caused by piezoelectric
polarization and spontaneous polarization was represented by fixed interface charges at every
heterointerface within the device, which was calculated using the methods developed by Fiorentini
et al. [23]. Here we took 50% of the theoretical value by setting the polarization screening to 0.5 [24].
We also considered the energy band offset ratio as 50:50 [25]. Other material parameters in the
simulation can be found in [26].
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Figure 1. Schematic diagrams of the (a) conventional gallium nitride (GaN)-based vertical-cavity
surface-emitting laser VCSEL (CVCSEL) and (b) proposed structure which is formed by replacing the
LQB and EBL in the CVCSEL with a new layer (GVCSEL).

Table 1. The thickness of p-Al0.21Ga0.79N layer and p-Al0→0.21Ga1→0.79N layer of GVCSEL.

Sample Name GVCSEL1 GVCSEL2 GVCSEL3

p-Al0.21Ga0.79N 22 nm 20 nm 10 nm
p-Al0→0.21Ga1→0.79N 6 nm 8 nm 16 nm

3. Results and Discussions

Since the output power and the threshold current are interlinked, investigating both of them is
crucial to understand the performance of GaN-based VCSELs [17], we calculated the two performances
of CVCSEL and GVCSEL1-GVCSEL3, as shown in Figure 2. It was found that the output power of
CVCSEL was 0.179 mW and was lower than that of the GVCSELs in Figure 2a. In addition, the output
power increased from 0.267 mW to 0.306 mW when the thickness of L of the p-Al0→0.21Ga1→0.79N in
the GVCSEL was increased from 6 nm to 8 nm, while with further increase of L from 8 nm to 16 nm,
the output power decreased from 0.306 mW to 0.303 mW. Thus, the highest output power was obtained
in GVCSEL2, which achieved a 70.6% increase of output power compared with the CVCSEL. Figure 2b
shows that the current threshold of the four samples first decreased and then went up. The lowest
threshold current was also achieved in GVCSEL2.

In order to reveal the origin of the observations in Figure 2, we calculated the distribution of the
electrons and the holes and the current density flowing along the vertical direction near the active
region of the four samples at an injection current of 6 mA, as shown in Figure 3. We also calculated the
distribution of the radiative recombination rate as shown in Figure 4a–d. In Figure 3a, the highest
electron concentration in the p-GaN layer was obtained in CVESEL, thus there was the largest electron
leakage. For the GVCSELs, the electron concentration in the p-GaN layer decreased when L was
increased from 6 nm to 8 nm. However, the electron concentration in the p-GaN layer increased
when the thickness of L went up from 8 nm to 16 nm. Therefore, the lowest electron concentration in
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the p-GaN layer was obtained in GVCSEL2, which means that the largest reduction of the electron
leakage was obtained in GVCSEL2. Thus, the reduction of electron leakage is one of the origins of the
increase of output power and the reduction of the threshold current for CVCSEL-GVCSEL3. Figure 3b
illustrates that the hole concentration in p-GaN layers of the GVCSELs was almost the same with that
of the CVCSEL, which means that the hole injection is not changed in GVCSELs compared to CVCSEL.
Thus, the hole injection is not the origin of the change of output power and threshold current for the
samples. Figure 3c demonstrates that the electron overflow of GVCSEL was efficiently suppressed
and the most effective suppression of the electron overflow was obtained in GVCSEL2. There was
more uniform carrier distribution with the reduction of electron overflow. As a result, the radiative
recombination rate in GVCSEL was improved, as can be seen in Figure 4a–d, and the highest one was
obtained in GVCSEL2, as shown in Figure 4c. In summary, Figures 3 and 4a–d show that the increase
of the output power and the decrease of the threshold current for samples of GaN-based VCSEL can be
attributed to the reduced electron leakage and an increased radiative recombination rate.
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Finally, for the purpose of investigating in-depth the origin of the reduced leaking electrons in the
GVCSEL, we calculated the distribution of the energy band at an injection current of 6 mA, as plotted
in Figure 4e–h. In CVCSEL, the effective barrier height of the EBL for the electrons was 223 meV,
which was lower than that of GVCSEL. Therefore, in CVCSEL the electrons were easier to leak into the
p-GaN layer. The increase of the electron leakage resulted in a more nonuniform carrier distribution in
the active region, thus lowering the radiative recombination rate and the output power. For GVCSELs,
when the thickness of L was increased from 6 nm to 8 nm, the effective barrier height increased from
263 meV to 303 meV. But the effective barrier height decreased from 303 meV to 280 meV when the
thickness of L further increased from 8 nm to 16 nm. This means that the highest effective barrier height
was the origin of the highest output power obtained in GVCSEL2. We can also see that the effective
barrier height of EBL for the holes was about 176 meV in CVCSEL and all three GVCSELs. Therefore,
the ability inject holes into the active region is almost the same in the CVCSEL and the GVCSELs, as
shown in Figure 3b. In summary, the origin of the increased output power for the GVCSEL is not the
rate of the injection holes but the suppressed electron leakage.
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4. Conclusions

In our work, in order to improve the output power of GaN-based VCSEL, we proposed a structure
called GVCSEL, based on the concept of modulating the carrier distribution. A new layer was used
by combining the LQB and EBL in the conventional GaN-based VCSEL, which was made up of a L
nm-thick composition-graded p-AlxGa1−xN layer and a (28-L) nm-thick p-Al0.21Ga0.79N layer and
the Al component in the graded AlxGa1−xN changed from 0 to 0.21. The thickness of L for the three
GVCSEL samples was selected to be 6 nm, 8 nm and 16 nm. The numerical simulation results showed
that all the GVCSELs had improved output power. The higher output power in the GVCSELs is an
attribute of the decrease of the large built-in polarization field and the reduction of the free electron
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accumulation at the heterointerface between the LQB and the AlxGa1−xN EBL. This further helped
the suppression of the electron leakage and contributed to a more uniform carrier distribution in the
active region, resulting in a higher radiative recombination rate in the quantum wells. What is more,
this proposed layer also introduced a stronger quantum barrier which can confine the carriers in the
quantum wells. In the GVCSELs, the one with a thickness of L of 8 nm obtained the highest output
power, which was 70.6% stronger over that of the CVCSEL, since it had higher effective barrier height
in the conduction band for electrons. Therefore, the GVCSEL output power can be accurately designed
by selecting the thickness of L.
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